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The Stability of Plane Poiseuille Flow
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The problem of the stability of plane Poiseuille Row to small
disturbances leads to a characteristic value problem for the Orr-
Somrnerfeld equation with given boundary conditions. It happens
that negative values of the imaginary parts of the characteristic
numbers, which indicate instability, are small, at any rate over
the region here investigated, and considerable accuracy is required
to establish them, while the Reynolds numbers for which they
occur are large.

In this paper the fourth-order differential equation is replaced
by a difference system of the same order with a truncation error
involving the eighth derivative, so that the error is suSciently
small with a reasonably large interval. The resulting system of

linear algebraic equations is solved by direct Gaussian elimina-
tion, which avoids the di%culties due to rapid exponential growth
of error for high Reynolds number which beset the standard in-
tegration procedure.

The characteristic value is obtained for a range of Reynolds
numbers and wavelengths of the disturbance, and the critical
Reynolds number found to be 5780 for wavelength 3.062 times the
width of the channel. A detailed discussion of the accuracy of the
work is given for the (unstable) case of wavelength m. and Reynolds
number 10000, and a table of the prohle of the disturbance is
given for this case.

I. PLANE DISTURBANCE OF PLANE
POISEUILLE FLOW

HE equations of motion of a homogeneous in-
compressible viscous Quid in two dimensions

u~ider hydrostatic pressure between two planes at
y= ~b are satisfied, to the first order in e by the stream
function

( y'
4=UoI —y I+ (exp[—in(x —'t)5v(y)
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+exp[in(x ct)5P—(y) },

where c and q are complex and c and g their complex
conjugates, provided that the profile of the disturbance

p(y) satisfies the Orr-Sommerfeld equation,
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and the boundary conditions p= 0, p= 0, at Y= +b.
Uo is the speed of the undisturbed Row in the x

direction at the center of the stream; 2m/n is the wave-
length of the disturbance in the x direction, and c is
the complex velocity of the disturbance, which is
damped so long as the imaginary part of c is positive.
v is the kinematic viscosity of the Quid. Dots signify
differentiation with respect to y.

Writing R=Uob/v, the Reynolds' number, and re-
placing y by by, x by bx, n by n/b, t by bt/Uo, c by
cUO, P by bUOP, and p by bUO p, we have the reduced
form

d4q/dy4 2n' j+n4qr—
+in'((1 —c—y')(j' —

pn) 2+q) =0.
With boundary conditions +=0, &=0 at y=~1, and
corresponding stream function, '

' S. Goldstein, modern Developmentsin Fluid Dynam& s (Claren-
don Press, Oxford, 1938), p. 197.

P= (-',y' —y)+c(exp[ —in(x —ct)5p(y)
+

exp[in�

(x ct)5p—(y) l

Solutions of the differential equation for p, for given
n and R, can be made to satisfy the boundary condi-
tions only for characteristic values of c.- We are inter-
ested in determining whether there are real values of
E. and cx for which c has a negative imaginary part.
The corresponding disturbance then grows in amplitude
exponentially with the time. We also wish to determine
the critical Reynolds' number, the lowest value of E
for which instability of steady motion exists.

Work on this problem by many authors using asymp-
totic series, culminating in that of Heisenberg and Lin,
indicates that the Qow becomes unstable for o.=1 at
about 8=5300, but this value is such that the asymp-
totic series are not really accurate, and the negative
values reached by the imaginary part of c are small.
It has, therefore, seemed desirable to attack the prob-
lem by direct numerical solution of the equation for
assigned real values of 0, and 8 and complex values of
c, to vary c till the boundary conditions can be satisfied,
and then, varying 0. and E, to determine the minimum
value of 8 for which the characteristic value c has
negative imaginary part. The difficulty of this direct
solution lies in the large values, for the values of E.
required, of the coeS.cients of terms other than that
containing the highest-differential coe%cient, in the
differential equation.

II. REPLACING THE DIFFERENTIAL EQUATION
BY A DIFFERENCE EQUATION

In the difTerential equation,

d' p/dy'+Pd' p/dy'+Qq =0,

we may replace the differential coefFicients by their
expressions in terms of central diGerences at interval z,

' See C. C. Lin, Quart. Appl. Math. 3, 287 {1946),where a long
list of references to earlier work is given,
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TABLE I. Values of Co' for various values of c,
in case o.= 1, R= 10 000, zv =0.02.'

10»CO'
First divided

difference
Second divided

difference

0.235 —0.0055i

0.235 —0.005i

0.235 —0.004i

0.2355 —0.004i

0.2375 —0.004i

0.2375 —0.0036i

0.2375 —0.0034i

13174731 —24320802i
1232678 +8458436i

8945463 —23704463i
1159013+8570140i

375323 —22545450i
1146092 +8672570i

948369 —18209165i
1345224 +8798509i

3638818—612147i
1489720+8930980i

66426 —16259i
1459580+9013430i—1736261+275657i

74469+49110i

79653 +50376i

87416+50233i

a The interpolated value c =0.237500592853 —0.003592509400i gave
10»CO' =66 —196i, and the value c =0.2375006 —0.0035925i was adopted.

' This is the Gauss-Jackson-Noumerov method. B.V. Noumerov,
Monthly Notices Roy. Astron. Soc. 84, 592 (1924); J. Jackson,
Monthly Notices Roy. Astron. Soc. 84, 602 (1924).

In this equation we should normally take terms up to
a definite order in m', counting P of order mr'. the first
terms neglected then estimate the truncation error. We
may, however, without extra difficulty, take terms of
one higher order in w' in Pd'p/dy', since this gives
terms of the same order in 8'. This offsets a large co-
e%cient in I', so far as the truncation error is concerned,
when m is small enough.

The truncation error may be made of higher order
by substituting

y= (1+k)6'+ k2t')'+ )g

in the difference equation, and choosing k&, k2, to
make the coefficients of the first terms previously
neglected vanish. ' We may also allow k&, k2 to con-
tain P and Q and may operate on the equation with
1+1~i)'+li()'+ .

, introducing also differences of P
and Q, obtaining still greater accuracy with a difference
equation of given order at the expense of more compli-
cated coeKcients. A still more accurate difference equa-
tion may be built up from approximate local solutions
of the differential equation.

If, in particular, we take

g = p ——',w' tt)+ (w'/90) d'p/dy',
we obtain

.1. ; 67.Ns

g+ t) g-+ -t) g- ~(s)
6 360 .907200

TABLE II. Values of c for various numbers of steps,
in case a= 1, R= 10 000.

Number of steps

25
50
75

100
extrapolated to ~

0.2376559—0.0016981i
0.2375006—0.0035925i
0.2375196—0.0037115i
0.2375243 —0.0037312i
0.2375259—0.0037404i

the term in pP having zero coeKcient.
The Orr-Sommerfeld equation for the Poiseuille Row

then becomes, retaining only the largest error terms,
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with the following boundary conditions:

67m, s1
g+ t)2g+ t)4g . ~ (8) 0

6 360 907200

1 ml4

ti()g+ p(5) =0
'M 120

at y= +1.We shall deal only with even solutions over
range 0&y&1, which must satisfy @kg=0, pPg=0 at
y= 0.

We see that for m =0.01, the second term in the error
of the di8erential equation does not exceed the first till
nR(1 —c—y')=250000, but that for w=0.04, it will
exceed it when nR(1 —c—y') = 16 000.

We expect a proportional error per step behaving like
(w4/100)(p/p)4, so for w=0.01, we might ordinarily
expect a truncation error of order 10 ",but if there are
regions where (t/p is large, for example, near y=1,
where we expect j/(t) (inRc)&, we have proportional
error n'R'c'w'/200, and for R=10000, c=0.25, u=1,
this gives 0.0003. However, this will give a total error
multiplied by the effective amplitude q in this neigh-
borhood, and the final accuracy can only be deter-
mined a posteriori.

The terms in brackets, taken at some point in the
relevant interval, give the truncation error.

Further we find

m&4

t~g+-
120
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TABLE III. Values of Co' for various values of c,
in case a = 1, R= 10 000, m =0.005. + 99 g97+~99 g98+C99 g99

+98 g96++98 g97+C98 g98
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

+ 2 g0 +~2 gl +C2 g22.38 —0.040i
2.376—0.040i
2.375—0.036i
2.375259—0.037404i
2.37524808332 —0.03731799983i
2.37524994756—0.03732369406i
2.3/524303556 —0.03731157406i

44760+62816i
37228+ 5138i—19357+ 1340i—1555—1063i—2077 — 828i

1027—1829i—2170+ 1864i

+1 g0 ++1 gl

Co' go =o,
and if c has been chosen so that Cp =0, a solution exists,
and We Can find in SuCCeSSiOn the ratiOS Of g1, g2, g1oo
to gp.

This method would give the solution of inhomogene-
ous equations as if the Green's function of the diGeren-
tial system were used, and we shall run into no difficulty
unless one or more of the numbers Cgg', Cgs', C1',
used as divisors, is small.

The first attempt at solution by this method, made
in the opposite direction, led to almost random varia-
tion of C1pp' as c was altered near the characteristic
value. This is explained by the boundary condition
p=0, &=0, at y= j., requiring ggg and gipp to be small,
and so Cg8', in this solution, to be small. A small change
of c would then make Cgy' small, and C1pp would be very
sensitive to changes in c. Eliminating towards gp, how-
ever, leads, to no difficulty, only the final Cp' being small.

The value c=0.3231+0.0262i for 66=1.0, 8=1600,
which had been established by previous numerical work
under the direction of Von Neumann, Pekeris, and Lin,
using a method devised by Von Neumann, was used as
a starting point and test of the setup. ' An extrapolated
value of c was assumed for neighboring values of o. and
R, and Cp' computed. Values of Cp' were also obtained
for neighboring values of c, and inverse interpolation
was used to get a value of c giving Cp'=0.

Note that for a difference equation as above of the
same order as the diGerential equation it approximates,
we may expect the same number of linearly independent
solutions with the same kind of behavior as for the
differential equation.

III. .SOLUTION OF THE DIFFERENCE SYSTEM

The resulting system of difference equations has the
form, for 100 steps,

I

0 g0 +D0 gl ++0 g2

+1 g0 +Cl gl +Dl g2 ++1 g8

+2 g0 +~2 gl ++2 g2 ++2 g8 ++2 g4
~ ~ ~ ~ ~ ~ ~ ~ P ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

+ 98 g96+~98 g97+C98 g98 +D98g99 ++98gl00

=0
7+99 g97+~99 g98+C99 g99 +D99g100

-4 100g98++100g99+C100g100 =0,

where all the coefFicients are linear in the complex
characteristic number c.

If we try to solve these by assuming the ratio of g1
to gp and finding in succession g2, g3, ~, we fail for
any large Reynolds number unless a very large number
of digits is carried, because one solution of the differen-
tial equation has a logarithmic rate of increase like
[iuR(1 —c—y2) j'*, so that for 8=10000, abou.t 50
decimal digits would be needed to obtain a 5- or 6-
digit accuracy in the linearly independent solution
which does increase rapidly.

If, however, we solve by direct Gaussian elimination,
or any equivalent method, obtaining in succession

IV. THE RESULTS OF THE COMPUTATION
AND THEIR ACCURACY

TABLE IV. Characte

The computing was done on the International Busi-
ness Machine Corporation's Selective Sequence Elec-
tronic Computer by Donald A. Quarles, Jr. , and
Phyllis K. Brown. The single accuracy multiplication
on this machine is 14)&14 decimal digits. The coeS.-
cients of the difference equation were scaled to be less
than unity and carried to 11 decimals, allowing 2 digits
to the left of the decimal point for overflow and one
further place for checking by using two diferent posi-

ristic values of c.

n/R

0.9
1.0
1.1
1.2

1600

0.3231+0.0262i
0.3384+0.0206i

2500

- 0.2857+0.0212i
0.3011+0.0142i
0.3148+0.0108i
0,3267+0.0170i

6400

0.2444+0.0012i
0.2569—0.0009i
0.2677+0.0007i
0.2763+0.0056i

10 000

0.2261 —0.0040i
0.2375—0.0037i
0.2470+0.0003i
0.2535+0.0075i

35 000

0.1886+0.0009i
0.1911.+0.0116i

For a=1.05, R=8000, c=0.2524 —0.0017i.
For n=1.026, R=5780, a 50-step solution gave aRci0 '=1.56886522464+0.00043540544i; a 100-step solution gave aRc10 '

= 1.56899069990—0.00000341519i.
Solutions were also found for o, =1.025 and m=1.027 for R=5780.

4This work, also done on International Business Machines Corporation's Selective Sequence Electronic Computer in 1950,
was not published as it did not settle the question at issue.
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0.00 1.000000+0.000000i
0.01 0.999919+0.000001i
0.02 0.999675+0.000003i
0.03 0.999270+0.000006i
0.04 0.998701+0.000010i
0.05 0.997970+0.000016i
0.06 0.997076+0.000023i
0.07 0.996020+0.000032i
0.08 0.994799+0.000041i
0.09 0.993416+0.000052i
0.10 0.991868+0.000064i
0.11 0.990155+0.000078i
0.12 0.988278+0.000092i
0.13 0.986235+0.000109i
0.14 0.984027+0.000126i
0.15 0.981652+0.000145i
0.16 0.979109+0.000165i
0.17 0.976399+0.000186i
0.18 0.973521+0.000208i
0.19 0.970473+0.000232i
0.20 0.967255+0.000258i
0.21 0.963866+0.000284i
0.22 0.960304+0.000312i
0.23 0.956570+0.000341i
0.24 0.952662+0.000372i
0.25 0.948579+0.000404i
0.26 0.944320+0.000437i
0.27 0.939884+0.000472i
0.28 0.935268+0.000508i
0.29 0.930473+0.000545i
0.30 0.925497+0.000584i
0.31 0.920338+0.000624i
0.32 0.914995+0.000666i
0.33 0.909466+0.000709i .

q (y) for n =1, R =10 000

0.34 0.903749+0.000753i
0.35 0.897844+0.000799i
0.36 0.891748+0.000846i
0.37 0.885459+0.000895i
0.38 0.878976+0.000945i
0.39 0.872296+0.000997i
0.40 0.865417+0.001050i
0.41 0.858338+0.001104i
0.42 0.851056+0.001160i
0.43 0.843569+0.001218i
0.44 0.835873+0.001276i
0.45 0.827968+0.001337i
0.46 0.819849+0.001399i

,. 0.47 0.811515+0.001462i
0.48 0.802963+0.001527i
0.49 0.794188+0.001594i
0.50 O. 785190+0.001662i
0.51 0.775963+0.001732i
0.52 0.766505+0.001803i
0.53 0.756812+0.001876z
0.54 0.746880+0.001951i
0.55 0.736706+0.002027i
0.56 0.726285+0.002104i
0.57 0.715614+0.002183i
0.58 0.704686+0.002264i
0.59 0.693499+0.002346i
0.60 0.682046+0.002430i
0.61 0.670322+0.002516i
0.62 0.658322+0.002603i
0.63 0.646039+0.002692i
0.64 0.633467+0.002782z
0.65 0.620600+0.002874i
0.66 0.607431+0.002969i
0.67 0.593953+0.003064z

0.68 0.580157+0.003160i
0.69 0.566035+0.003255i
0.70 0.551578+0.003346i
0.71 0.536773+0.003430i
0.72 0.521606+0.003504i
0.73 0.506058+0.003563i
0.74 0.490106+0.003605i
0.75 0.473721+0.003630i
0.76 0.456871+0.003645i
0.77 0.439520+0.003663i
0.78 0.421630+0.003706i
0.79 0.403168+0.003810i
0.80 0.384105+0.004017i
0.81 0.364427+0.004381i
0.82 0.344137+0.004958i
0.83 0.323259+0.005800i
0.84 0.301837+0.006949i
0.85 0.279937+0.008425i
0.86 0.257644+0.010218i
0.87 0.235055+0.012282i
0.88 0.212274+0.014527i
0.89 0.189408+0.016819i
0.90 0.166567+0.018982i
0.91 0.143870+0.020800i
0.92 0.121459+0.022032i
0.93 0.099519+0.022424i
0.94 0.078317+0.021734i
0.95 . 0.058235+0.019744z
0.96 0.039820+0.016475i
0.97 0.023815+0.011990i
0.98 0.011157+0.00685$i
0.99 0.002900+0.002186i
1.00 0.000000+0.000000i

tions in the multiplier. The successive coefficients re-
mained between unity and one-tenth in most of the
integrations.

The values of Cp' for various values of c, in the case
n= 1, E.= 10 000, for a 50-step solution, as well as first
divided di8erences and some second divided di8erences
are given in Table I. We see that the values vary regu-
larly except for the right-hand three digits, and, in
fact, interpolation led to the last value of c given for
which Cp' has only the right-hand three digits. We
would perhaps not expect to lose as much accuracy in
50 steps, but no particular care was taken to maintain
maximum accuracy per step. We thus obtain

c=0.2375006—0.0035925i

with an error of about —,
' in the last place retained.

The values of c for 25-step, 50-step, 75-step, and
100-step solutions for this case are given in Table II.

~ The last three of these show differences consistent with
a truncation error of order x', and extrapolation leads
to a value

c=0.2375259—0.0037404i,

of which the right-hand two digits may be uncertain.
Some 200-step solutions were done for values of c

near the above, Table III, but Cp' could be reduced
only to four digits, and c was not determined more
accurately.

Results for various values of n and 8 are given in
Table IV. Only four decimals have been retained be-
cause in many cases only 50-step solutions were made.
The values are believed accurate to 0.5 in the last place.

Interpolation gives a critical Reynolds number
g= 5780 for n=1.026, and integration leads to a value
of c with imaginary part close to zero for this value of
R and n, but while R is well determined, o. is hardly
determined better than within the interval 1.02 to 1.03.

These numbers confirm Lin's results closely, and it
may now be regarded as proved that plane Poiseuille
Row becomes unstable at about 8=5800. It may be
noted that for a given value of n, the Row is unstable
only for a finite range range of Reynold's numbers as
was also found by I.in and Heisenberg. '

Assuming gp= 1, we find g&, g2, , gipp in succession.
, y99 are then found from g+ 6~8'g+ (1/360)8 g,

noting that g i=g1, g 2=g2 glpl g99 wh~e @100
The results for o,=1, 8=10000 are given in Table V.
They were computed to nine decimals and rounded to
six decimals after adjusting pp to unity. The values are
very smooth and the truncation error estimated from
the diGerences is at most 1 in the last place retained
and approaches this value only near y= 1.

The variation of p for other values of n and R for
which solutions were obtained is equally smooth and
shows no signs of oscillation or other peculiarity than
a more rapid change of phase near the boundary.


