

2024 Лекция № 10

Геофизика

Елисеев Алексей Викторович отделение геофизики, физический факультет МГУ

http://ocean.phys.msu.ru/courses/geo/ также: https://cloud.mail.ru/public/x84v/K9EfwZ8zV

Динамические процессы и циркуляция атмосферы Земли

			A. C. MOHIHI
Про как	гноз по задача	годы физ	аки
HILATER CLAREAS OCCURES NOCEDA	CTED SEATURE PERAMINE ATENATIFUECION 1919	E JHTEPATY	ena -

Уравнения движения вращающейся жидкости

Координаты: (ф – широта, λ – долгота, р – давление) или: (ф – широта, λ – долгота, z – высота)

уравнения Навье-Стокса (закон сохранения импульса)

$$\frac{D\mathbf{U}}{Dt} = -2\mathbf{\Omega} \times \mathbf{U} - \frac{1}{\rho} \nabla_p + \mathbf{g} + \mathbf{g}$$

уравнение неразрывности (закон сохранения массы)

 $\frac{1}{\rho} \frac{D\rho}{Dt} + \nabla \cdot \mathbf{U} = 0$

термодинамическое уравнение (закон сохранения энергии)

$$c_v \frac{DT}{Dt} + p \frac{D\alpha}{Dt} = J$$

материальная производная

$$\frac{D}{Dt} \equiv \frac{\partial}{\partial t} + \mathbf{U} \bullet \mathbf{\nabla}$$

компоненты скорости U:

$$u \equiv r \cos \phi \ \frac{D\lambda}{Dt}, \quad v \equiv r \frac{D\phi}{Dt}, \quad w \equiv \frac{Dz}{Dt}$$

Упрощение уравнений динамики: гидростатика (1)

$$\frac{Dw}{Dt} - \frac{u^2 + v^2}{a} = -\frac{1}{\rho} \frac{\partial p}{\partial z} - g + 2\Omega u \cos \phi + F_{rz}$$

Масштабы величин погодных вариаций в атмосфере горизонтальная скорость: U ~ 10 м/с

$$z - \text{Eq.} \quad Dw/Dt \quad -2\Omega u \cos \phi \quad -(u^2 + v^2)/a = \frac{-\rho^{-1} \partial p/\partial z}{P_0/(\rho H)} \frac{-g}{g} + F_{rz}$$

Scales $UW/L \quad f_0 U \quad U^2/a \qquad P_0/(\rho H) \quad g \quad vWH^{-2}$
m s⁻² 10⁻⁷ 10⁻³ 10⁻⁵ 10 10 10 10⁻¹⁵

$$\frac{1}{\rho_0} \frac{dp_0}{dz} \equiv -g$$

Упрощение уравнений динамики: гидростатика (2)

Однако это доказательство только для атмосферы без движений!

Если есть движения, то

$$p(x, y, z, t) = p_0(z) + p'(x, y, z, t)$$

$$\rho(x, y, z, t) = \rho_0(z) + \rho'(x, y, z, t)$$

 $| p' | << p_0, | \rho' | << \rho_0$ $-\frac{1}{\rho}\frac{\partial p}{\partial z} - g = -\frac{1}{(\rho_0 + \rho')}\frac{\partial}{\partial z}(p_0 + p') - g$ $\approx \frac{1}{\rho_0} \left[\frac{\rho'}{\rho_0} \frac{dp_0}{dz} - \frac{\partial p'}{\partial z} \right] = -\frac{1}{\rho_0} \left[\rho' g + \frac{\partial p'}{\partial z} \right]$ $\frac{1}{\rho_0} \frac{\partial p'}{\partial z} \sim \left| \frac{\delta P}{\rho_0 H} \right| \sim 10^{-1} \mathrm{m \ s}^{-2}, \quad \frac{\rho' g}{\rho_0} \sim 10^{-1} \mathrm{m \ s}^{-2}$ $\frac{\partial p'}{\partial z} + \rho' g = 0$

Упрощение уравнений динамики: геострофика (1)

$$\begin{aligned} \frac{Du}{Dt} &- \frac{uv \tan \phi}{a} + \frac{uw}{a} = -\frac{1}{\rho} \frac{\partial p}{\partial x} + 2\Omega v \sin \phi - 2\Omega w \cos \phi + F_{rx} \\ \frac{Dv}{Dt} &+ \frac{u^2 \tan \phi}{a} + \frac{vw}{a} = -\frac{1}{\rho} \frac{\partial p}{\partial y} - 2\Omega u \sin \phi + F_{ry} \end{aligned}$$

Масштабы величин погодных вариаций в атмосфере
горизонтальная скорость: U ~ 10 м/с
вертикальная скорость: U ~ 10 м/с
горизонтальный масштаб: L ~ 10⁶ м (масштаб Кибеля-Россби)
вертикальный масштаб: H ~ 10⁴ м
вариации давления: $\delta P / \rho ~ 10^3 \, \text{m}^2/\text{c}^2$
время: L / U ~ 10⁵ c

	А	В	С	D	Е	F	G
$x - \mathrm{Eq}$.	$\frac{Du}{Dt}$	$-2\Omega v\sin\phi$	$+2\Omega w\cos\phi$	$+\frac{uw}{a}$	$-\frac{uv\tan\phi}{a}$	$= -\frac{1}{\rho} \frac{\partial p}{\partial x}$	$+F_{rx}$
$y - \mathrm{Eq}$.	$\frac{Dv}{Dt}$	$+2\Omega u\sin\phi$		$+\frac{vw}{a}$	$+\frac{u^2 \tan \phi}{a}$	$= -\frac{1}{\rho} \frac{\partial p}{\partial y}$	$+F_{ry}$
Scales	U^2/L	$f_0 U$	f_0W	$\frac{UW}{a}$	$\frac{U^2}{a}$	$\frac{\delta P}{\rho L}$	$\frac{\nu U}{H^2}$
(m s ⁻²)	10^{-4}	10^{-3}	10^{-6}	10^{-8}	10^{-5}	10^{-3}	10^{-12}

Упрощение уравнений динамики: геострофика (2)

$$-fv \approx -\frac{1}{\rho} \frac{\partial p}{\partial x}; \qquad fu \approx -\frac{1}{\rho} \frac{\partial p}{\partial y}$$

в векторной форме

$$\mathbf{V}_g \equiv \mathbf{i} u_g + \mathbf{j} v_g$$
$$\mathbf{V}_g \equiv \mathbf{k} \times \frac{1}{\rho f} \mathbf{\nabla} p$$

Упрощение уравнений динамики: квазигеострофика (1)

Масштабы величин погодных вариаций в атмосфере

горизонтальная скорость: вертикальная скорость: горизонтальный масштаб: вертикальный масштаб: вариации давления:	U ~ 10 м/с W ~1 см/с L ~ 10 ⁶ м (масштаб Кибеля-Россб H ~ 10 ⁴ м δΡ / ρ ~ 10 ³ м ² /с ²)
вариации давления:	$\delta P / \rho \sim 10^3 \text{ m}^2/\text{c}^2$	
время:	L / U ~ 10 ⁵ c	

	А	В	С	D	E	F	G
$x - \mathrm{Eq}$.	$\frac{Du}{Dt}$	$-2\Omega v\sin\phi$	$+2\Omega w\cos\phi$	$+\frac{uw}{a}$	$-\frac{uv\tan\phi}{a}$	$= -\frac{1}{\rho} \frac{\partial p}{\partial x}$	$+F_{rx}$
y - Eq.	$\frac{Dv}{Dt}$	$+2\Omega u\sin\phi$		$+\frac{vw}{a}$	$+\frac{u^2 \tan \phi}{a}$	$= -\frac{1}{\rho} \frac{\partial p}{\partial y}$	$+F_{ry}$
Scales	U^2/L	$f_0 U$	$f_0 W$	$\frac{UW}{a}$	$\frac{U^2}{a}$	$\frac{\delta P}{\rho L}$	$\frac{\nu U}{H^2}$
$(m \ s^{-2})$	10^{-4}	10^{-3}	10^{-6}	10^{-8}	10^{-5}	10^{-3}	10^{-12}
$\frac{Du}{Dt} = fv - \frac{1}{\rho}\frac{\partial p}{\partial x} = f\left(v - v_g\right)$							
$\frac{Dv}{Dt} = -fu - \frac{1}{\rho}\frac{\partial p}{\partial y} = -f\left(u - u_g\right)$							

Упрощение уравнений динамики: квазигеострофика (2)

Число Кибеля-Россби

$$R_0 \equiv (U^2/L)/(f_0U) \equiv U/(f_0L)$$

 $f_0 = 2 \ \Omega \ sin \ \varphi_0$

 $R_0 \sim 10^{-1}$

Уравнение гидротермодинамики: изобарические координаты

Вертикальная координата – давление р

$$\frac{D\mathbf{V}}{Dt} + f\mathbf{k} \times \mathbf{V} = -\mathbf{\nabla}_p \Phi$$

Ф = g Н - геопотенциал

$$\frac{D}{Dt} = \frac{\partial}{\partial t} + u\frac{\partial}{\partial x} + v\frac{\partial}{\partial y} + \omega\frac{\partial}{\partial p}$$

вертикальная скорость:

 $\omega \equiv Dp/Dt$

$$\left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y}\right)_p + \frac{\partial \omega}{\partial p} = 0$$

Геострофическое приближение:

$$f \mathbf{V}_g = \mathbf{k} \times \mathbf{\nabla}_p \Phi$$

Бароклинная неустойчивость

аномалии завихренности

Среднезональные среднегодовые величины, peanaлиз ERA-40 [Li et al., 2007]

Кинетическая энергия незональных возмущений (вихрей), 10⁵ Дж/(м² · атм)

Завихрённость

В абсолютных координатах (с учётом вращения Земли): $\boldsymbol{\omega}_a \equiv \boldsymbol{\nabla} \times \mathbf{U}_a$. Относительная (относительно вращающейся Земли): $\boldsymbol{\omega} \equiv \boldsymbol{\nabla} \times \mathbf{U}$

$$\boldsymbol{\omega} = \left(\frac{\partial w}{\partial y} - \frac{\partial v}{\partial z}, \frac{\partial u}{\partial z} - \frac{\partial w}{\partial x}, \frac{\partial v}{\partial x} - \frac{\partial u}{\partial y}\right)$$

В физике атмосферы доминируют вертикальные компоненты

 $\eta \equiv \mathbf{k} \bullet (\mathbf{\nabla} \times \mathbf{U}_a),$ $\zeta \equiv \mathbf{k} \bullet (\mathbf{\nabla} \times \mathbf{U})$

$$\zeta = \frac{\partial v}{\partial x} - \frac{\partial u}{\partial y}, \qquad \eta = \frac{\partial v}{\partial x} - \frac{\partial u}{\partial y} + f$$

f = 2 Ω sin φ – планетарная завихрённость

Уравнение завихрённости

$$\frac{D_h \left(\zeta + f\right)}{Dt} = -\left(\zeta + f\right) \left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y}\right)$$
$$\frac{D_h}{Dt} \equiv \frac{\partial}{\partial t} + u\frac{\partial}{\partial x} + v\frac{\partial}{\partial y}$$

Для бездивергентных движений ($\nabla \cdot \mathbf{U} = \mathbf{0}$)

$$\frac{D_h \left(\zeta + f\right)}{Dt} = \left(\zeta + f\right) \left(\frac{\partial w}{\partial z}\right)$$
$$\frac{D_h}{Dt} \left(\frac{\zeta_g + f}{h}\right) = 0$$

(h – геопотенциал)

Если движения горизонтальны, то h = const и справедливо баротропное уравнение потенциальной завихрённости

$$\frac{D_h\left(\zeta_g + f\right)}{Dt} = 0$$

Волны Россби

$$\left(\frac{\partial}{\partial t} + u\frac{\partial}{\partial x} + v\frac{\partial}{\partial y}\right)\zeta + \beta v = 0$$

 $\beta = df / dy = a^{-1} df / d\phi$ (а – радиус Земл

Если у малого объёма в начальный момент t₀ $\zeta_{t0}=0,$

то при смещении по широте

$$(\zeta + f)_{t_1} = f_{t_0}$$

 $\zeta_{t_1} = f_{t_0} - f_{t_1} = -\beta \delta y$

$$\delta y = a \sin [k (x - ct)]$$

$$v = D (\delta y) / Dt = -kca \cos [k (x - ct)]$$

$$\zeta = \partial v / \partial x = k^2 ca \sin [k (x - ct)]$$

Дисперсионное соотношение:

$$c = -\beta / k^2$$

(фазовая скорость направлена на запад и зависит от волнового числа как k²)

Линейный анализ: модель Иди (1)

[Charney, 1947: J. Meteorol., 4 (5)]:

VOL. 4, NO. 5

JOURNAL OF METEOROLOGY

OCTOBER 1947

THE DYNAMICS OF LONG WAVES IN A BAROCLINIC WESTERLY CURRENT

By J. G. Charney

Линейный анализ: модель Иди (2)

Закон сохранения квазигеострофической потенциальной завихренности q:

$$\frac{Dq}{Dt} = 0$$

$$q = \left(\frac{\partial^2 \psi}{\partial x^2} + \frac{\partial^2 \psi}{\partial y^2}\right) + f + \frac{\partial}{\partial p} \left(m^2 p^2 \frac{\partial \psi}{\partial p}\right)$$

$$\frac{D(\bullet)}{Dt} = \frac{\partial(\bullet)}{\partial t} + \mathbf{U}_h \cdot \nabla_h(\bullet)$$
$$\mathbf{U}_h = (u, v)$$
$$\nabla_h(\bullet) = \left(\frac{\partial(\bullet)}{\partial x}, \frac{\partial(\bullet)}{\partial y}\right)$$

 $f = 2 \ \Omega \cos \phi$ – параметр Кориолиса,

 $m = L_R^{-1}$, $L_R = (g H_0)^{\frac{1}{2}} / f - радиус деформации Россби,$ $\psi - функция тока (u = - \partial \psi / \partial y; v = \partial \psi / \partial x)$.

Линейный анализ: модель Иди (3)

Закон сохранения квазигеострофической потенциальной завихренности q:

$$\frac{Dq}{Dt} = 0 \qquad q = \left(\frac{\partial^2 \psi}{\partial x^2} + \frac{\partial^2 \psi}{\partial y^2}\right) + f + \frac{\partial}{\partial p} \left(m^2 p^2 \frac{\partial \psi}{\partial p}\right)$$

тропопауза

 $(\mathbf{p}=\mathbf{p}_1\ll\mathbf{p}_0)$

поверхность

 $(p=p_{0})$

 $u_0(p) = \Lambda (p-p_0)$ $v_0 \equiv 0$

Граничные условия $\omega = \frac{dp}{dt} = 0$ при $p = p_0, p_1$ Профиль зональной скорости $u_0(p) = \Lambda(p_0 - p)$

 $(\Lambda = \text{const})$

Дополнительно

размером).

i) Приближение *f*-плоскости, что позволяет считать влияние вращение не $f \equiv f_0$. зависящим от точки пространства внутри канала, так что ii) $n^2 = m^2 p^2 = const.$ ііі) Рассматриваются только возмущения, для которых $\partial(\bullet)/\partial y = 0$ (это большим справедливо достаточно меридиональным ДЛЯ канала С

Η

Линейный анализ: модель Иди (4)

Функция тока базового потока (F₀(p) – произвольная функция давления)

$$\psi_0 = -u_0(p)y + F_0(p)$$

Потенциальная завихренность базового потока

$$q_0 = \frac{\partial^2 \psi_0}{\partial y^2} + n^2 \frac{\partial^2 \psi_0}{\partial p^2} + f_0 = n^2 \frac{d^2 F_0}{dp^2} - n^2 y \frac{d^2 u_0}{dp^2} + f_0 = n^2 \frac{d^2 F_0}{dp^2} + f_0$$

Разложение

$$q = q_0 + q', \quad \psi = \psi_0 + \psi', \quad u = u_0 + u', \quad v = v', \quad \omega = \omega'$$

Приводит к

$$\frac{\partial q_0}{\partial t} + \frac{\partial q'}{\partial t} + (u_0 + u') \left(\frac{\partial q_0}{\partial x} + \frac{\partial q'}{\partial x}\right) + v' \left(\frac{\partial q_0}{\partial y} + \frac{\partial q'}{\partial y}\right) = 0$$

Линейный анализ: модель Иди (5)

С учётом стационарности базового состояния, выражения для q₀ и предположения iii)

$$\frac{\partial q'}{\partial t} + (u_0 + u')\frac{\partial q'}{\partial x} + v'\frac{\partial q_0}{\partial y} = 0$$

После линеаризации

$$\frac{\partial q'}{\partial t} + u_0 \frac{\partial q'}{\partial x} + v' \frac{\partial q_0}{\partial y} = 0$$

 ∂q_0 / $\partial y = 0$, поэтому

$$\frac{\partial q'}{\partial t} + u_0 \frac{\partial q'}{\partial x} = 0,$$

$$q' = \left(\frac{\partial^2 \psi'}{\partial x^2} + \frac{\partial^2 \psi'}{\partial y^2}\right) + \frac{\partial}{\partial p} \left(m^2 p^2 \frac{\partial \psi'}{\partial p}\right) = \frac{\partial^2 \psi'}{\partial x^2} + n^2 \frac{\partial^2 \psi'}{\partial p^2}$$

Линейный анализ: модель Иди (6)

$$\frac{\partial q'}{\partial t} + u_0 \frac{\partial q'}{\partial x} = 0,$$

$$q' = \left(\frac{\partial^2 \psi'}{\partial x^2} + \frac{\partial^2 \psi'}{\partial y^2}\right) + \frac{\partial}{\partial p} \left(m^2 p^2 \frac{\partial \psi'}{\partial p}\right) = \frac{\partial^2 \psi'}{\partial x^2} + n^2 \frac{\partial^2 \psi'}{\partial p^2}$$

Граничные условия

$$\omega' = 0$$
 при $p = p_0, p_1$

Решение в виде нормальной моды

$$\psi' = \Psi'(p) \exp(ik_x(x-ct))$$
$$c = c_r + ic_i \quad ,$$

так что

$$\psi' = \Psi'(p) e^{k_x c_i t} e^{ik_x (x-c_r t)}$$

(скорость роста определяется $k_x c_i$)

Линейный анализ: модель Иди (7) $\psi' = \Psi'(p) \exp(ik_x(x-ct))$

$$q' = -k_x^2 \psi' + \frac{n^2}{\Psi'(p)} \frac{d^2 \Psi'}{dp^2} \psi'$$
$$\frac{\partial \psi'}{\partial t} = -ik_x c \psi',$$
$$\frac{\partial \psi'}{\partial x} = ik_x \psi'.$$

Нетривиальные решения ($\Psi(p) \neq 0$):

$$ik_x(u_0 - c)(\frac{d^2\Psi'}{dp^2} - \lambda^2\Psi'(p)) = 0$$

после деления на u₀ – с (при этом исчезает непрерывный спектр волновых решений):

$$\frac{d^2 \Psi'}{dp^2} - \lambda^2 \Psi'(p) = 0 \qquad \qquad \lambda^2 = k_x^2 / n^2$$

Линейный анализ: модель Иди (8)

$$\frac{d^2 \Psi'}{dp^2} - \lambda^2 \Psi'(p) = 0$$

Общее решение

$$\Psi'(p) = \Psi'_1 \operatorname{ch}(\lambda p) + \Psi'_2 \operatorname{sh}(\lambda p)$$

справка: sh x = (e^x - e^{-x}) / 2 ch x = (e^x + e^{-x}) / 2 ch²x - sh²x = 1

Из термодинамического уравнения

$$gp^2 \frac{D}{Dt} \left(\frac{\partial \Phi}{\partial p} \right) + \alpha^2 c_0^2 \omega = 0$$

(g – ускорение свободного падения, Φ – геопотенциал, α – коэффициент сжимаемости атмосферы, с₀ – фазовая скорость длинных гравитационных волн) и граничных условий

$$\omega' = 0$$
 при $p = p_0, p_1$

получаем

$$\frac{D}{Dt} \left(\frac{\partial \Phi'}{\partial p} \right) = 0$$

Линейный анализ: модель Иди (9)

С учётом геострофических соотношений на f-плоскости ($f = f_0$):

$$f_0 v = \frac{\partial \Phi}{\partial x}, \quad f_0 u = -\frac{\partial \Phi}{\partial y}$$

и определения функции тока получаем

$$\frac{D}{Dt} \left(\frac{\partial \psi'}{\partial p} \right) = 0$$

Из этого можно получить (самостоятельное упражнение!)

$$\frac{\partial^2 \psi'}{\partial t \partial p} + u_0 \frac{\partial^2 \psi'}{\partial x \partial p} + \frac{\partial \psi'}{\partial x} \frac{\partial^2 \psi_0}{\partial y \partial p} = 0$$
 при $p = p_0, p_1$,

т. е.

$$\frac{\partial^2 \psi'}{\partial t \partial p} + u_0 \frac{\partial^2 \psi'}{\partial x \partial p} + \Lambda \frac{\partial \psi'}{\partial x} = 0 \ \text{при } p = p_0, p_1$$

Подставляя решение в виде нормальной моды

$$(u_0 - c)\frac{d\Psi'}{dp} + \Lambda\Psi'(p) = 0$$
 при $p = p_0, p_1$

Линейный анализ: модель Иди (10)

Итак,

$$\begin{bmatrix} (u_{00} - c)\lambda \operatorname{sh}\lambda p_0 + \Lambda \operatorname{ch}\lambda p_0 \end{bmatrix} \Psi_1' + \begin{bmatrix} (u_{00} - c)\lambda \operatorname{ch}\lambda p_0 + \Lambda \operatorname{sh}\lambda p_0 \end{bmatrix} \Psi_2' = 0,$$

$$\begin{bmatrix} (u_{01} - c)\lambda \operatorname{sh}\lambda p_1 + \Lambda \operatorname{ch}\lambda p_1 \end{bmatrix} \Psi_1' + \begin{bmatrix} (u_{01} - c)\lambda \operatorname{ch}\lambda p_1 + \Lambda \operatorname{sh}\lambda p_1 \end{bmatrix} \Psi_2' = 0.$$

$$u_{00} = u_0(p_0), \ u_{01} = u_0(p_1)$$

 $\Psi_1' = \Psi_2' = 0$ – решения. Чтобы были и другие решения, необходимо $\begin{bmatrix} (u_{00} - c)\lambda \sh \lambda p_0 + \Lambda \ch \lambda p_0 \end{bmatrix} \begin{bmatrix} (u_{01} - c)\lambda \ch \lambda p_1 + \Lambda \sh \lambda p_1 \end{bmatrix} - \\ - \begin{bmatrix} (u_{00} - c)\lambda \ch \lambda p_0 + \Lambda \sh \lambda p_0 \end{bmatrix} \begin{bmatrix} (u_{01} - c)\lambda \sh \lambda p_1 + \Lambda \ch \lambda p_1 \end{bmatrix} = 0$

$$\psi$$

$$c^{2} - c(u_{00} + u_{01}) + u_{00}u_{01} + \frac{\Lambda}{\lambda}(u_{01} - u_{00})\operatorname{cth} \mu - \left(\frac{\Lambda}{\lambda}\right)^{2} = 0$$

$$\mu = \lambda (p_{0} - p_{1})$$

Линейный анализ: модель Иди (11)

Уравнение

$$\frac{\partial q'}{\partial t} + u_0 \frac{\partial q'}{\partial x} = 0$$

и граничные условия

$$\omega' = 0$$
 при $p = p_0, p_1$

линейны ⇒ можно использовать и комплексно-сопряжённые к ним

Если существует его решение с некоторым $c^{(1)} = c_r^{(1)} + i c_i^{(1)}$, то существует и решение с $c^{(2)} = c_r^{(1)*} = c_r^{(1)} - i c_i^{(1)}$.

 \downarrow

Для доказательства наличия бароклинной неусточивости достаточно показать, что есть решения с существенно комплексными с

Линейный анализ: модель Иди (12)

Дискриминант

$$D = \left(u_{01} - u_{00}\right)^2 \left[1 - \frac{4}{\mu^2} \left(\mu \operatorname{cth} \mu - 1\right)\right]$$

С учётом

cth
$$\mu = \frac{1}{2}$$
 [th ($\mu / 2$) + cth ($\mu / 2$)]

имеем

$$D = \frac{4}{\mu^2} (u_{01} - u_{00})^2 \left[\frac{\mu}{2} - \operatorname{cth}\frac{\mu}{2}\right] \left[\frac{\mu}{2} - \operatorname{th}\frac{\mu}{2}\right]$$

Т.к. $\mu/2 \ge th(\mu/2)$, то D меняет знак при $\mu = \mu_c$:

$$\mu_c/2 = cth(\mu_c/2) \qquad \Rightarrow \qquad \mu_c \approx 2.4.$$

При µ < µ_с бароклинные возмущения нарастают со временем. Скорость нарастания этих возмущений

$$k_{x}c_{i} = \frac{k_{x}}{\mu} (u_{01} - u_{00}) \left[\left(\frac{\mu}{2} - \operatorname{cth} \frac{\mu}{2}\right) \left(\frac{\mu}{2} - \operatorname{th} \frac{\mu}{2}\right) \right]^{1/2}$$
максимальна при $\mu = \mu_{m} \approx 1.75$.

Линейный анализ: модель Иди (13)

Линейный анализ: модель Иди (14)

$$\lambda_{m}^{}=\mu_{m}^{}$$
 / ($p_{0}^{}-p_{1}^{}$)

$$k_{x,m} = \lambda_m n$$

Длина волны наиболее неустойчивой моды

$$L_m = \frac{2\pi}{k_{x,m}} = \frac{2\pi}{\lambda_m n} = \frac{2\pi}{\lambda_m m p} = \frac{2\pi}{\lambda_m p} L_R = \frac{2\pi (p_0 - p_1)}{\mu_m p} L_R$$

Для оценок р
$$\rightarrow \frac{1}{2} (p_0 + p_1) и$$

 $p_1 = p_0 / 3 \qquad \Rightarrow \qquad (p_0 - p_1) / [\frac{1}{2} (p_0 + p_1)] = 1,$
 $\downarrow \downarrow$
 $\lambda_m = (\pi / \mu_m) L_R \approx 3.6 L_R$

Скорость роста этой моды

$$(k_x c_i)_m \approx 0.306 \frac{u_{01} - u_{00}}{L_R}$$
 $au_m = 1 / (k_x c_i)_m \approx 3.27 L_R / (u_{01} - u_{00}).$
При ($u_{01} - u_{00}$) = 10 м/с
 $au_m = 3.8$ сут.

Преобразование энергии в растущей бароклинной волне

Цикл жизни бароклинных вихрей [Simmons, Hoskins, 1978] (волна с зональным волновым числом 6; основной поток – струйное течение с центром на 45°N)

Цикл Лоренца [Li et al., 2007], среднегодовые величины (1)

Цикл Лоренца [Li et al., 2007] (2) глобальные величины по данным реанализа NCEP2 и ERA-40

энергия – 10²⁰ Дж

преобразования энергии – 1014 Вт

Вертикальная координата: $z = H_{atm} \ln(p_0 / p)$, $\rho_0(z) = \rho_0(0) \exp(-z / H_{atm})$ H_{atm} (= 8 KM): $Du/Dt - fv + \partial \Phi/\partial x = X$ $Dv/Dt + fu + \partial \Phi/\partial v = Y$ $\partial \Phi / \partial z = H^{-1} R T$ $\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} + \rho_0^{-1} \frac{\partial (\rho_0 w)}{\partial z} = 0$ $DTDt + (\kappa T/H) w = J/c_p$

Для любой переменной $A = \overline{A} + A'$

$$\rho_0 \frac{DA}{Dt} = \rho_0 \left(\frac{\partial}{\partial t} + \mathbf{V} \cdot \mathbf{\nabla} + w \frac{\partial}{\partial z} \right) A + A \left[\mathbf{\nabla} \cdot (\rho_0 \mathbf{V}) + \frac{\partial}{\partial z} (\rho_0 w) \right]$$
$$= \frac{\partial}{\partial t} (\rho_0 A) + \frac{\partial}{\partial x} (\rho_0 A u) + \frac{\partial}{\partial y} (\rho_0 A v) + \frac{\partial}{\partial z} (\rho_0 A w)$$

$$\rho_{0} \frac{\overline{DA}}{Dt} = \frac{\partial}{\partial t} \left(\rho_{0} \overline{A}\right) + \frac{\partial}{\partial y} \left[\rho_{0} \left(\overline{A}\overline{v} + \overline{A'v'}\right)\right] + \frac{\partial}{\partial z} \left[\rho_{0} \left(\overline{A}\overline{w} + \overline{A'w'}\right)\right]$$
$$\frac{\partial}{\partial t} \overline{Dt} = 0$$
$$\overline{ab} = \overline{(\overline{a} + a')} \overline{(b + b')} = \overline{ab} + \overline{ab'} + \overline{a'b} + \overline{a'b'} = \overline{ab} + \overline{a'b'}$$
$$\frac{\partial}{\partial v} / \partial y + \rho_{0}^{-1} \partial (\rho_{0}\overline{w}) / \partial z = 0$$
$$\rho_{0} \frac{\overline{DA}}{Dt} = \frac{\overline{D}}{Dt} \left(\rho_{0} \overline{A}\right) + \frac{\partial}{\partial y} \left[\rho_{0} \left(\overline{A'v'}\right)\right] + \frac{\partial}{\partial z} \left[\rho_{0} \left(\overline{A'w'}\right)\right]$$
$$\frac{\overline{D}}{Dt} = \frac{\partial}{\partial t} + \overline{v} \frac{\partial}{\partial y} + \overline{w} \frac{\partial}{\partial z}$$

Итак,

$$\partial \overline{u} / \partial t - f_0 \overline{v} = -\partial \left(\overline{u'v'} \right) / \partial y + \overline{X}$$

$$\partial \overline{T}/\partial t + N^2 H R^{-1} \overline{w} = -\partial \left(\overline{v'T'}\right)/\partial y + \overline{J}/c_p$$

Частота Брента-Вяйсяля (частота колебаний частицы воздуха в поле силы тяжести)

$$N^2 \equiv \frac{R}{H} \left(\frac{\kappa T_0}{H} + \frac{d T_0}{d z} \right)$$

Итак,

$$\partial \overline{u} / \partial t - f_0 \overline{v} = -\partial \left(\overline{u'v'} \right) / \partial y + \overline{X}$$

 $\partial \overline{T} / \partial t + N^2 H R^{-1} \overline{w} = -\partial \left(\overline{v'T'} \right) / \partial y + \overline{J} / c_p$

Частота Брента-Вяйсяля (частота колебаний частицы воздуха в поле силы тяжести)

$$N^2 \equiv \frac{R}{H} \left(\frac{\kappa T_0}{H} + \frac{d T_0}{d z} \right)$$

Итак,

$$\partial \overline{u} / \partial t - f_0 \overline{v} = -\partial \left(\overline{u'v'} \right) / \partial y + \overline{X}$$
 влияние вихрей $\partial \overline{T} / \partial t + N^2 H R^{-1} \overline{w} = -\partial \left(\overline{v'T'} \right) / \partial y + \overline{J} / c_p$

Частота Брента-Вяйсяля (частота колебаний частицы воздуха в поле силы тяжести)

$$N^2 \equiv \frac{R}{H} \left(\frac{\kappa T_0}{H} + \frac{d T_0}{d z} \right)$$

Геострофическое приближение

$$f_0\overline{u} = -\partial\overline{\Phi}/\partial y$$

Комбинируя с уравнением гидростатики

$$f_0 \partial \overline{u} / \partial z + R H^{-1} \partial \overline{T} / \partial y = 0$$

Итак,

$$\partial \overline{u} / \partial t - f_0 \overline{v} = -\partial \left(\overline{u'v'} \right) / \partial y + \overline{X}$$
 влияние вихрей
 $\partial \overline{T} / \partial t + N^2 H R^{-1} \overline{w} = -\partial \left(\overline{v'T'} \right) / \partial y + \overline{J} / c_p$

Частота Брента-Вяйсяля (частота колебаний частицы воздуха в поле силы тяжести)

$$N^2 \equiv \frac{R}{H} \left(\frac{\kappa T_0}{H} + \frac{d T_0}{d z} \right)$$

Геострофическое приближение

 $f_0 \overline{u} = -\partial \overline{\Phi} / \partial y$ источник среднезональной циркуляции – меридиональный градиент температуры

$$f_0 \partial \overline{u} / \partial z + R H^{-1} \partial \overline{T} / \partial y = 0$$

Меридиональная функция тока $\overline{\chi}$:

$$\rho_0 \overline{v} = -\frac{\partial \overline{\chi}}{\partial z}; \quad \rho_0 \overline{w} = \frac{\partial \overline{\chi}}{\partial y}$$

Среднезональная циркуляция: вклад потоков тепла (вне тропиков, СП)

$$\overline{\chi} \propto -\frac{\partial}{\partial y}$$
 (diabatic heating) $+\frac{\partial^2}{\partial y^2}$ (large-scale eddy heat flux)
 $+\frac{\partial^2}{\partial y \partial z}$ (large-scale eddy momentum flux) $+\frac{\partial}{\partial z}$ (zonal drag force)

Среднезональная циркуляция: вклад потоков импульса (вне тропиков, СП)

$$\overline{\chi} \propto -\frac{\partial}{\partial y}$$
 (diabatic heating) $+\frac{\partial^2}{\partial y^2}$ (large-scale eddy heat flux)
 $+\frac{\partial^2}{\partial y \partial z}$ (large-scale eddy momentum flux) $+\frac{\partial}{\partial z}$ (zonal drag force)

Среднезональная циркуляция: наблюдения

функция тока χ , 10¹² кг м⁻¹ с⁻¹, зима Северного полушария

Оценка предела предсказуемости погоды

Кинетическая энергия атмосферы ~10²¹ Дж

(кинетическая энергия отдельных циклонов на 2 порядка меньше)

Скорость преобразования кинетической энергии в синоптических движениях $\partial E/\partial t \sim 10^{14}$ Вт

Масштаб времени, связанный с этим преобразованием

$$\tau = \left(\frac{1}{E}\frac{\partial E}{\partial t}\right)^{-1} = 10^6 \text{ c} = 1\text{-}2$$
 нед.

Общая масса воды в атмосфере $M_w = 1.3 \cdot 10^{16} \, \text{кг}$,

среднее количество осадков на земном шаре $P_g = 2 \text{ мм/сут} = 1.0 \cdot 10^{15} \text{ кг/сут}.$ Время пребывания воды в атмосфере Земли

$$\tau_{_{W}}=\,M_{_{W}}\,/\,P_{_{g}}=\,13$$
 сут. $\approx\,2$ нед.

Оценка предела предсказуемости [Li, Ding, 2011] Среднесезонная геопотенциальная высота на уровне 500 гПа

Оценка предела предсказуемости [Li, Ding, 2011] 3. Среднегодовая скорость вера на уровне 850 гПа

Насыщение ошибки прогноза в зависимости от его срока [Warner, 2011: Numerical Weather and Climate Prediction]

