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Abstract. A mechanism for the generation of turbulence and related phenomena in 
dissipative systems is proposed. 

§ 1. Introduction 

If a physical system consisting of a viscous fluid (and rigid bodies) 
is not subjected to any external action, it will tend to a state of rest 
(equilibrium). We submit now the system to a steady action (pumping, 
heating, etc.) measured by a parameter  # 1. When # --- 0 the fluid is at rest. 
For  # > 0  we obtain first a s teady  state ,  i.e., the physical parameters 
describing the fluid at any point (velocity, temperature, etc.) are constant 
in time, but the fluid is no longer in equilibrium. This steady situation 
prevails for small values of#. When # is increased various new phenomena 
occur; (a) the fluid motion may remain steady but change its symmetry 
pattern; (b) the fluid motion may become periodic in time; (c) for suffi- 
ciently large #, the fluid motion becomes very complicated, irregular 
and chaotic, we have turbulence.  

The physical phenomenon of turbulent fluid motion has received 
various mathematical  interpretations. It  has been argued by Leray [9] 
that it leads to a breakdown of the validity of the equations (Navier- 
Stokes) used to describe the system. While such a breakdown may happen 
we think that it does not necessarily accompany turbulence. Landau and 
Lifschitz [8] propose that the physical parameters x describing a fluid 
in turbulent motion are quasi-periodic functions of time: 

x( t )  = f (co I t . . . .  , cokt ) 

w h e r e f h a s  period 1 in each of its arguments separately and the frequences 
co 1 . . . . .  c% are not rationally related 2 It is expected that k becomes large 
for large #, and that this leads to the complicated and irregular behaviour 

* The research was supported by the Netherlands Organisation for the Advancement 
of Pure Research (Z.W.O.). 

i Depending upon the situation, ,u will be the Reynolds number, Rayleigh number, etc. 
2 This behaviour is actually found and discussed by E. Hopf in a model of turbulence 

[A mathematical example displaying features of turbulence. Commun. Pure Appl. Math. 1, 
303-322 (1948)]. 
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characteristic of turbulent motion. We shall see however that a dissipative 
system like a viscous fluid will not in general have quasi-periodic 
motions 3. The idea of Landau and Lifschitz must therefore be modified. 

Consider for definiteness a viscous incompressible fluid occupying 
a region D of 1R 3. If thermal effects can be ignored, the fluid is described 
by its velocity at every point of D, Let H be the space of velocity fields v 
over D; H is an infinite dimensional vector space. The time evolution 
of a velocity field is given by the Navier-Stokes equations 

dv 
dt  - Xu(v) (1) 

where X, is a vector field over H. For our present purposes it is not 
necessary to specify further H or X u 4. 

In what follows we shall investigate the nature of the solutions of (1), 
making only assumptions of a very general nature on X~. It will turn out 
that the fluid motion is expected to become chaotic when ~ increases. 
This gives a justification for turbulence and some insight into its meaning. 
To study (1) we shall replace H by a finite-dimensional manifold 5 and 
use the qualitative theory of differential equations. 

For  # = 0, every solution v(.) of (1) tends to the solution v o = 0 as the 
time tends to + c~. For  # > 0 we know very little about the vector field 
X u. Therefore it is reasonable to study generic deformations from the 
situation at/~ = 0. In other words we shall ignore possibilities of defor- 
mation which are in some sense exceptional. This point of view could 
lead to serious error if, by some law of nature which we have overlooked, 
X~ happens to be in a special class with exceptional properties 6. It 
appears however that a three-dimensional viscous fluid conforms to the 
pattern of generic behaviour which we discuss below. Our discussion 
should in fact apply to very general dissipative systems 7 

The present paper is divided into two chapters. Chapter I is oriented 
towards physics and is relatively untechnical. In Section 2 we review 

3 Quasi-periodic motions occur for other systems, see Moser [101. 
4 A general existence and uniqueness theorem has not been proved for solutions of the 

Navier-Stokes equations. We assume however that we have existence and uniqueness 
locally, i.e., in a neighbourhood of some v o e H and of some time t o. 

This replacement can in several cases be justified, see § 5. 
6 For instance the differential equations describing a Hamiltonian (conservative) 

system, have very special properties. The properties of a conservative system are indeed 
very different from the properties of a dissipative system (like a viscous fluid). If a viscous 
fluid is observed in an experimental setup which has a certain symmetry,  it is important  to 
take into account the invariance of X~ under the corresponding symmetry group, This 

problem will be considered elsewhere. 
7 In the discussion of more specific properties, the behaviour of a viscous fluid may 

turn out to be nongeneric, due for instance to the local nature of the differential operator 
in the Navier-Stokes equations. 
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some results on differential equations;  in Section 3 - 4  we apply these 
results to the s tudy of  the solutions of  (t). Chapter  II  contains the proofs  
of  several theorems used in Chapter  I. In Section 5, center-manifold 
theory is used to replace H by a finite-dimensional manifold, In  Sec- 
tions 6 - 8  the theory  of  H o p f  bifurcation is presented both  for vector 
fields and for diffeomorphisms. In Section 9 an example of  " turbulent"  
a t t ractor  is presented, 

Acknowledgements. The authors take pleasure in thanking R. Thom for valuable 
discussion, in particular introducing one of us (F. T.) to the Hopf bifurcation. Some inspira- 
tion for the present paper was derived from Thorn's forthcoming book [12]. 

Chapter  I 

§ 2. Qualitative Theory of Differential Equations 

Let B = {x : Ix[ < R} be an open ball in the finite dimensional euclidean 
space H s Let X be a vector  field with cont inuous  derivatives up to order  
r on B = {x: Ixl =< R}, r fixed > 1, These vector fields form a Banach 
space ~ with the n o r m  

I ~1~I X i ( x )  IIXH = sup sup s u p t - -  

where 

8x~ = \ 8[~r ) "'" \ 8x*  / 

and [QI = Ct + "" + 0~. A subset E of  ~ is called residual if it contains a 
countable  intersection of  open  sets which are dense in ~ .  Baire's theorem 
implies that  a residual set is again dense in ~ ;  therefore a residual set E 
may  be considered in some sense as a "large" subset of  ~ .  A proper ty  of 
a vector  field X e g which holds on a residual set o f  ~ is called generic. 

The integral curve x( . )  th rough  Xo e B satisfies x(0) -- Xo and dx(t)/dt 
= X(x(t)); it is defined at least for sufficiently small ttI. The dependence 
of x(.) on x0 is expressed by writing x ( t ) =  @x,t(Xo); ~x , .  is called 
integral of the vector field X ;  @x,~ is the time one integral. Ifx(t)  - xo, i.e. 
X(xo) = 0, we have a f ixed point of  X. If  x ( r ) =  x o and x(t)4= x o for 
0 < t < z we have a closed orbit  of  period z. A natural  generalization of 
the idea of  closed orbit is that  of  quasi-periodic mot ion :  

x(t) = f (co 1 t . . . . .  6okt ) 

where f is periodic of  period 1 in each of  its arguments  separately and 
the frequencies oJ1 . . . . .  cok are no t  rat ionally related. We assume that f is 

s More generally we could use a manitbld H of class CL 

13" 
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a Ck-function and its image a k-dimensional torus T k imbedded in B. 
Then however  we find that  a quasi-periodic mot ion  is non-generic.  In 
particular for k = 2, Peixoto's  theorem 9 shows that  quasi-periodic 
mot ions  on a torus are in the complement  of  a dense open subset r of  the 
Banach space of C r vector  fields on the torus:  27 consists of  vector fields 
for which the non wandering set f~lo is composed  of  a finite number  of 
fixed points and closed orbits only. 

Fig. t 

As t ~ + o% an integral curve x(t)  of the vector field X may be attracted 
by a fixed point  or  a closed orbit  of  the vector field, or by a more  general 
a t t ractor  n.  It will p robably  no t  be at tracted by a quasi-periodic mot ion  
because these are rare. It is however  possible that the orbit  be attracted 
by a set which is not  a manifold. To  visualize such a situation in n dimen- 
sions, imagine that  the integral curves of  the vector field go roughly 
parallel and intersect transversally some piece of  n -  1-dimensional 
surface S (Fig. 1). We let P(x)  be the first intersection of  the integral curve 
th rough  x with S (P is a Poincar6 map). 

Take now n - 1 = 3, and assume that  P maps the solid t o r u s / / o  into 
itself as shown in Fig. 2, 

P I I o  = H1 C Ho .  

The set (~ P"Ho is an a t t ractor ;  it is locally the product  of  a Cantor  set 
n > O  

and a line interval (see Smale [11], Section 1.9). Going  back to the vector 
field X, we have thus a "strange" a t t ractor  which is locally the produc t  
of  a Can to r  set and a piece of two-dimensional  manifold. Notice that we 

9 See Abraham [1]. 
10 A point x belongs to g2 (i.e. is non wandering) if for every neighbourhood U of x 

and every T> 0 one can find t > T such that @x.,(U)c~ U 4 = 0. For a quasi-periodic motion 
on T kwehaveQ=T k. 

~1 ActosedsubsetA ofthe non wandering set O is an attractor ifit has a neighbourhood 
U such that (~ Nx.r(U) = A. For more attractors than those described here see Williams 

t>O 

[13]. 
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- rl o 

< 
Fig. 2 

keep the same picture if X is replaced by a vector field Y which is suf- 
ficiently close to X in the appropriate Banach space. An attractor of the 
type just described can therefore not be thrown away as non-generic 
pathology. 

§ 3. A M a t h e m a t i c a l  M e c h a n i s m  for Turbulence  

Let X u be a vector field depending on a parameter/112. The assump- 
tions are the same as in Section 2, but the interpretation we have in mind 
is that X. is the right-hand side of the Navier-Stokes equations. When 
# varies the vector field X. may change in a number of manners. Here we 
shall describe a pattern of changes which is physically acceptable, and 
show that it leads to something like turbulence. 

For  # = 0, the equation 
d x  
a t  = X . ( x )  

has the solution x = 0. We assume that the eigenvalues of the Jacobian 
matrix A{ defined by 

X,J O o 

have all strictly negative real parts; this corresponds to the fact that the 
fixed point 0 is attracting. The Jacobian determinant is not zero and 
therefore there exists (by the implicit function theorem) 4(/1) depending 
continuously on # and such that 

X.(4(U)) = O, 

In the hydrodynamical picture, 4(#) describes a steady state. 
We follow now 4(#) as # increases. For  sufficiently small # the 

Jacobian matrix A{(#) defined by 

exl 
A{(#) = ~ (4(#)) (2) 

lz To be definite, let (x, #)-+Xu(x ) be of class CL 
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has only eigenvalues with strictly negative real parts  (by continuity). 
We assume that,  as # increases, successive pairs of  complex  conjugate  
eigenvalues of  (2) cross the imaginary  axis, for/1 = #1, #2,/~3 . . . .  ~3. For  
# > #1, the fixed point  ¢(#) is no longer attracting. It has been shown by 
H o p f  14 that  when a pair  of  complex  conjugate  eigenvalues of  (2) cross the 
imaginary  axis at/~i, there is a one -pa ramete r  family of  closed orbits  of  the 
vector  field in a ne ighbourhood  of (~(/~i), #i). More  precisely there are 
cont inuous  functions y((~)), #(co) defined for 0 < co < 1 such that  

(a) y(0) = ~(/~i), #(0) = #~, 
(b) the integral  curve of Xu(~) th rough  y(co) is a closed orbit  for co > 0. 
Generically/~(co) > #~ or #(co)< #~ for co 4= 0. T o  see how the closed 

orbits  are obta ined  we look  at the two-dimensional  s i tuat ion in a 
ne ighbourhood  of ~(#1) for p < #~ (Fig. 3) and # > #~ (Fig. 4). Suppose 
that  when/~ crosses #~ the vector  field remains  like that  of  Fig. 3 at large 
distances of  4(#); we get a closed orbit  as shown in Fig. 5. Not ice  that  
Fig. 4 cor responds  to # > # ~  and that  the closed orbit  is attracting. 
Genera l ly  we shall assume that  the closed orbits  appea r  for /~  > #i so 
that  the vector  field at large distances of  ~(#) remains  a t t ract ing in ac- 
cordance  with physics. As # crosses we have then replacement  of  an 
at t ract ing fixed point  by an at t ract ing closed orbit. The  closed orbi t  is 
physically interpreted as a per iodic  mot ion ,  its ampl i tude  increases 
with #. 

Figs. 3 and 4 Fig. 5 

§ 3 a) Study of a Nearly Split Situation 

To see what  happens  when # crosses the successive ~ ,  we let E i be 
the two-dimensional  linear space associated with the i-th pair  of eigen- 
values of  the Jacob ian  matrix.  In first approx imat ion  the vector  field 
X u is, near  ~(#), of  the form 

J(,(x) = 2~1(x , )+  f (ua(xz)+ ... (3) 

13 Another less interesting possibility is that a real eigenvalue vanishes. When this 
happens the fixed point 3(2) generically coalesces with another fixed point and disappears 
(this generic behaviour is changed if some symmetry is imposed to the vector field Xu). 

l~ Hopf [6] assumes that X is reaI-analytic; the differentiabte case is treated in Section 6 
of the present paper. 
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where Yfui, xi are the components o f ) ~  and x in E~. If ~t is in the interval 
(Pk, #k+~), the vector field Xu leaves invariant a set T k which is the car- 
tesian product of k attracting closed orbits /-], ~),, F k in the spaces 
E~, . . . ,  E k. By suitable choice of coordinates on we find that the 
motion defined by the vector field on 7 ~k is quasi-periodic (the frequencies 
dh, ..., &k of the closed orbits in El,  . . . ,  E k are in general not rationally 
related). 

Replacing Jr, by X, is a perturbation. We assume that this perturba- 
tion is small, i.e. we assume that Xu nearly splits according to (3). In this 
case there exists a C r manifold (torus) T k close to 27 k which is invariant 
for Xu and attracting ~5. The condition that X u - J (  ~ be small depends 
on how attracting the closed orbits FI, ..., I~ are for the vector field 
3ful, --., Jf, k; therefore the condition is violated i f#  becomes too close to 
one of the #~. 

We consider now the vector field Xu restricted to T k. For reasons 
already discussed, we do not expect that the motion will remain quasi- 
periodic. If k = 2, Peixoto's theorem implies that generically the non- 
wandering set of T 2 consists of a finite number of fixed points and closed 
orbits. What will happen in the case which we consider is that there will 
be one (or a few) attracting closed orbits with frequencies co 1, e) 2 such 
that ool/c % goes continuously through rational values. 

Let k > 2. In that case, the vector fields on T k for which the non- 
wandering set consists of a finite number of fixed points and closed 
orbits are no longer dense in the appropriate Banach space. Other 
possibilities are realized which correspond to a more complicated orbit 
structure; "strange" attractors appear like the one presented at the end 
of Section 2. Taking the case of T 4 and the C3-topology we shall show 
in Section 9 that in any neighbourhood of a quasi-periodic J~ there is an 
open set of vector fields with a strange attractor. 

We propose to say that the motion of a fluid system is turbulent when 
this motion is described by an integral curve of the vector field X, which 
tends to a set A 16, and A is neither empty nor  a fixed point nor a closed 
orbit. In this definition we disregard nongeneric possibilities (like A 
having the shape of the figure 8, etc.). This proposal is based on two things: 

(a) We have shown that, when/~ increases, it is not unlikely that an 
attractor A will appear which is neither a point nor a closed orbit. 

25 This follows from Kelley [7], Theorem 4 and Theorem 5, and also from recent 
work of Pugh (unpublished). That  T k is attracting means  that it has a neighbourhood U 
such that 0 @x,t(U) = Tk. We cannot  call T k an attractor because it need not  consist 

t > 0  

of non-wandering points. 
i6 More precisely A is the (~)+ limit set of the integral curve x(.), i.e., the set of points 

such that there exists a sequence (t,) and t . ~ ,  x ( t , ) ~ .  
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(b) In the known generic examples where A is not a point or a dosed 
orbit, the structure of the integral curves on or near A is complicated 
and erratic (see Smale [1t] and Williams [13]). 

We shall further discuss the above definition of turbulent motion in 
Section 4. 

§ 3 b) Bifurcations of a Closed Orbit 

We have seen above how an attracting fixed point of X. may be 
replaced by an attracting closed orbit G when the parameter crosses the 
value Pl (Hopf bifurcation). We consider now in some detail the next 
bifurcation; we assume that it occurs at the value/~' of the parameter t ~ and 
that lira 7. is a closed orbit 7., of X~, '8. 

Let ~u be the Poincar6 map associated with a piece of hypersurface 
S transversal to ~,~, for/~ ~ (#1, #']- Since 7. is attracting, p, = S h y .  is an 
attracting fixed point of ~ for p ~ (#1, #'). The derivative d~u(G) of 4~. 
at the point pu is a linear map of the tangent hyperplane to S at Pu to 
itself. 

We assume that the spectrum of d~u,(p~,) consists of a finite number 
of isolated eigenvalues of absolute value t, and a part which is contained 
in the open unit disc {z ~ C [Izl < 1} 19 According to § 5, Remark (5.6), 
we may assume that S is finite dimensional. With this assumption one 
can say rather precisely what kind of generic bifurcations are possible 
for/~ = #'. We shall describe these bifurcations by indicating what kind 
of attracting subsets for X~ (or ~.) there are near 7u, (or pu,) when # > #'. 

Generically, the set E of eigenvalues of d4~.,(p.,), with absolute 
value 1, is of one of the following types: 

1. e =  {+l.}, 
2. E =  ( -1} ,  
3. E = {~, ~} where ~, ~ are distinct. 
For the cases 1 and 2 we can refer to Brunovsky [3]. In fact in case t 

the attracting closed orbit disappears (together with a hyperbolic closed 
orbit); for # >/~' there is no attractor of X, near ~,~,. In case 2 there is for 
# > #' (or # < #') an attracting (resp. hyperbolic) closed orbit near G', but 
the period is doubled. 

If we have case 3 then ~u has also for # slightly bigger than/~' a fixed 
point Pv; generically the conditions (a)', ..., (e) in Theorem(7.2) are 

,v In general #'  will differ from the value/~2 introduced in § 3a). 
~8 There are also other possibilities: If 7u tends to a point we have a Hopf bifurcation 

with parameter reversed. The cases where lira y,, is not  compact  or where the period of yu 
tends to ¢o are not  well understood; they may or may not give rise to turbulence. 

19 If the spectrum of d~bu,(pv,)is discrete, this is a reasonable assumption,  because for 
#, </~ < #'  the spectrum is contained in the open unit disc. 
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satisfied. One then concludes that when 7u' is a °'vague attractor" (i.e. 
when the condition (f) is satisfied) then, for # > ~t', there is an attracting 
circle for ~ , ;  this amounts to the existence of an invariant and attracting 
torus T 2 for Xu. If 7v, is not a "vague attractor" then, generically, X, has 
no attracting set near 7u' for # > ft. 

§ 4. Some Remarks on the Definition of Turbulence 

We conclude this discussion by a number of remarks: 
1. The concept of genericity based on residual sets may not be the 

appropriate one from the physical view point. In fact the complement of 
a residual set of the #-axis need not have Lebesgue measure zero. In 
particular the quasi-periodic motions which we had eliminated may in 
fact occupy a part of the #-axis with non vanishing Lebesgue measure 20. 
These quasi-periodic motions would be considered turbulent by our 
definition, but the "turbulence" would be weak for small k. There are 
arguments to define the quasi-periodic motions, along with the periodic 
ones, as non turbulent (see (4) below). 

2. By our definition, a periodic motion (=  closed orbit of X~) is not 
turbulent. It may however be very complicated and appear turbulent 
(think of a periodic motion closely approximating a quasi-periodic one, 
see § 3 b) second footnote). 

3. We have shown that, under suitable conditions, there is an 
attracting torus T k for X, i f#  is between/a k and #k÷l. We assumed in the 
proof  that # was not too close to #k or Pk+1- In fact the transition from 
T 1 to T 2 is described in Section 3b, but the transition from T k to T k+t 

appears to be a complicated affair when k > 1. In general, one gets the 
impression that the situations not covered by our description are more 
complicated, hard to describe, and probably turbulent. 

4. An interesting situation arises when statistical properties of the 
motion can be obtained, via the pointwise ergodic theorem, from an 
ergodic measure m supported by the attracting set A. An observable 
quantity for the physical system at a time t is given by a function xt on H, 
and its expectation value is m(xt)  = m(Xo). If m is "mixing" the time cor- 
relation functions m ( x t Y o ) - m ( x o ) m ( y o )  tend to zero as t-~oo. This 
situation appears to prevail in turbulence, and "pseudo random" 
variables with correlation functions tending to zero at infinity have been 
studied by Bass 2~. With respect to this property of time correlation 
functions the quasi-periodic motions should be classified as non turbulent. 

so On the torus T 2, the rotation number o~ is a continuous function of/a. Suppose one 
could prove that, on some/~-interval, co is non constant and is absolutely continuous with 
respect to Lebesgne measure; then m would take irrational values on a set of non zero 
Lebesgue measure. 

21 See for instance [2]. 
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5. In the above analysis the detailed structure of the equations 
describing a viscous fluid has been totally disregarded. Of course some- 
thing is known of this structure, and also of the experimental conditions 
under which turbulence develops, and a theory should be obtained in 
which these things are taken into account. 

6. Besides viscous fluids, other dissipative systems may exhibit time- 
periodicity and possibly more complicated time dependence; this appears 
to be the case for some chemical systems 2z 

Chapter II 

§ 5. Reduction to Two Dimensions 

Definition (5.1).Let ~b' H-~H be a C 1 map with fixed point p~H,  
where H is a Hilbert space. The spectrum of (b at p is the spectrum of the 
induced map (dC,)p • Tp(H)-~ Tv(H ). 

Let X be a C 1 vectorfield on H which is zero in p E H. For  each t we 
then have d(~x , t )v :T , (H)~  Tp(H), induced by the time t integral of X. 
Let L(X): Tv(H ) -~ Tp (H) be the unique continuous linear map such that 
d(@x,~)v = et" L(x). 

We define the spectrum of X at p to be the spectrum of L(X), (note 
that L(X) also can be obtained by linearizing X). 

Proposition (5.2). Let X u be a one-parameter family of  C k vectorfields 
on a Hilbert space H such that also X, defined by X(h, ~) = (X.(h), 0), on 
H x 1R is C~ Suppose: 

(a) X.  is zero in the origin of H. 
(b) For # <0  the spectrum of Xu in the origin is contained in 

{z ~ ¢ ] Re(z) < 0}. 
(c) For/~ = 0, resp. /~ > 0, the spectrum of X u at the origin has two 

isolated eigenvalues )o(#) and 2(/~) with multiplicity one and Re(2(#)) = 0, 
resp. Re(2(#))> 0. The remaining part of the spectrum is contained in 
{z ~ G [ Re(z) < 0}. 

Then there is a (small) 3-dimensional Ck-manifold 9 ~ of H x lR con- 
tainin 9 (0, O) such that: 

t. V ~ is locally invariant under the action of the vectorfieId X ( X  is 
defined by X(h, I~)= (Xu(h), 0))" locally invariant means that there is a 
neighbourhood U of (0, O) such that for It] <= 1, ~ ' ~  U = ~x,~(VC)~ U. 

2. There is a neighbourhood U' of (0, 0) such that if p ~U', is recurrent, 
and has the property that ~x,,(P) ~ U' for all t, then p ~ V ~ 

3. in (0, O) ~'~ is tangent to the l ~ axis and to the eioenspace of 2(0), 2(0). 

22 See Pye, K., Chance, B.: Sustained sinusoidal oscillations of reduced pyridine 
nucleotide in a cell-ff~ee extract of Saccharomyces carlbergensis, Proc. Nat. Acad. Sci. U.S.A. 
55, 888.-894 (1966). 



On the Nature of Turbulence 177 

Proof. We construct the following splitting T(o,o~(H x tR)= V~® VS: 
V c is tangent to the t~ axis and contains the eigenspace of 2(p), 2(/~); V s 
is the eigenspace corresponding to the remaining (compact) part of the 
spectrum of L(X). Because this remaining part is compact there is a 
~5 > 0 such that it is contained in {z E C I Re(z) < - 6}. We can now apply 
the centermanifold theorem [5], the proof of which generalizes to the 
case of a Hilbert space, to obtain pc as the centermanifold of X at (0, 0) 
[by assumption X is C k, so l? c is ck; if we would assume only that, for 
each #, X, is C k (and X only C1), then l? c would be C 1 but, for each 
#o, l?cm{# =#0} would be Ck]. 

For positive t, d(P2x, t)o, o induces a contraction on V ~ (the spectrum is 
contained in {z ~C!  Lzl < e-~}). Hence there is a neighbourhood U' of 
(0, 0) such that 

U'c~ [,=~ 1 ~x,,(U')Ic(u'c~ (~9. 

Now suppose that p ~ U' is recurrent and that ~x,t(P) ~ U' for all t. Then 
given e > 0 and N > 0 there is a t > N such that the distance between p 
and @x,t(P) is <e.  It then follows that pe(U'~I?gCl2C for U' small 
enough. This proves the proposition. 

Remark (5.3). The analogous proposition for a one parameter set of 
diffeomorphisms ~b, is proved in the same way. The assumptions are 
then: 

(a)' The origin is a fixed point of ~ .  
(b)' For # < 0 the spectrum of ~b~ at the origin is contained in 

{z e([; I Izl < 1}. 
(c)' For/~ = 0 resp./~ > 0 the spectrum of ~ at the origin has two 

isolated eigenvalues 2(/~) and 2(#) with multiplicity one and ]2(#)I = 1 
resp. [2(#)] > 1. The remaining part of the spectrum is contained in 
{z~lE ! Izt < 1}. 

One obtains just as in Proposition (5.2) a 3-dimensional center mani- 
fold which contains all the local recurrence. 

Remark (5.4). If we restrict the vectorfield X, or the diffeomorphism 
q~ [defined by ~(h, # ) =  (~b,(h), #)], to the 3-dimensional manifold l? c 
we have locally the same as in the assumptions (a), (b), (c), or (a)', (b)', (c)' 
where now the Hilbert space has dimension 2. So if we want to prove a 
property of the local recurrent points for a one parameter family of 
vectorfietd, or diffeomorphisms, satisfying (a) (b) and (c), or (a)', (b)' and 
(c)', it is enough to prove it for the case where dim(//) = 2. 

Remark (5.5). Everything in this section holds also if we replace our 
Hilbert space by a Banach space with Ck-norm; a Banach space B has 
Ck-norm if the map x ~  Ilx[I, x ~ B is C k except at the origin. This Ck-norm 
is needed in the proof of the center manifold theorem. 
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Remark (5.6). The Propositions (5.2) and (5.3) remain true if 
1. we drop the assumptions on the spectrum of X. resp. ~ for g > 0. 
2. we allow the spectrum of Xe resp. q5 to have an arbitrary but 

finite number of isolated eigenvalues on the real axis resp. the unit circle. 
The dimension of the invariant manifold 17~ is then equal to that 
number of eigenvalues plus one. 

§ 6. The Hopf Bifurcation 

We consider a one parameter family X u of Ck-vectorfields on ~R 2, 
k >_ 5, as in the assumption of proposition (5.2)(with 1R 2 instead of H); 
2(p) and 2(#) are the eigenvalues of Xu in (0, 0). Notice that with a suitable 

g 
change of coordinates we can~achieve X~ = (Re2(#)x 1 + Im2(p)x2) ~x 1 

+ (-Im2(/~) xl + R e 2 ( # ) x 2 ) ~ x .  + terms of higher order. 

if  (dt~.l,)) I has a positive real part. and Theorem (6.1).(Hopf [6]). \ ~ / u = o  

if 3~(0)=4= O, then there is a one-parameter family of closed orbits of 
2re 

X ( = ( X  u, 0)) on IR 3 = IR 2 x tR ~ near (0, 0, 0) with period near ~2-(0-)~; there 

is a neighbourhood U of (0, O, O) in 1R 3 such that each closed orbit of X, 
which is contained in U, is a member of the above family. 

I f  (0, O) is a "vague attractor" (to be defined later) for Xo, then this 
one-parameter family is contained in {# > 0} and the orbits are of attracting 
type. 

Proof. We first have to state and prove a lemma on polar-coordinates: 

Lemma (6.2). Let X be a C k vectorfield on IR 2 and let X(O, O)= O. 
Define polar coordinates by the map ~ ' IR2~IR 2, with ~(r, q~)= (r cosqo, 
rsin~). Then there is a unique ck-2-vectorfield f(  on IR 2, such that 
~ , (X)  = X (i.e. for each (r, q~) d ~(f~(r, qo))= X(r coscp, r sinqg)). 

Proof of Lemma (6.2). We can write 

x = x~ T~-  + x ~ - -  ~x~ 

2 

+ ( -xJ,+xlx2)  - x 2 ~  +xl 
(~ + x~) 

f~(Xl,r x2)_ - ~ ,  (2r) + f'~(Xl'r 2 xz) ~ , (2~) .  
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Where Zr ( =  -~r) and 2e  ( =  ~ )  are the "coordinate vectorfields" with 

respect to (r, (p) and r = + ]/X~ + x~. (Note that r and 7~,(2,) are bi- 
valued.) 

Now we consider the functions ~*(f~) = f~ o ~ and ~*(f,p). They are 

zero along {r=O};  this also holds for ~-r  (~*(f~)) and (~*(fe)). 

By the division theorem - - ,  resp. - -  
r 

We can now take 2 -  ~*(fr) 2r_~ 
r 

evident. 

, are C ~-~ resp. C k-2. 
r 2 

7~*(f~°) 2~; the uniqueness is 
r 2 

Definition (6.3). We define a Poincar6 map Px for a vectorfield X as 
in the assumptions of Theorem (6.1): 

Px is a map from {(xl, x2,/~) [ [xl[ < ~, x2 = 0, [/~[ N #o} to the (xl, #) 
plane;/~o is such that Im(2(/l))~ 0 for t/~I </%;  e is sufficiently small. 
Px maps (x~, x2, #) to the first intersection point of @x,,(x~, x2, I~), t > O, 
with the (xl, #) plane, for which the sign of Xl and the x~ coordinate of 
@x,t(xl, x2, #) are the same. 

Remark (6.4). Px preserves the/~ coordinate. In a plane # = constant 
the map Px is illustrated in the following figure Im(2(u))# 0 means that 

Fig.  6. I n t eg ra l  c u r v e  o f  X a t  g = c o n s t a n t  

X has a "non vanishing rotation"; it is then clear that Px is defined for 
small enough. 

Remark (6.5). It follows easily from Lemma (6.2) that Px is C k- ~. We 
define a displacement function V(x 1, l~) on the domain of Px as follows: 

Px(xl, O,~)=(Xl+V(x1,]~),O,l~); V i s C  k - 2  . 

This displacement function has the following properties: 
(i) V is zero on {x I = 0}; the other zeroes of V occur in pairs (of 

opposite sign), each pair corresponds to a closed orbit of X. If a closed 
orbit 7 of X is contained in a sufficiently small neighbourhood of (0, 0), 
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and intersects {x 1 = 0} only twice then V has a corresponding pair of 
zeroes (namely the two points 7~(domain of Px)). 

(ii) F o r # < 0 a n d  x 1=0 ,  " ~ v  <0 ;  for # > 0  and x l = 0 ,  5V > 0  
ox i Oxl 

02V 
and for g = 0 and x = 0, ~ #  Ox-~ > 0. This follows from the assumptions 

on 2(#). Hence, again by the division theorem, 12 = V is C k-3. l?(0, 0) 
x1 

is zero, ~ -  > 0, so there is locally a unique C k-3-curve I of zeroes of 

i? passing through (0, 0). Locally the set of zeroes of V is the union of I 
and {x 1 = 0}. I induces the one-parameter family of closed orbits. 

(iii) Let us say that (0, 0) is a "vague attractor" for 320 if V(Xl, O) 
= - Ax~ + terms of order > 3 with A > 0. This means that the 3rd order 
terms of X 0 make the flow attract to (0, 0). In that case l~ = ~1#-  Ax~ 
+ terms of higher order, with e~ and A > 0, so l?(xl, #) vanishes only if 
xl = 0 or # > 0. This proves that the one-parameter family is contained 
in {# > 0}. 

(iv) The following holds in a neighbourhood of (0, 0,0) where 
0V 

- - - - >  - 1 .  

If V(xl, #) = 0 and { c? V t < 0, then the closed orbit which cuts the 
\ 0x~ ]~xl,.) 

domain of Px in (xl, #) is an attractor of X,. This follows from the fact 
that (x~, #) is a fixed point of Px and the fact that the derivative of Px in 
(x~, #), restricted to this # level, is smaller than 1 (in absolute value). 

Combining (iii) and (iv) it follows easily that, if (0, 0) is a vague 
attractor, the closed orbits of our one parameter family are, near (0, 0), 
of the attracting type. 

Finally we have to show that, for some neighbourhood U of (0, 0), 
every closed orbit of X, which is contained in U, is a member of our 
family of closed orbits. We can make U so small that every closed orbit 
? of X, which is contained in U, intersects the domain of Px. 

Let p = (xt(7),0, #(7)) be an intersection point of a closed orbit 7 
with the domain of Px. We may also assume that U is so small that 
Px[U~(domain  ofPx)] C(domain of Px). Then Px(P) is in the domain 
of Px but also Px(p)C U so (Px)2(p) is defined etc.; so P~c(P) is defined. 

Restricted to {# = #(7)}, Px is a local diffeomorphism of a segment 
of the half line (x 1 > 0 or x~ < O, x 2 = 0, # =/1(7)) into that half line. 

If the x~ coordinate of P~x(P) is < (resp. >)  than xi(7) then the xl 
coordinate of p~+l (p) is < (resp. >)  than the xl coordinate of P~ (p), so 
p does not lie on a closed orbit. Hence we must assume that the x~ co- 
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ordinate  of  Px(P) is x1(7), hence p is a fixed point  of  Px, hence p is a zero 
of V, so, by p roper ty  (ii), 7 is a m e m b e r  of  our  one pa rame te r  family of 
closed orbits. 

§ 7. Hopf Bifurcation for Diffeomorphisms* 

We consider  now a one pa rame te r  family ~ : I R 2 - ~ N  2 of diffeo- 
morph i sms  satisfying (a)', (b)' and (c)' (Remark(5.3))  and such that:  

(d) e~ ,  (I,t(/2)l).:o > O. 

Such a d i f feomorphism can for example  occur  as the t ime one integral 
of a vectorfield X~ as we studied in Section 2. In this d i f feomorphism case 
we shall of course not  find any closed (circular) orbit  (the orbits are not  
cont inuous)  but  nevertheless we shall, under  ra ther  general conditions,  
find, near  (0, O) and  for /2  small, a one pa rame te r  family of  invar iant  
circles. 

We  first br ing ~ . ,  by coord ina te  t ransformat ions ,  into a simple form:  
We change the/2 coord ina te  in order  to obta in  
(d)' {2(/2)[ = 1 +/2.  
After an appropr i a t e  (# dependent)  coordinate  change of IR 2 we then 

have ~b(r, q~,/2) = ((1 +/2) r, q) + f(/2),/2) + terms of order  r 2, where 
xl = r cos(p and x2 = r sin~o; "~b = ~ '  + terms of order  fl" means that  the 
derivatives of  • and ~ '  up to order  1 - 1 with respect  to (xl, x2) agree for 
(xl, x2) = (0, 0). 

We now put  in one extra  condi t ion:  
k 

(e) f (0)  4= 7 2re for all k, I < 5. 

Proposition (7.1). Suppose ~ satisfies (a)', (b)', (c)', (d)' and (e) and is 
C k, k > 5. Then for/2 near 0, by a/2 dependent coordinate change in IR 2, 
one can bring 4)~ in the following form: 

~, ( r ,  ~0) = ((1 +/2) r - f l  (/2)' r3, cp + f2 (/2) + f3 (/2)' r2) + terms of order  r 5 . 

For each/2, the coordinate transformation of IR 2 is C ~, the induced 
coordinate transformation on 1R 2 x tR is only C k-4. 

The next  p a r a g r a p h  is devo ted  to the p roo f  of  this proposi t ion**.  O u r  
last condi t ion on 45 is: 

• Note added in proof. J. Moser kindly informed us that the Hopf bifnrcation for 
diffeomorphisms had been worked out by Neumark (reference not available) and R. Sacker 
(Thesis, unpublished). An example of "decay" (loss of differentiability) of T 2 under per- 
turbations has been studied by N. Levinson [a second order differentiabte equation with 
singular solutions. Ann. of Math. 50, 127-153 (1949)]. 

• * Note added in proof. The desired normal form can also be obtained from § 21 of 
C. L. Siegel, Vorlesungen fiber Himmelsmechanik, Springer, Berlin, 1956 (we thank 
R. Jost for emphasizing this point). 



182 D. Ruelle and F. Takens: 

(f) f l  (0) 4= 0. We assume even that f l  (0) > 0 (this corresponds to the 
case of a vague attractor for # = 0, see Section 6); the case f t  (0) < 0 can 
be treated in the same way (by considering ~ ;~  instead of q~,). 

Notation. We shall use N ~ ,  to denote the map 

(r, ~o)--, ((1 +/~)r - J i  (#)" r3, (,o + f2(#) + f3(#)" r2) 

and call this "the simplified #,". 

Theorem (7.2). Suppose q~, is at least C 5 and satisfies (a)', (b)', (c)', (d)' 
and (e) and N q),, the simplified c~,, satisfies (f). Then there is a continuous 
one parameter family of invariant attracting circles of q~,, one for each 
# ~ (0, e), for ~ small enough. 

Proof. The idea of the proof is as follows: the s e t  I ;  = {/~ = fl(,u)" r 2} 
in (r, q, #)-space is invariant under N # ;  Nq~ even "attracts to this set". 

s~.c~-~t~o is a This attraction makes 2 stable in the following sense: t t , , = 0  
sequence of manifolds which converges (for # small) to an invariant 
manifold (this is actually what we have to prove); the method of the proof 
is similar to the methods used in [4, 5]. 

{ # ~ - 3 ,  f , ( # ) + b l }  First we define Uo = (r, (p, #) ! r 4= 0 and r2 [ f l  (#) 

b < fl(/~), and show that Nq~(Uo)C b~ and also, in a neighbourhood of 
(0, 0, 0), #(Uo)(  U~. This goes as follows: 

If p e g U~, and r(p) is the r-coordinate of p, then the r-coordinate of 
Nq~(p) is r(p) _+ 3. (r(p)) 3 and p goes towards the interior of U~. Because 
q~ equals N# ,  modulo terms of order r s, also, locally, #(U~) C U~. From 
this it follows that, for e small enough and all n > 0  ~"(£~)C U~; 
Z'~ = Z n  {0 < ~ < e}. 

Next we define, for vectors tangent to a # level of U~, the slope by the 
0 

following tormula: for X tangent to U~n{#=#o}  and X = X ~  Or 

_ ~  X, ; 
+ X, the slope of X is /to" X~o for X,  = 0 the slope is not defined. 

By direct calculations it follows that if X is a tangent vector of 
Uec~{/a =/~0} with slope < 1, and #o is small enough, then the slope of 
d(N#) (X) is < (1 - K # o )  for some positive K. Using this, the fact that 

# ~ constant on U o and the fact that # and N ~  only differ by terms 
r 2 

of order r s one can verify that for e small enough and X a tangent vector 
of U~c~ {# = #o}, #o < 5, with slope < 1, dq)(X) has slope <1. 

From this it follows that for e small enough and any n > 0, 
1. ~"(I7~) C U~ and 
2. the tangent vectors of ~(27~)c~ {# = #o}, for #o < ~ have slope < 1. 
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This means that  for any #o --< e and n > 0 

O"(S~) c~ {p =/~o} = {(f.,.o((P), (P, #o)} 

where f.,uo is a unique smooth function satisfying: 

/ ] /Zo #o for all q~ 
v.  f...o(~O) ~ f , (#o )  + a '  f l ( # o ) -  a 

2'. d - ~  (f"'"°(cP)) < #o for all q~. 

We now have to show that, for #o small enough, {f.,.o}n% o converges. 
We first fix a q~o and define 

Pl = (f.(~oo), q~o, #o), Pi = q~(Pl) = (rl, q~i, #) ,  

P2 = ( f .+  1 (q)o), CPo, #o), pi=q~(pz)=(ri, cP'z,#). 

Using again the fact that  (f.,uo(~O))2/#o ~ constant  ( independent of #o), 
one obtains:  

lr~ - rlt < (1 - K1 #o) If. ,~o(q~o)- f .+  1,~o(~Oo)1 
and 

I~oi-~ohl<K2~oo. l f . ,~o(q~o)-f .+l ,uo(~oo)l  where K1, K2 >O 

and independent  of #o- 
' a ' r' We want By definition we have f.+l,uo(q)i) = r 1 nd J~+2..o(q~) = .  2- 

however  to get an estimate for the difference between j.+~,.o(~O'~) and 
f.+~,.o(q~i). Because 

d 
d~o (f"+2'~°(~°)) =< #o ,  

! t <~ / 
If.+ 2.uo(~oz)-f,+ Z.,o(qh)t =#ol  q~2 -q~[l _-<Kz-~o~IL.uo(~Oo)- f ,+  a.,o(~Oo)l. 

We have seen that 

If.+~,.o(~Ol) - f.+2,.o('P;)l = Irl - r~[ 

< (1 - K ~ # o ) I L , . o ( ' P o ) -  f . +  ~,,o('Po)l. 
So 

IL+~,.o(~ol) - f . +  2..o(q~i)t _-< (1 + K 2 # o -  K~#o)IL, .o( 'Po)  - L+l,~o(~Po)l - 

We shall now assume that  #o is so small that (1 + K~#o - K~#o) 
= K3(#o ) < 1, and write o(f.,uo,f.+~,uo) = rn~ax(lf.,.o(q~)- f.+~,uo(q~)[) • 
14 Commun. math, Phys., Vol. 20 



184 D. Ruelle and F. Takens: 

It follows that 

O(fm, uo, fro+ 1,uo) < (K3(Po))" ' O(fo.,o, f l , u o )  • 

This proves convergence, and gives for each small #o > 0 an invariant 
and attracting circle. This family of circles is continuous because the 
limit functions f~,uo depend continuously on #0, because of uniform 
convergence. 

Remark (7.3). For a given #o, f~,uo is not only continuous but even 
Lipschitz, because it is the limit of functions with derivative N Po. Now 
we can apply the results on invariant manifolds in [4, 5] and obtain the 
following: 

If ~u is C ~ for each/t then there is an e~ > 0 such that the circles of our 
family which are in {0 < ¢t < er} are CL This comes from the fact that near 

= 0 in U6 the contraction in the r-direction dominates sufficiently the 
maximal possible contraction in the ~o-direction. 

§ 8. Normal Forms (the Proof of Proposition (7.1)) 

First we have to give some definitions. Let _V, be the vectorspace of 
r-jets of vectorfietds on 1R z in 0, whose (r - D-jet is zero (i.e. the elements 
of V r can be uniquely represented by a vectorfield whose component 
functions are homogeneous polynomials of degree r). Vr is the set of r-jets 
of diffeomorphisms OR z, 0)~0R 2, 0), whose ( r -  1)-jet is "the identity". 
Exp : _V~ ~ V~ is defined by: for ~ ~ ~ ,  Exp(~) is the (r-jet of) the diffeo- 
morphism obtained by integrating ~ over time 1. 

Remark (8.1). For r => 2, Exp is a diffeomorphism onto and 
Exp(~)o Exp(~)= Exp(~ +/~). The proof is straightforward and left to 
the reader. 

Let now A:(IR 2, 0)-~(IR z, 0) be a linear map. The induced trans- 
formations A r :V r -~ ~ are defined by A,.(~)= A,~, or, equivalently, 
Exp(Ar(~)) = A o Exp~o A-1. 

Remark (8.2). If [~]r  is the r-jet of kg : (IR 2, 0)--+ (IR 2, 0) and dh ~ is A, 
then, for every e ~ _V~, the r-jets [~]ro Exp(e) and Exp(A~c~)o [~]~ are 
equal. The proof is left to the reader. 

A splitting V~ = V/® V i' of V,. is called an A-splitting, A:(1R 2, 0) 
-~ OR 2, 0) linear, if 

i. _Vj and Vj' are invariant under the action of A~. 
2. A~ l V/' has no eigenvalue one. 

Example (8.3). We take A with eigenvalues 2, 2 and such that i)~] + 1 
or such that 121 = 1 but 2 + e g/l 2~i  with k, t _-< 5. We may assume that A 
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is of  the form 

cosa  sine ] 
[/11 \ - s i n ~  cos~/"  

Fo r  2 < i < 4 we can obta in  a A-split t ing of  ~ as follows: 
Iv//' is the set of  those (/-jets of) vectorfields which are, in polar  co- 

"-~r~ ~ . More  precisely _V~ = O, _V~ ordinates  of  the tb rm cfir ~ _ .  -t-c~2 r l - t  c~¢p 

is generated by r a ~ r  and r 2 ~ and V2 = 0 (the other  cases give rise to 

vectorfields which are not  differentiable, in ord inary  coordinates).  
~ "  is the set of  (/-jets of) vectorfields of the form 

r i ~ 2~  2~z 
8 with ~ gx(q~) ~ gz(q~) O. gl((P) --~r +gz((P)r i -1  ~(P 0 o 

gl (q~) and gz(q)) have to be linear combina t ions  of  sin(/. ~0) and cos(/ .  ~0), 
j < 5, because otherwise the vectorfield will not  be differentiable in 
ord inary  coordina tes  (not all these linear combina t ions  are possible). 

Proposit ion (8.4). For a given diffeomorphism ~ ' ( I R  2, 0)~(IR 2, 0) with 
(d~)o = A and a given A-splitting ~ = ~ '  ® ~ "  for  2 <__ i < i o, there is a 
coordinate transformation z : ( IR 2, 0 )~( IR 2, 0) such that: 

1. (dz)o = identity. 
2. For each z < i <  io the i-jet o f  ~b'= z o ~o  z -1 is related to its 

(i - 1)-jet as fol lows: Le t  [q~']~-i be the polynomial map of  degree < i - 1 
which has the same (i - 1)-jet. The  i-jet o f  ~ '  is related to its (i - D-jet i f  
there is an element a ~ 1~' such that Expc~ o [ ~ ' ] i - 1  has the same i-jet as ~'. 

Proof. We use induct ion:  Suppose  we have a m a p  z such that  I and 2 
hold for i < i 1 < io. Consider  the i 1 jet of  z o ~b o z -~. We now replace 

by  Expc~ o z for some e ~ ~ ' .  z o ~b o z - 1  is then replaced by Exp(~) o 
o ~ o ~-1  o E x p ( -  c 0, according  to r emark  (8.2) this equal  to E x p ( - A i ~  a) 
o Exp(0 0 o z o ,i~ o x -1 = Exp(~ - A/, 0 0 o ~ o ~ o ~-1.  

A~, [ ~ [  has no eigenvalue one, so for each B e V." there is a unique r - - i l  

E ~ [  such that  if we replace z by Expa  o x, z o ~ o g - 1  is replaced by 
V/' such Expfl  o ~ o q~ o ~ - 1  I t  now follows easily tha t  there is a unique ~ ~ - h  

that  E x p e  o z sa t i s fes  condi t ion 2 for i =< i~. This proves  the proposi t ion.  

Proof  o f  Proposition (7.1). For  # near  0, d~u is a linear m a p  of the 
type we considered in example  (8.3). So the splitting given there is a 
d ~ - s p l i t t i n g  of V/, i = 2, 3, 4, for # near  zero. We now apply  Proposi -  
t ion (8.4) for each # and obta in  a coord ina te  t rans format ion  n~ for each 
g which brings ~u in the required form. The  induct ion step then becomes:  
I4" 
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Given x. ,  satisfying 1 and 2 for i <  i~ there is for each # a unique 
~, ~ _Vf[ such that  Expc~. o z ,  satisfies 1 and 2 for i __< i 1. e .  depends then 
C ~ on / l  if the ii-jet of 4~ depends C o n / a ;  this gives the loss of differentia- 
bility in the # direction. 

§ 9. Some Examples 

In this section we show how a small per turbat ion of a quasi-periodic 
flow on a torus gives flows with strange at t ractors  (Proposi t ion (9.2)) and, 
more  generally, flows which are not  Morse-Smale (Proposi t ion (9.t)). 

Proposition (9.1). Let  co be a constant vector f ield on T k =  (tR/~) k, 
k >= 3. In every Ck- l - sma l l  neighbourhood o f  co there exists  an open set 
o f  vector f ields which are not Morse-Smale.  

We consider the case k = 3. We let co = (~1, co2, °)3) and we may 
suppose 0 __< co~ =< ~2 =< co3. Given ~ > 0  we may choose a constant  
vector field co' such that  

1!co' - col! 2 = ! lco '  - coil o < ~ / 2 ,  

0) i .  P l  ' P2 co3 >0 ,  O< = - - < 1 ,  0<~ 0)2 ' = - - < 1 ,  
co; ql co; q2 

where Pl,Pa, ql, q2 are integers, and Plq2 and P2ql have no common  
divisor. We shall also need that ql, q2 are sufficiently large and satisfy 

½ < q l / q 2 < 2 .  

All these properties can be satisfied with qt = 2'% q2 = 3m2- 
Let  I = {x E IR : 0 < x _< 1} and define 9, h : 13 ~ T 3 by 

9(Xl, Xz, x3) = (xl (mod 1), x2(mod 1), x3(mod t)) 

h (xl,  x 2 , x3) = (q l  1 xl  + Pl q2 x3 (mod 1), q2 z x2 + P2 ql x3 (mod 1), 

ql q2x3(mod 1)). 

We have gI  3 = h i  3 = T 3 and g (resp. h) has a unique inverse on points 
gx  (resp. hx)  with x e ] 3  

We consider the m a p f  of a disc into itself (see [11] Section 1.5, Fig. 7) 
used by Smale to define the horseshoe diffeomorphism. Imbedding A 
in T2: 

2 1 T 2 c { (x l ,  x2) : ½ < x l  < 7,  ~ < x2  < ~} c 

we can arrange that f appears as Poincar6 map in T 3 = T 2 x T 1. More  
precisely, it is easy to define a vector  field X = (2,  t) on T 2 x T 1 such 
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that if ~ e A, we have 

(f({), O) = ,@x,l(~, O) 

where ~x,x is the time one integral of X (see Fig. 7). Finally we choose 
the restriction of X to a neighbourhood of g(OI 2 x I) to be (0, 1) (i.e. 
2 = o). 

T I 

1 

i 

Fig. 7 

If x e gI  a, then ~x  = h o g-1 is uniquely defined and the tangent 
mapping to • applied to X gives a vector field Y: 

Y(m(~)) = [dm(x)] X(x) 
where 

-1 Plq2 \ 

[d~(x)] = q] l  P2ql } .  

ql q2 / 

Y has a unique smooth extension to T 3, again called Y. Let now 
Z = (q, q2)-lcn'3 Y. We want to estimate 

where 

llZ-c9'Ii~= sup N e 
e ; l d < r  

N ° =  sup sup tD°Z~(y)-D~a);[ (*) 
y~T 3 i=1,2,3 

and D Q denotes a partial differentiation of order 10[. Notice that it suffices 
to take the first supremum in (*) over y e hi  3, i.e. y = ~x  where x e gi3. 
We have 

- q 2  - -  

c~y --Pl --P2 (ql q2)_ i ~x 
so that 

sup ~-~--< (ql +q2)sup ~ . 
i I o Y i !  
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Notice also that 

Zi(Y) -- co'~ = (ql q2)- 1 co; 

Therefore 

= (ql q2)-1co'3 

/qClX1 +Plq2 t / p l q ; l  ) 
q21Xz + p2ql ] --6)' 3 ?q? 

q~q2 / 

q~lX1 1 

q21oX2 ] • 

NQ< (qlq2) -1 Co;(ql + q2)I~l( sup qi -1) sup [IXitItQl 
X i = l , 2  / i = 1 , 2  

I , < - 2  q 2 ) r + l  ,[Z - co Hr = (qlq2) (ql + [03'3 [[)~ll~] • 

If we have chosen ql, q2 sufficiently large, we have 

Hz - co'112 < e/2 
and therefore 

i f Z -  toll2 < ~ .  

Consider the Poincar¢ map P" T2-+ T 2 defined by the vector field 
Z o n  T 3 = T 2 × T 1. By construction the non wandering set of P contains 
a Cantor set, and the same is true if Z is replaced by a sufficiently close 
vector field Z'. This concludes the proof for k = 3. 

In the general case k > 3 we approximate again co by co' rational 
and let 

! 

0 <  c o i =  p_L< 1 for i = i  . . . .  , k - 1 .  
r 

COk qi 

We assume that the integers Pl 1-[ qi, ..., Pk-1 1-[ qi have no common 
i * l  i # k - i  

divisor. Furthermore ql . . . .  , qk- 1 are chosen sufficiently large and such 
that 

(maxq,)/(minq,) < C 

where C is a constant depending on k only. 
The rest of the proof goes as for k = 2, with the horseshoe diffeo- 

morphism replaced by a suitable k -  t-diffeomorphism. In particular, 
using the diffeomorphism of Fig. 2 (end of § 2) we obtain the following 
result. 

Proposition (9.2). Let co be a constant vector field on T k, k ~ 4. In 
every C ~- t-small neighbourhood of co there exists an open set of vector 
fields with a strange attractor. 
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Appendix 

Bifurcation of Stationary Solutions of Hydrodynamical Equations 

In this appendix we present a bifurcation theorem for fixed points 
of a non linear map in a Banach space. Our result is of a known type 23, 
but has the special interest that the fixed points are shown to depend 
differentiabty on the bifurcation parameter. The theorem may be used 
to study the bifurcation of stationary solutions in the Taylor and B6nard 24 
problems for instance. By reference to Brunovsk~ (cf. § 3 b) we see that 
the bifurcation discussed below is nongeneric. The bifurcation of station- 
ary solutions in the Taylor and B6nard problems is indeed nongeneric, 
due to the presence of an invariance group. 

Theorem. Let H be a Banach space with C k norm, 1 <= k < ~ ,  and 
~ , ' H - ~ H  a differentiable map such that c~u(O)= 0 and (x, Iz)-~c~,x is 
C k from H × tR to H. Let 

L, = [dq~] o, N, = 45 - L~. (t) 

We assume that Lg has a real simple isolated eigenvalue 2(#) depending 
continuously on II such that 2(0)= 1 and (dFo/d#) (0) > O; we assume that 
the rest of the spectrum is in {3 e C :13I < 1}. 

(a) There is a one parameter family (aC k-1 curve l) of fixed points of 
: (x, #)~(4~,x, p) near (0, 0) e H x IR. These points and the points (0,/~) 

are the only fixed points of q~ in some neighbourhood of (0, 0). 
(b) Let 3 (resp. 3*) be an eigenvector of L o (resp. its adjoint L*o in 

the dual H* of 1t) to the eigenvalue 1, such that (3*, 3) = 1. Suppose that 
for all a ~ IR 

(3*, Noa$) = 0. (2) 

Then the curve l of (a) is tangent to (3, O) at (0, 0). 

From the center-manifold theorem of Hirsch, Pugh, and Shub 25 it 
follows that there is a 2-dimensional Ck-manifold V ~, tangent to the 
vectors (3, 0) and (0, 1) at (0, 0)e H × IR and locally invariant under ¢. 
Furthermore there is a neighbourhood U of (0, 0) such that every fixed 
point of • in U is contained in V ~  U 26. 

We choose coordinates (c~, #) on V ~ so that 

(/'(a,/~) = (f(a, #), #) 
23 See for instance [16] and [14]. 
24 The bifurcation of the Taylor problem has been studied by Velte [18] and Yudovich 

[19]. For the B6nard problem see Rabinowitz [17], Fife and Joseph [15]. 
25 Usually the center manifold theorem is only formulated for diffeomorphisms; 

C. C. Pugh pointed out to us that his methods in [5], giving the center manifold, also work 
for differentiable maps which are not diffeomorphisms. 

26 See § 5. 
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Of  with f(0,  Ix)= 0 and ~ a  (0, #) = 2(#). The fixed points of 45 in V c are 

given by c~ = f(c¢, Ix), they consist of points (0, Ix) and of solutions of 

g(c¢, Ix) = 0 

where, by the division theorem, g(c~,#)= f(c~,#) i is C k-~. Since 

~?g (0, O) = ~ -  (0) > O, the implicit function theorem gives (a). 
@ 

Let (x, 0)e Vq We may write 

x = c~ 3 + Z (3) 

where (8*, Z )  = O, Z = O(cd). Since (8", 8) = 1 we have 

f(ct, O) = (3", ~o{e8 + Z)) 

= ~ + (3", L o Z  + No(aS + Z)) (4) 

= ~ + (8", L o Z  + Noc~8) + 0(as) - 

Notice that  

(8", LoZ)  = (L~8*, Z) = (8", Z) = 0.  

We assume also that  (2) holds: 

(8", No~8) =0 .  
Then 

f(~, 0) = ~ + 0(~3), 
(5) 

f(c~, #) = a(2(#) + 02), 

where 02 represents terms of order 2 and higher in a and Ix. The curve ! 
of fixed points of ~b introduced in (a) is given by 

2(Ix) - 1 + 0 2 = 0 (6) 

d2 (o) > o. and (b) follows from 2(0) = 0, 

Remark l. From (2) and the local invariance of V c we have 

• o(~8 + Z) = c<3 + Z + 0(c?) 
hence 

Z = L o Z  + No~ 8 + 0(~3), 

Z = ( 1 - L o )  -1 No~ 8 -l- 0(0~3), 

and (5) can be replaced by the more precise 

f(c~, 0) = O: + (~*, N O [a8 + (1 -- Lo)- 1 No: ~]) + 0(o: 4) (7) 
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from which one can compute the coefficient A of~ 3 in f(~, 0). Then (6) is, 
up to higher order terms 

Depending on whether A < 0 or A > 0, this curve lies in the region # > 0 
or # < 0, and consists of attracting or non-attracting fixed points. This is 
seen by discussing the sign of f(~, #) - e (see Fig. 8 b, c); the fixed points 
(0, ~) are always attracting for g < 0, non attracting for # > 0. 

- , ~  IX, 

a b 

Fig. 8 

Remark 2. If the curve l of fixed points is not tangent to (3, 0) at (0, 0), 
then the points of l are attracting for # > 0, non-attracting for # < 0 
(see Fig. 8 a). 

Remark 3. If it is assumed that Lu has the real simple isolated eigen- 
value 2(#) as in the theorem and that the rest of the spectrum lies in 
{,3s(U: l,~l 4= 1} (rather than {3E02:r,31 < 1}, the theorem continues to 
hold but the results on the attractive character of fixed points are lost. 
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