Геофизика

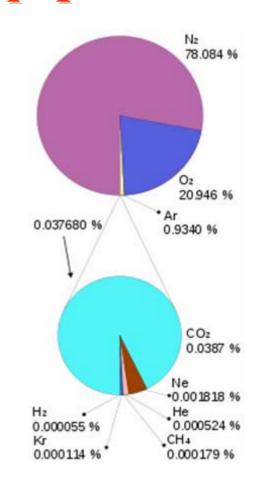
2024 Лекция №9

Захаров Виктор Иванович

отделение геофизики, каф. физики атмосферы физический факультет МГУ

Атмосфера Земли - газовая оболочка планеты.

Основные темы лекции

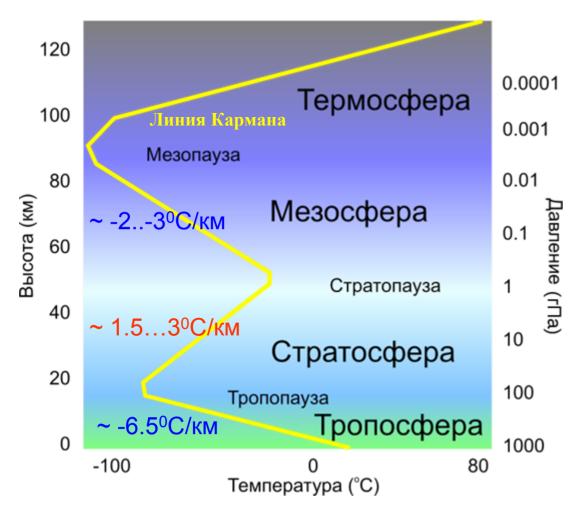

- Состав атмосферы Земли. Уравнение состояния воздуха. Высотный ход температуры и вертикальное строение атмосферы, атмосферные слои. Барометрические формулы. Озон, его свойства, образование и разрушение. Роль в защите Земли.
- Оптические явления в атмосфере. Цвет неба, зеленый луч, радуга, гало, паргелий, световой столб, мираж. Грозы, молния.

Общие сведения

- **Атмосфера** (от. др.-греч. ἀτμός «пар» и σφαῖρα «сфера») это воздушния оболочка Земли, состоящая из ряда газов и взвешенных в ней частиц примесей аэрозолей. (*БРЭ bigenc.ru*)
- Атмосфера движется вместе с Землей как единая система и одновременно принимает участие во вращении Земли.
- **Масса сухой атмосферы** оценивается примерно в **5,15х10**¹⁵ т, что в **миллион раз меньше массы Земли**.
- Общая масса водяных паров (1.3...1.5)*10¹³ т
- Внутренняя поверхность атмосферы покрывает земную поверхность (гидросферу и сушу).
- Внешняя граничит с околоземной частью космического пространства.

Газовый состав атмосферы

Газ		Содержание в сухом воздухе, %	
N_2	азот	78,08	
$\mathbf{O_2}$	кислород	20,95	>99%,
Ar	аргон	0,93	по масс
CO_2	углекислый	0,03	85%
	газ	J	
Ne	неон	0,0018	
Не	гелий	0,0005	
Kr	криптон	0,0001	
H ₂	водород	0,00005	
Xe	ксенон	0,000009	



Атмосфера – смесь газов...

Джордж Блэк (1754)

Высотный ход температуры и

давления

Термосфера (до 1000км) Температура растёт до высот 200—300 км, где достигает значений порядка (1,5 ...2)10³ К, после чего остаётся почти постоянной до больших высот. **Ионизация газов**.

Тропосфера - содержит более 80 % массы атмосферного воздуха и около 90 % всего водяного пара. Развиты процессы перемешивания

Стратосфера

Озоновый слой 20 км-45 км

Максимум содержания озона приходится на весну, минимум - на осень, причем годовая амплитуда возрастает с широтой. Щит от УФ и рентгена 280...340нм

Мезосфера - область лучистого теплообмена. Фотохимические процессы с участием свободных радикалов, колебательно возбуждённых молекул и т.д. Свечение.

Первопроходцы линии Кармана-Дезик и Цыган. 1951

Уравнение состояния воздуха

$$pV = \frac{m}{\mu}RT$$
 $p = \rho \frac{R}{\mu}T$ $R=8314[Дж/К*Кмоль]$ $p = \rho R^*T$

- 1. Для сухого воздуха $\mu_c = 28.964 \text{ кг/Кмоль}$ и $\mathbf{R}_c = R/\mu_c = 287.05 [Дж/кг*K]$
- 2. Для влажного воздуха $\mu_{\rm B}$ =18.016 кг/Кмоль и $\mathbf{R}_{\rm B}$ =R/ $\mu_{\rm B}$ = 461.5 [Дж/кг*K]

Для плотности смеси имеем выражение

$$\rho = \rho_c + \rho_e = \frac{p - e}{R_c T} + \frac{e}{R_c T} = \frac{p - (1 - \mu_e / \mu_c) \cdot e}{R_c T} = \frac{p}{R_c T} (1 - 0.3788 \cdot \frac{e}{p}),$$

и уравнение состояния имеет вид

$$p = \rho R_c (1 + 0.378 \frac{e}{p})T$$

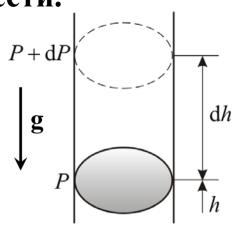
Обычно вводят виртуальную T_V ,

$$T_V = T(1 + 0.378 \cdot e / p)$$

т.е. ее смысл - смесь газов имеет плотность сухого воздуха и корректируется температура

$$p = \rho R_c T_v$$

Барометрические формулы или


В ОСНОВЕ МОДЕЛЕЙ СТАНДАРТНОЙ АТМОСФЕРЫ ЛЕЖАТ ЭКСПЕРИМЕНТАЛЬНЫЕ ДАННЫЕ

Атмосферное давление на какой-либо высоте h обусловлено весом выше лежащих слоёв газа.

Пусть справедлива гидростатика

- воздух находится в покое относительно земной поверхности;
- воздух можно рассматривать как идеальный газ;
- газ находится в однородном поле силы тяжести.

Тогда
$$P$$
— давление на высоте h , а $P+\varDelta P$ — на высоте $h+\Delta h$ $\mathrm{d} P=-\rho g\,\mathrm{d} h$

Барометрическая формула

$$dP = -\rho g dh$$

$$pV = \frac{m}{\mu}RT;$$
 $p = \frac{\rho}{\mu}RT;$ $\rho = \frac{p\mu}{RT}$

$$p = \frac{\rho}{\mu} RT;$$

$$\rho = \frac{p\mu}{RT}$$

ρ - плотность газа на высоте h

$$dp = -\frac{\mu gp}{RT}dh$$
 Разделяем переменны

переменные

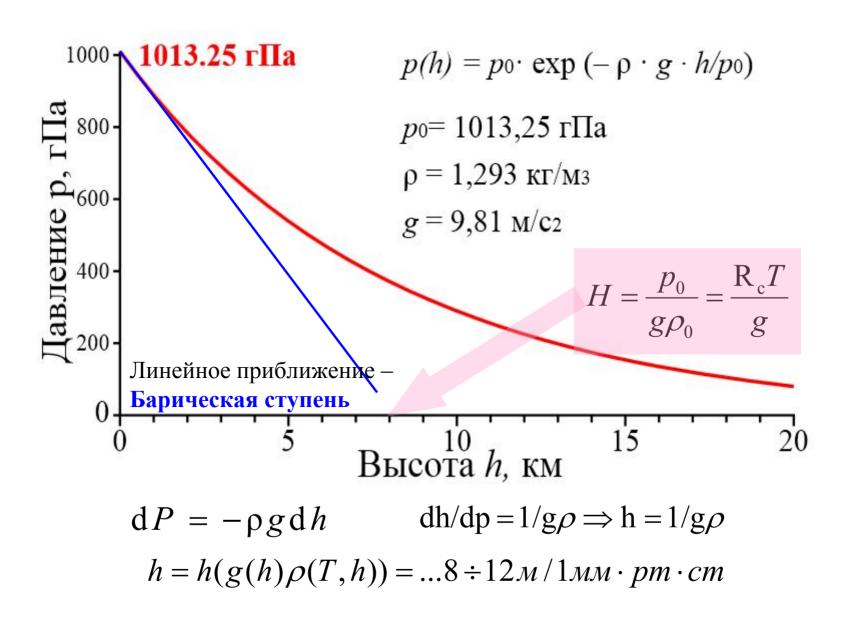
$$\frac{dp}{p} = -\frac{\mu g}{RT}dh$$

Интегрируем

$$\ln P = -\frac{\mu g h}{RT} + \ln C;$$

Ищем константу
$$C = p_0 -$$
давление на высоте

$$h = 0$$


$$p = p_0 \cdot exp\left(-\frac{\mu gh}{RT}\right)$$

$$\mu$$
 =28.97 г/моль g =9.81 м/c2

1kPa = 1000Pa =Единицы 7.5006 мм рт ст=101.972кг/м²=0.016ар

R=8.314 Дж/(моль*К)

Барическая ступень

Некоторые частные случаи

1 Однородная атмосфера - плотность атмосферы р с высотой постоянна;

$$dp = -g \rho dh \implies -\int_{p_0}^p dp = \int_0^h g \rho dh \implies$$

$$\mathbf{p} = \mathbf{p}_0 - \int_0^h \mathbf{g} \, \rho \cdot d\mathbf{h} = [\mathbf{g}, \, \rho = \text{const}] = \mathbf{p}_0 - \mathbf{g} \, \rho_0 \cdot \mathbf{h}$$

Высота однородной атмосферы
$$H = \frac{p_0}{g\rho_0} = \frac{R_c T}{g}$$
 ,

На уровне $H=7.99 \ км$ $p=0 \rightarrow вся атмосфера закончилась!$

Итак, ρ=const, р – убывает → Т тоже должна убывать с высотой

$$T = T_0 - \gamma_A z$$

Причем градиент очень большой
$$\gamma_A = \frac{g}{R_c} = 3.42^{\circ} C / 100 M$$

2 Изотермическая атмосфера - температура атмосферы постоянна

$$T=T_0=const$$

В этом случае

$$P = P_0 \exp\left(-\frac{\mu gh}{RT}\right) \Rightarrow P_0 \exp\left(-\frac{gh}{R_c T_0}\right)$$

- темп убывания плотности зависит от $T_0!!!$ $R_c = R/\mu = 287 \, \mu / (\kappa \epsilon * K)$

$$R_c = R/\mu = 287 \, \mu / (\kappa \epsilon * K)$$

Или иначе – чем выше температура или выше сам слой, тем меньше в нем падение давления.

Высота изотермической атмосферы неограничена.

$$\frac{dP}{P} = -\frac{\mu g}{RT}dh = \{...C..CB..\} = -\frac{g}{R_cT_c}dh$$
 $\ln p = \ln p_0 - \frac{1}{R_c}\int_0^h \frac{gdh}{T_0 - \gamma h}$
 $p = p_0 \left(\frac{T_0 - \gamma h}{T_0}\right)^{g_{R_c\gamma}}$
 $p = p_0 \left(\frac{T_0 - \gamma h}{T_0}\right)^{g_{R_c\gamma}}$
 h_{τ_τ}

Однородная

 $\rho = \rho_0 \left(\frac{T_0 - \gamma h}{T_0}\right)^{-1+g_{R_c\gamma}}$
изотермическая

Дальнейшие уточнения

- 1. учет относительной влажности как добавки в плотность и температуру на поверхности Земли
- 2. учет зависимости д широты (формула Лапласа) на поверхности
- 3. Совместный учет 1 и 2 полная барометрическая формула

Лапласа-Рюльмана

$$\begin{split} \lg \frac{p_1}{p_2} &= (1 - 0.003663 t_m) \times \\ &\times \left(1 - 0.377 \frac{e}{p}\right) (1 - 0.002644 \cos 2\varphi) \times \\ &\times \left(1 - 3.14 \cdot 10^{-7} z_m\right) \frac{\Delta z}{18 \ 400} \,, \end{split}$$

и упрощенная ф-ла Бабине

$$\Delta z = 16\,000\,(1+0.004t_m)\,\frac{p_0-p_1}{p_0+p_1}$$
.

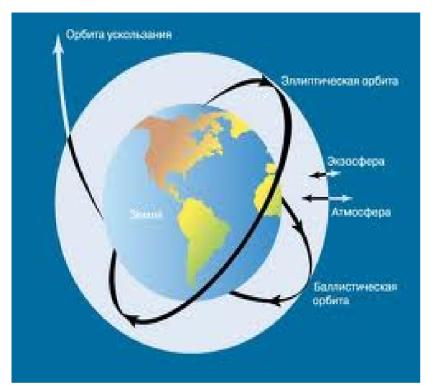
где $\Delta z=z_2-z_1$ — разность высот в метрах, t_m — средняя барометрическая температура слоя воздуха по шкале Цельсия, e/p — сред. отношение упругости пара к давлению воздуха в слое между уровнями, z_m — средняя арифметическая высота

- 4. Учет зависимости g от высоты
- 5. Подбор «ВЫСОТЫ АТМОСФЕРЫ»
- 6. Рациональные апроксимации для диапазона высот и удобства вычислений

$$m,g,T=const$$
 - Так не бывает НАВЕРХУ !!!!

Для примера уточним влияние гравитации для больших высот

$$g(r) = G\frac{M}{r^{2}} = G\frac{M}{(R_{0} + h)^{2}} \qquad \frac{dp}{p} = G\frac{Mm}{kT}\frac{dh}{(R_{0} + h)^{2}}$$


$$p = C_{0} \cdot \exp\left(G\frac{mM}{kT} \cdot \frac{1}{R_{0} + h}\right) = > C_{0} \cdot \exp\left(G\frac{m}{kT}\frac{M}{R_{0}^{2}} \cdot \frac{R_{0}^{2}}{R_{0} + h}\right) = C_{0} \cdot \exp\left(\frac{mg_{0}}{kT} \cdot \frac{R_{0}^{2}}{R_{0} + h}\right)$$

Определим
$$C_0$$
 из условия $p(z=0)=p_0$ $C_0=p_0\cdot \exp\left(-\frac{mg_0R_0}{kT}\right)$

Итак
$$p=p_0\cdot \expiggl(-rac{mg_0R_0}{kT}iggl[1-rac{R_0}{R_0+h}iggr]iggr)$$

Причем –
$$p_{\infty}=p_0\cdot \exp\left(-\frac{mg_0R_0}{kT}\right)=const$$
 и $N=\int\limits_R^{\infty}n4\pi r^2dr=\infty, r\to\infty:p\to p_{\infty}$

ВЫВОД. Бесконечная атмосфера не может быть в состоянии гидростатического равновесия по причине диссипации !!! by ZVI

Следствия

- 1. аккреция должна идти при «правильном падении» Т!
- 2. «дегазация планеты» и оценка возраста атмосферы

В экзосфере молекулы летают без столкновений по индивидуальным траекториям, и некоторые наиболее легкие! - из них улетают от планеты...

$$V_{cp}^2 = 3p/\rho$$

«скорость убегания, escape»

1) В распределении молекул по скоростям всегда есть молекулы со скоростью бодые второй космической:

$$V_{\text{H2}} = 1760 \text{m/c}$$

$$V_{\text{H2}} = 1760 \text{m/c}$$

$$V_{\text{H2O}} = 570 \text{m/c}$$

$$V_{\text{O2}} = 425 \text{m/c}$$

$$V_{\text{CO2}} = 360 \text{m/c}$$

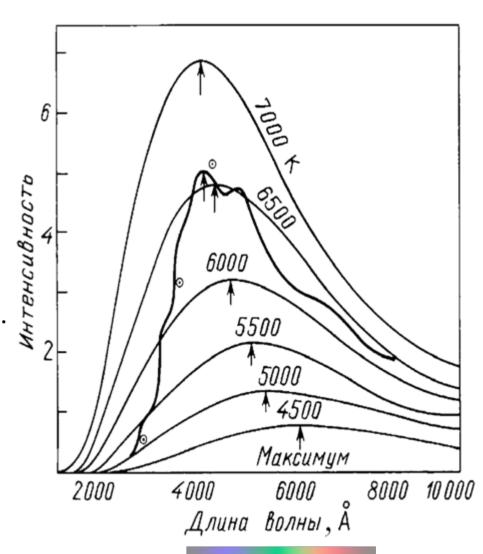
$$V_{\text{N2}} = 460 \text{m/c}$$

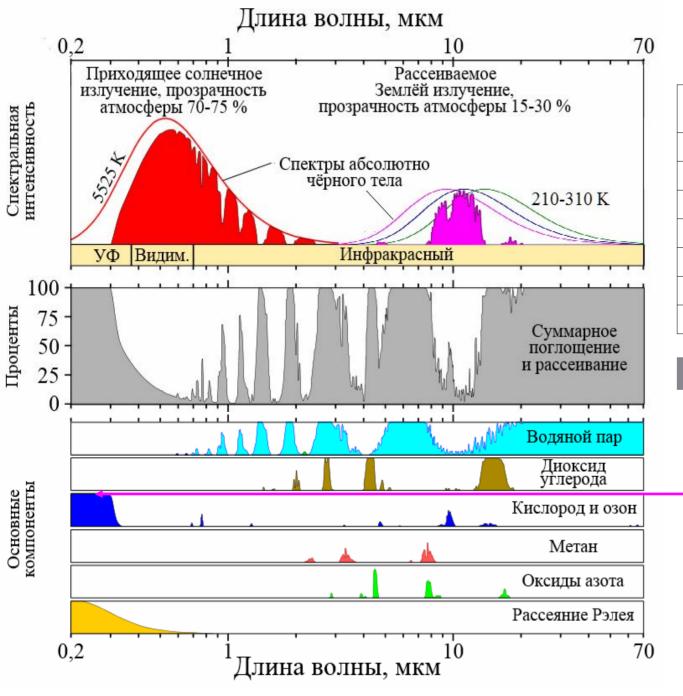
$$V_{\rm H2O} = 570 \, \text{M/c}$$

$$V_{O2} = 425 \text{ m/c}$$

$$V_{CO2} = 360 \text{ m/c}$$

$$V_{N2} = 460 \text{ M/}$$

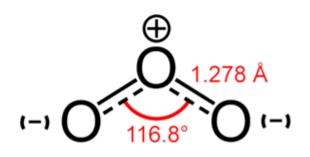

- 2) Выше 600-800 км столкновений между нейтралами редки (т.е. столкновения вообще-то и не препятствуют убеганию !!!).
- 3) Оценка возраста Земной атмосферы по дегазации атмосферы


Распределение энергии в спектре Солнца

Сравнение распределения энергии в спектре Солнца (жирная кривая) с распределением энергии в спектре излучения абсолютно черного тела при разных температурах.

По оси Y –спектральная плотность в единицах 10^{11} Bт/(с·м²·см·стр) (стр – телесный угол в 1 стерадиан). При увеличении температуры абсолютно черного тела максимум его излучения смещается в сторону более коротких длин волн в соответствии с законом Вина

 $\lambda_{\text{max}} T = 2.898 \cdot 10^{-3} \cdot K$



Видимый свет

Цвет	Диапазон длин волн, нм		
Фиолетовый	380—450		
Синий	450—480		
Голубой	480—510		
Зелёный	510—570		
Жёлтый	570—590		
Оранжевый	590—630		
Красный	630—780		

Полосы поглощения озона

Озон и его свойства

Озон – О₃, «пахнущий»

Считается, что озон обнаружил в 1785г. голландец ван Марум по свойствам, что приобретал воздух в его опытах после пропускания электрических искр.

Как новое вещество тогда описан не был.

Термин «озон» был предложен немецким химиком Х. Ф. Шёнбейном в 1840г за пахучесть и потому ряд историков науки именно **ему отдают приоритет открытия**.

Шёнбейн в 1840г. предложил реакцию для определения наличия озона.

Озон — мощный окислитель

Применяется для стерилизации и дезинфекции изделий медицинского назначения; для отбеливания бумаги и очистки масел. Очистка воды и воздуха в ряде случаев происходит также с применением озона.

Озонирование воды против хлорирования.

Жизненный цикл озона

Молекулярный кислород – единственный источник озона.

В начале 1930-х годов предложен механизм для объяснения образования озонового слоя как результата наивероятных реакций

$$O_2 + hv \to O + O, \ \lambda \le 242 \text{ HM } (1),$$

$$O + O_2 + M \rightarrow O_3 + M$$
 (2),

где M — молекула азота или кислорода.

Распад атмосферного озона:

$$O_3 + hv \rightarrow O + O_2 \tag{3}$$

$$O + O_3 \rightarrow O_2 + O_2 \tag{4}$$

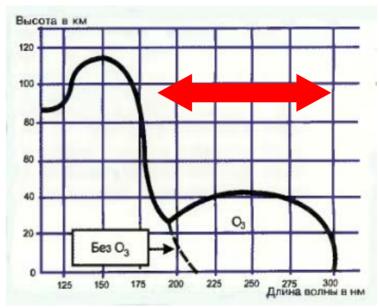
$$U O_3 + O_3 \rightarrow O_2 + O_2 + O_2$$
 (5)

$$O + O + M \rightarrow O_2 + M \tag{6}$$

+ доп. реакции с OH, NO, CI, Br, I, S Фреоны (галогеносодержащие вещества) – разрушают озон, а сами устойчивы и долго живут на стратосферных высотах.

Проблемы холодильных установок и глобального потепления.

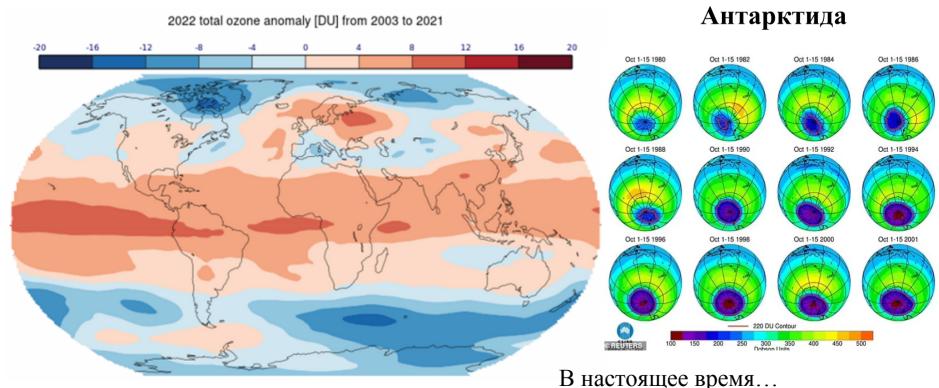
Измерение 1 ед. Добсона (Д.Е.) равна 0,01 мм толщины слоя, который получается, если сжать весь озон, содержащийся в атмосфере, до давления 1 атм. при T=0°C



Озоновый щит...

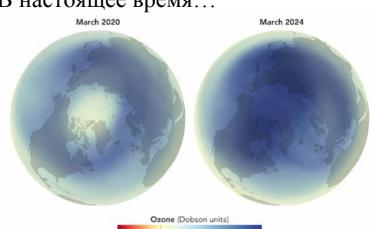
Озон земной атмосферы и клетки живых организмов поглощают биологически опасное КВ излучение Солнца в одном диапазоне длин волн λ =200-300 нм.

Вывод: когда образовался достаточный слой озона в атмосфере, жизнь смогла шагнуть на сушу и начать уникальную ветвь эволюции, которая привела к появлению человека как вида



Если бы не было O_3 – уровень УФ был бы как мдрд лет назад

Уменьшение на 20%, вернет ситуацию на 400 миллионов лет назад, когда на суше только появились растения


Простраственное распределение озона

Отклонение среднегодового общего содержания озона за 2022 г. по сравнению с климатологическими данными за 2003–2021 гг.

Источник: результаты повторного анализа Службы мониторинга атмосферы Copernicus (Inness et al., 2019).

Проблема озоновых дыр...

Оптические явления в атмосфере

Все явления обусловлены высотным ходом температуры, наличием водяного пара и явлениями

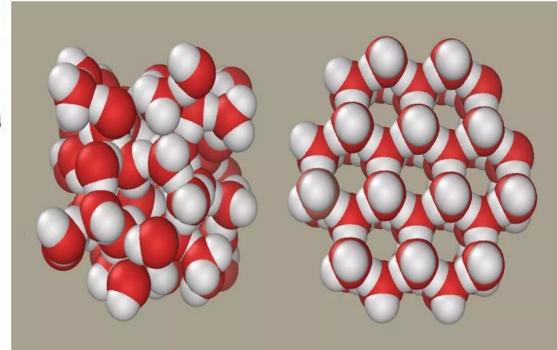
дисперсии-отражения-преломления-дифракции света

- Цвет неба рассеивается наиболее сильно коротковолновая часть видимого спектра, т.е голубой
- Зеленый луч последним на закате виден наиболее сохранившийся луч, т.е зеленый
- Радуга
- Гало
- Паргелий
- Световой столб
- Мираж
- •

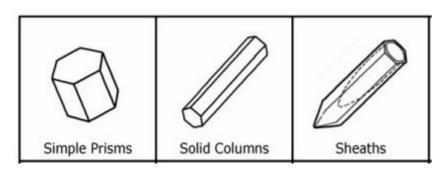
Каталог ВМО оптических (и не только) явлений https://cloudatlas.wmo.int/ru

Ее Величество – Вода!

Строение молекулы воды

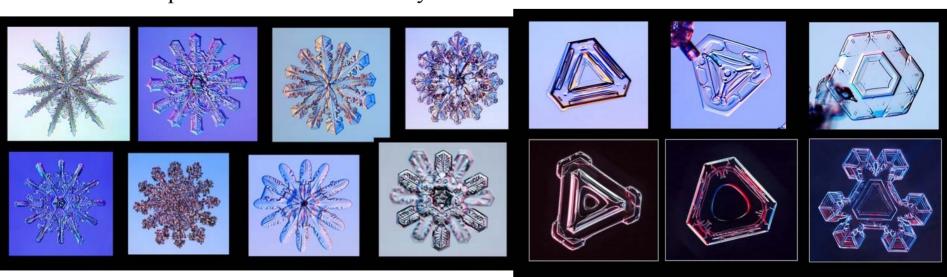

Диполь

	Вода	Лед	Fe
Плотность, г/см ³	1 при 4 ⁰ С	0.9	7.87
Теплоемкость Дж/г*К	4.1	2.09	0.46


кислород
водород

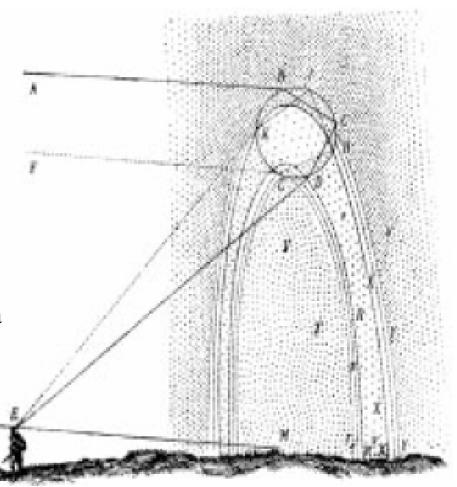
Формула воды открыта Генри Кавендишем (1783) по случаю как результат реакции

$$2H_2 + O_2 \rightarrow 2H_2O + 136,74$$
 ккал

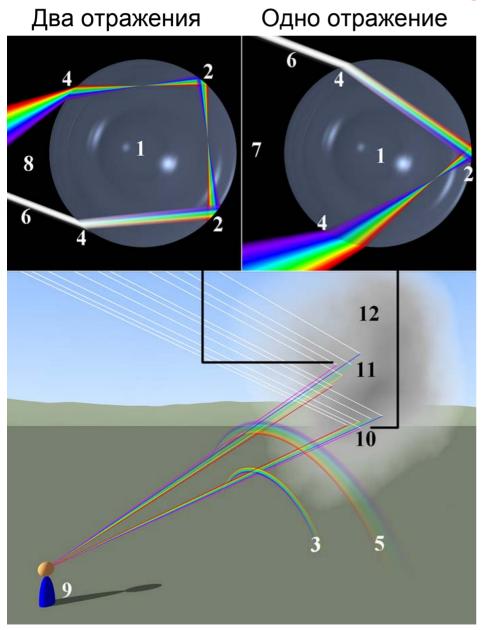

Лед. Образование кристаллов

Рост и форма зависит от внеш. условий – неск. возможных вариантов формы

1885 - американский фотограф-энтузиаст Вильсон Бентли опубликовал книгу с более чем 5000 изображений в основном 6-лучевых снежинок


Изучение радуги

Радуга: группа концентрических дуг, имеющих окраску от фиолетового до красного цветов и появляющихся на фоне большого числа водяных капель (дождя, мороси или тумана), вызываемые рефракцией и дифракцией в лучах Солнца или Луны.


Рене Декарт дал объяснение радуги с точки зрения **отражения и преломления** в труде "Метеоры" в главе "О радуге" (1635) .

С учетом **дисперсии** теория радуги была дополнена **Исааком Ньютоном** в "Лекциях по оптике" (70-е годы XVI века).

Полная теория радуги с учетом дифракции света, т.е. соотношения соотношения длины волны света и размера капли, была построена лишь в XIX веке Дж.Б. Эри (1836) и Дж.М. Пернтером (1897).

Радуга

Радуга возникает в результате преломлений и отражений световых лучей в капле дождя, спектральное разложение появляется из-за явления дисперсии.

Наблюдатель видит радугу в стороне, противоположной солнцу.

Положение радуги по отношению к ландшафту зависит от положения наблюдателя по отношению к солнцу, угловые размеры радуги определяются высотой солнца над горизонтом

Схема

- 1. Сферическая капля.
- 2. Внутреннее отражение.
- 3. Первичная радуга.
- 4. Преломление.
- 5. Вторичная радуга.
- 6. Входящий луч света.
- 7. Ход лучей при формировании первичной радуги
- 8. Ход лучей при формировании вторичной радуги.
- 9. Наблюдатель.
- 10-12. Область формирования радуги

Хинуера, Уаикато, Нов.Зеландия 19.10.2010 18:12LT

Первичная радуга с множественными радугами https://cloudatlas.wmo.int/ru

Примеры: радуга

Экзотика
Радуга от
нескольких
источников

Экзотика Перевернутая Радуга

Лучи солнца освещают поверхность облаков на *7-8 км высоте*. На данной высоте перистые облака, состоящие из крошечных выпуклых кристаллов льда, попадают под солнечные лучи и в атмосферу отражается свет, как при обычной радуге. Ясная погода !!!

Гало - (Фр. *Halo* и греч. *halos* — «световое кольцо») - оптическое явление, заключающееся в образовании светящегося кольца вокруг источника света. Возникает при рассеянии света на ледяных кристаллах перистых облаков. Гало имеет вид радужных колец вокруг диска Солнца или Луны, расположенных на угловом расстоянии 22° или 46° от светила.

Ход лучей в возможных конфигурациях кристаллов

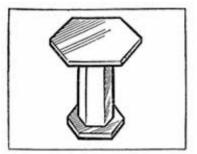


Рис. 37. Кристалл льда с плоскими пластинками на концах (парашютик).

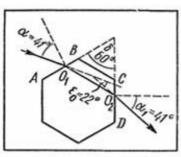


Рис. 38. Преломление света на гранях кристалла льда, пересекающихся под углом 60°.

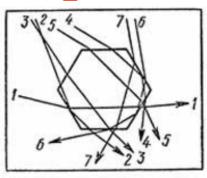


Рис. 39. Возможные преломления света в шестигранной ледяной призме.

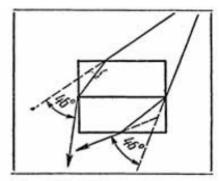


Рис. 40. Преломление света на гранях, пересекающихся под углом 90°.

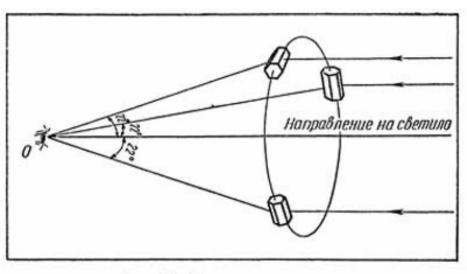
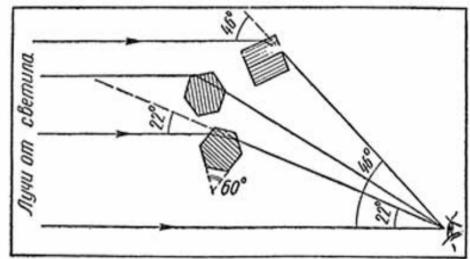
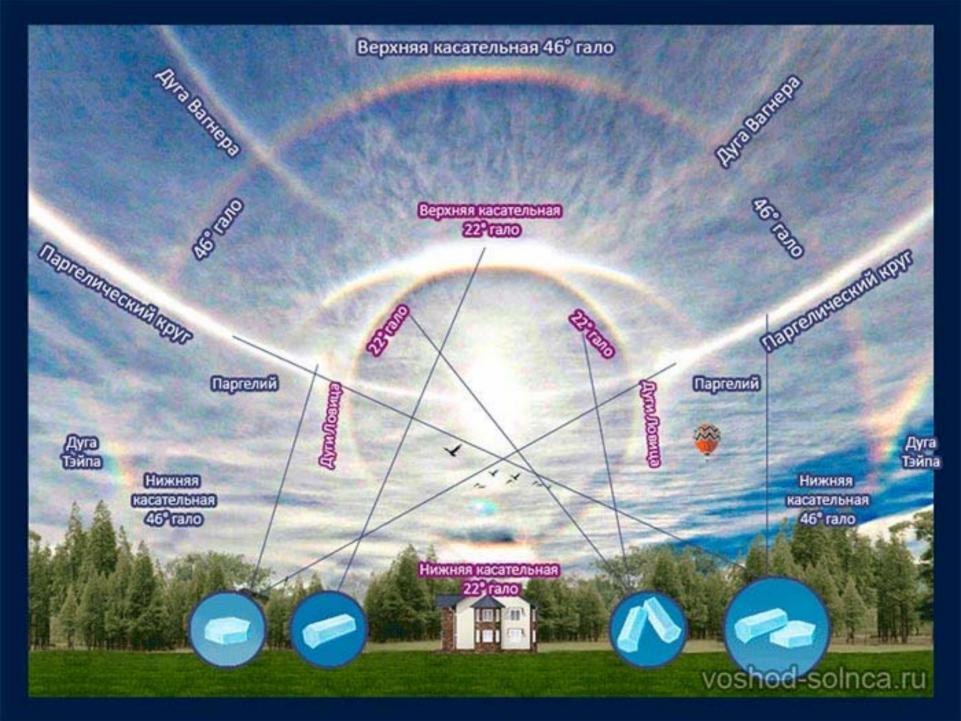


Рис. 41. Образование малого гало.




Рис. 42. Образование малого и большого гало.

Причина возникновения Гало: преломление света от Солнца или иного источника в ледяных кристалликах и отражение от их граней.

• В отличии от радуги для наблюдения колец гало нужно повернуться лицом к солнцу

Форма гало зависит от формы и положения кристаллов друг относительно друга На мелкие кристаллы влияют атмосферные флуктуации и *они располагаются в облаке хаотично*, а *крупные столбчатые кристаллы и пластинки* больше подвержены воздействию атмосферного торможения из-за площади своей поверхности, поэтому они *падают в целом ориентировано*.

- Отражённый и преломлённый ледяными кристаллами свет нередко разлагается в спектр, но гало в условиях низкой освещённости имеет малую цветность.
- •Окрашенные гало образуются при преломлении света в шестигранных кристаллах ледяных облаков; неокрашенные (бесцветные) формы при его отражении от граней кристаллов.
- Наиболее часто встречающиеся формы гало:
- радужные круги вокруг диска Солнца или Луны; паргелии, или «ложные Солнца», слегка окрашенные светлые пятна на одном уровне с Солнцем справа и слева от него; паргелический круг белый горизонтальный круг, проходящий через диск светила; столбы часть белого вертикального круга, проходящего через диск светила; он в сочетании с паргелическим кругом образует белый крест.

Примеры: Солнечное и

Jim Mullhaupt, flickr.com. CC BY-NC-ND 2.0

Гало – не только в высоких широтах !!!

лунное гало

Разновидность гало ложные солнца или паргелии

ЛОЖНЫЕ СОЛНЦА (ПАРГЕЛИИ)

Два более ярких световых пятна в малом гало на той же высоте, что и Солнце. Возникают, когда оси большого числа ледяных кристалликов вертикальны. Свет входит через одну из боковых граней и выходит через другую, расположенную по отношению к ней под углом 60°.

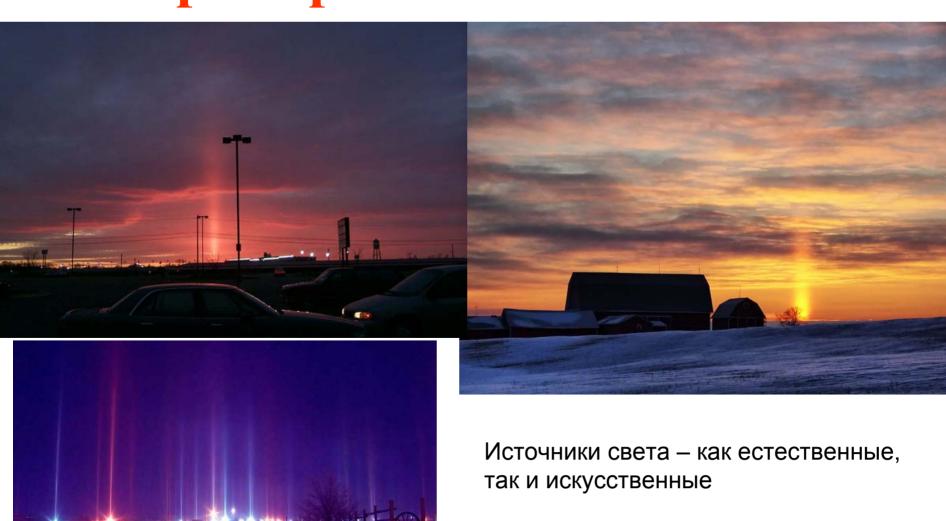
Форма кристаллов: шестиугольная плоская призма

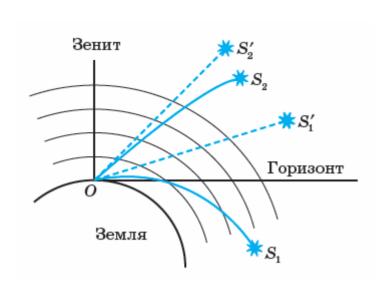
Цвет: красный у внутреннего края, переходящий в желтый

и синевато-белый

ТАСС. Инфографика, 2022

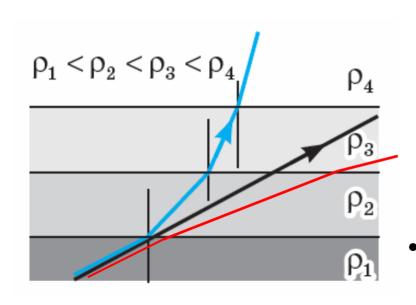
Примеры: паргелии


Комбинация гало+пергелий


Разновидность гало - световой столб

Примеры: световой столб

Рефракция

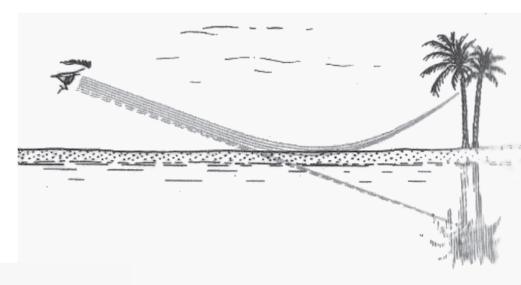


Искривление видимого направления на источник в зависимости от длины волны, угол между истинным и видимым направлениями на звезду называется углом рефракции.

По мере приближения к поверхности Земли плотность атмосферы растёт и лучи преломляются всё сильнее. Угол рефракции в атмосфере достигает ~10...20 mRad и зависит от метеоусловий.

В результате все небесные тела, кроме тех, что находятся в зените, кажутся на небе выше, чем они есть.

Мираж и рефракция света


$$\rho_1 > \rho_2 > \rho_3$$

- Попадая в атмосферу Земли, луч в результате преломления отклоняется от прямой линии по направлению к Земле или от нее в зависимости от высотного поведения показателя преломления.
- Так и появляется Мираж.
 Он возникает либо над сильно нагретой поверхностью, либо над охлажденной (например, над холодной водой).

Миражи и рефракция света

Нижний мираж

При нагреве приповерхностных слоев луч зрения отклоняется к зениту, т.е наблюдатель видит небо. Это вызывает иллюзию водной глади В ПУСТЫНЕ!

Верхний мираж – арктический

В Арктике можно увидеть верхние миражи, Вода Сев. Ледовитого океана, как правило, не прогревается выше 8 °C, а воздух с континента может иметь +30 °C. Поэтому холодный воздух лежит внизу, а тёплый — наверху и луч в нем отклоняется вниз.

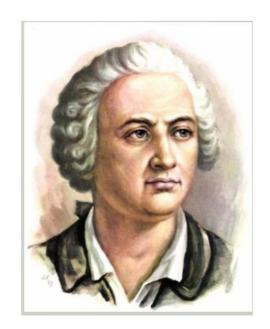
Зеленый луч

В атмосфере – чем меньше длина волны тем сильнее рефракция (преломление из-за дисперсии)

Вспышка зелёного света в момент захода солнечного диска за горизонт или появления его из-за горизонта.

Каковы условия наблюдения?

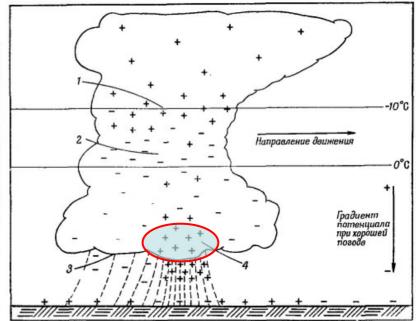
Электричество - Гроза и Молния

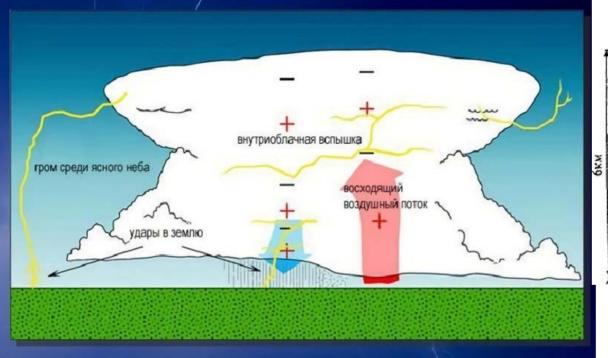

Немного истории

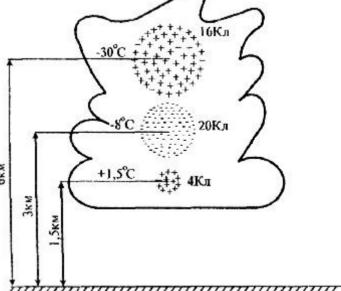
Бенджамин Франклин в 1752г экспериментально доказал, что молния — это **сильный электрический разряд**. Ученый сделал знаменитый опыт с воздушным змеем, который был запущен в воздух при приближении грозы.

Одновременно с Франклином исследование электрической природы молнии занимались **М.В. Ломоносов и Г.В. Рихман**, который погиб от удара молнии.

Через некоторое время стало ясно, что молния представляет собой мощный электрический разряд, возникающий при сильной электризации туч.


Облака вертикального развития




Кучевые Высота от 0,3 до 1,5 км

Кучево-дождевые Высота от 0,5 до 1,5 км

Напряжение пробоя!

Грозовое облако

Грозовое облако - локализованная область резко выраженной конвективной и электрической активности. Оно может состоять из нескольких ячеек.

Средний радиус основания одной грозовой ячейки R ≈ 2 км, в средних широтах ячейка лежит на высотах (8 ÷ 12) км. В гигантских грозовых облаках тропических широт она достигать 20-30 км. Обычно развитие грозового облака делят на три стадии: зарождения, развития (зрелости) и распада. Стадия зарождения характеризуется наличием мощных восходящих потоков теплого влажного воздуха и появлением молний. В стадии развития растут электрическая активность, восходящие потоки и влагосодержание облака. В стадии распада наблюдается затухание восходящих движений воздуха, электрической активности и выпадения осадков.

Время жизни ячейки от момента ее зарождения до распада около 1 часа. **Количество сконденсированного пара** в грозовом облаке средних размеров $\sim 2 \cdot 10^5 \; \mathrm{T}$

Ток, текущий через облако средних размеров, равен ~ 1 A, напряжение между вершиной и основанием составляет ($10^8 \div 10^9$) B, а электрическая мощность равна ~ ($100 \div 1000$) MBm.

Разделение зарядов в облаке – механизмы, гипотезы.

Макромасштабное пространственное разделение зарядов происходит благодаря наличию в облаке сильных восходящих потоков, **скорости которых должны достигать более** ($20 \div 30$) $\emph{m/c}$. При этом разноименные заряды разделяются по высоте на несколько километров!!!

Роль внешних условий

В.И. ЕРМАКОВ, Ю.И. СТОЖКОВ ФИЗИКА ГРОЗОВЫХ ОБЛАКОВ. 2004 Изд. ФИАН. 40с.

И все же - что такое молния?

Мо́лния — электрический искровой разряд в атмосфере, происходит во время грозы, проявляющийся яркой вспышкой света и сопровождающим её громом.

Молнии также были зафиксированы на Венере, Юпитере, Сатурне, Уране и т.д. - везде, где есть атмосфера.

- Сила тока в разряде молнии на Земле составляет в среднем 30...50 кА, иногда достигает более 200 кА
- **Напряжение** от 10*10⁶ до неск.1000*10⁶ вольт.

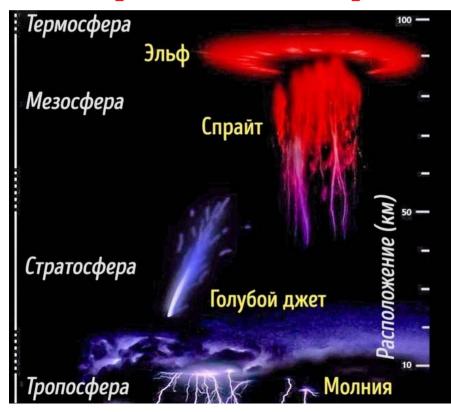
РЕКОРДНЫЕ МОЛНИИ

- Размеры по поверхности максимально свыше 750км
- Рекордная разность потенциалов во время грозы в 1,3 ГВ
- Высота оптического разряда свыше 25км
- Продолжительность макс. более 17 сек
- Самая большая активность по количеству молний во время извержения вулкана, более 2600 вспышек в минуту,

МЕХАНИЗМЫ ОБРАЗОВАНИЯ – + пробой на убегающих

электронах

А. В. Гуревич, К. П. Зыбин, Пробой на убегающих электронах и электрические разряды во время грозы, УФН, 2001, том 171, номер 11, 1177–1199


Грязевые грозы

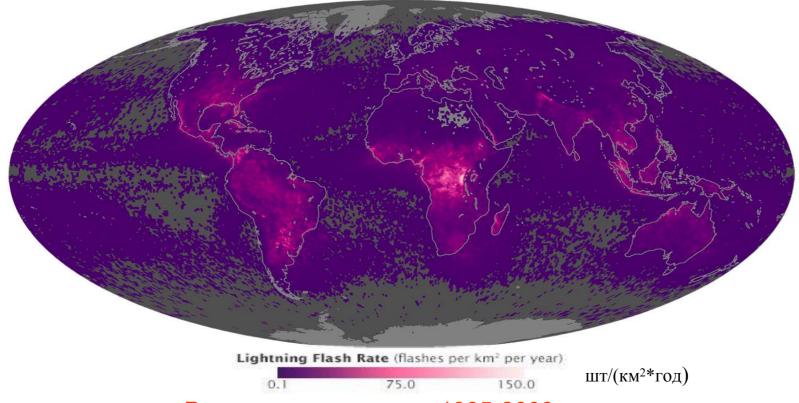
Эйяфьятлайокудль 2010

Грозы верхней атмосферы

Эл. Разряды в холодной плазме

Как правило, связаны с грозовой активностью или атмосферными вихрями, наблюдаются чаще над циклонами и ураганами

Красное свечение - над мощными ураганами на высотах 60-100км от N и N_2


Диаметр грозди спрайтов –

неск десятков км

Джеты образуются на верхней кромке грозового облака и означают пробой вверх. Светится, как полагают, N_2

Грозовая активность

Распределение гроз в 1995-2003г.г.

На земном шаре одновременно "гремит" до 2000 гроз, в год — более 10 миллионов. Из наблюдений - среднее время электрической активности грозового облака ~ $(20 \div 30)$ минут. Общее количество грозовых облаков на планете Земля за сутки $\sim 10^5$ Особенности на карте.

1. Над океанами менее развиты термическая и динамическая конвекции, воздух над океанами ионизуется главным образом космическими лучами, а роль естественной радиоактивности в этом процессе незначительна. Поэтому в приземном слое воздух над океанами ионизован слабее, чем над материками — ГРОЗ МЕНЬШЕ В ЦЕЛОМ. 2. Почему грозы часто бывают в Кении, Тибете и в долинах Миссисипи и Амазонки?

Перламутровые облака