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SURFACE DEFORMATION DUE TO SHEAR AND TENSILE FAULTS
IN A HALF-SPACE

BY YOSHIMITSU OKADA*

ABSTRACT

A complete suite of closed analytical expressions is presented for the surface
displacements, strains, and tilts due to inclined shear and tensile faults in a half-
space for both point and finite rectangular sources. These expressions are
particularly compact and free from field singular points which are inherent in the
previously stated expressions of certain cases. The expressions derived here
represent powerful tools not only for the analysis of static field changes associ-
ated with earthquake occurrence but also for the modeling of deformation fields
arising from fluid-driven crack sources.

INTRODUCTION

Since dislocation theory was first introduced to the field of seismology by Steketee
(1958), as well as a pioneer work by Rongved and Frasier (1958), numerous
theoretical formulations describing the deformation of an isotropic homogeneous
semi-infinite medium have been developed with increasing completeness and gen-
erality of source type and geometry. They range from the derivation of the surface
displacement due to a point source of vertical strike-slip type in a Poisson solid
(Steketee. 1958) to the strain fields at depth due to an inclined finite shear fault in
a medium with arbitrary elastic constants (Iwasaki and Sato, 1979). The accom-
plishments of the various papers through which this progress has been achieved are
summarized in Table 1.

Efforts to develop the formulations in a more realistic earth model have also been
advanced through numerous studies, which include the effect of earth curvature
(McGinley. 1969; Ben-Menahem et al., 1969, 1970; Smylie and Mansinha, 1971),
the effect of surface topography (Ishii and Takagi, 1967a; Takemoto, 1981; Segall
and McTigue, 1984), the effect of crustal layering (Ishii and Takagi, 1967b; Mec-
Ginley, 1969; Ben-Menahem and Gillon, 1970; Singh, 1970; Sato, 1971; Rybicki,
1971; Chinnery and Jovanovich, 1972; Sato and Matsu'ura, 1973; Jovanovich et al.,
1974a, b: Matsu'ura and Sato, 1975), the effect of lateral inhomogeneity (Rybicki,
1971, 1978: Rybicki and Kasahara, 1977, McHugh and Johnston, 1977; Niewiadom-
ski and Rybicki, 1984), and the effect of obliquely layered medium (Sato, 1974; Sato
and Yamashita, 1975). These studies revealed that the effect of earth curvature is
negligible for the shallow events at distances of less than 20°, but that the vertical
layering or lateral inhomogeneity can sometimes cause considerable effects on the
deformation fields.

In spite of such an advance in calculating theoretical fields, the analyses of actual
observations are still mostly based upon the simplest assumption of an isotropic
homogeneous half-space and the simplest source configuration, largely for the
following three reasons. First, it is most convenient and useful as the first approx-
imation model. Second, the source model itself is inherently nonunique. Third, the
quality of crustal movement data is generally poor at least up to the present
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(Mikumo, 1973; Okada, 1980; Wyatt, 1982; Wyatt et al., 1984). The last two factors
often make it meaningless to compare the data with the predictions of an elaborate
source or earth model.

The first objective of this paper is to check and review the closed analvtical
expressions which are already published to describe the surface deformation due to
shear fault in a half-space. As our observations are restricted to near-ground surface,
this class of solutions has the greatest practical importance to the study of the
earthquake sources. Some of them, as presented, are too lengthy and complicated,
while others have some singularities under the special conditions. For example,
Savage and Hastie’s (1966) formula is too complicated and cannot be applied to the
vertical or horizontal fault, while Sato and Matsu’ura’s (1974) formula results in
“zero divide” at the points where the extensions of fault edges intersect the ground
surface. Besides, misprints occur all too often in the published expressions. In this
paper, the compact formulas to calculate the surface displacements, strains, and
tilts due to a general shear fault in a half-space are given, which have been carefully
checked to be free from any singularities.

The second objective of this paper is to add a heretofore unknown solution for
the displacements, strains, and tilts arising from opening-mode dislocations. In
contrast to the progress that has been made in the modeling of the deformation
fields due to shear dislocations, the studies related to tensile fault are scarce as is
seen in Table 1. The main reason for this is, no doubt, the importance that has
been described to model the static field changes associated with earthquake occur-
rence. Tensile fault representation, which has a Burger’'s vector normal to the
dislocation surface, also has some very important geophysical applications, such as
a modeling of the deformation fields due to dyke injection in the volcanic region,
mine collapse, or fluid-driven cracks.

Berry and Sales (1962) derived the surface displacement fields due to a closure of
horizontal crack in a transversely isotropic medium. Maruyama (1964) gave the
expressions of surface displacements due to vertical and horizontal tensile fauits in
a semi-infinite Poisson solid. Yamazaki (1978) treated the deformation fields arising
from a dilatancy source. Davis (1983) derived an expression of the vertical displace-
ment due to an inclined tensile fault in a half-space. He showed that this mode! can
approximate well a tensile crack, just as shear dislocations are successfully used to
approximate the deformation fields by shear cracks.

Recently, Evans and Wyatt (1984) found an interesting relation between changes
in the water-head within a borehole and associated ground surface deformation in
the surrounding region. Based upon the mechanism that subsurface hydraulically
conductive fractures respond to changing fluid pressure, they suggested a quanti-
tative tensile crack model to explain the observation. Their work has important
implications for the measurement of crustal deformation in that it provides a
physical basis for understanding an important class of crustal movement noise. It
is well known that the precipitation is a major noise factor for crustal movement
observation not only in the short period but also in the long one (Kasahara et al.,
1983), and it is definite that the precipitation affects the ground movement through
some changes in the state of groundwater (Shichi and Okada, 1979; Edge et al.,
1981a, b; Takemoto, 1983). But so far, the effects of precipitation were mostly
discussed with appropriate formal mathematical models (Takemoto, 1967; Tanaka,
1967; Sato et al., 1980; Yanagisawa, 1980) or nonlinear tank model simulators
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(Tanaka, 1979; Yamauchi, 1981). In the latter case, the water height in a certain
tank is assumed to be proportional to the induced ground strain or tilt changes,
being somewhat suggestive of Evans and Wyatt’s (1984) model. The new solution
presented here, for the surface deformation induced by an arbitrarily oriented
rectangular opening-mode dislocation, provides a versatile and quantitative frame-
work for evaluating and perhaps removing fluid-filled crack-induced noise from
crustal deformation records.

POINT SOURCE

Steketee (1958) showed that the displacement field u;(x,, x,, x5) due to a disloca-
tion Au,;(,, &, &) across a surface 2 in an isotropic medium is given by

=1ff R C T |
b=z 3 Au,[)\é,,. 3. + ,u(a& + 3, )]v. dz (1)

where, 4;, is the Kronecker delta, A and u are Lamé’s constants, v, is the direction
cosine of the normal to the surface element dZ, and the summation convention

F1G. 1. Geometry of the source model.

applies. w,’ is the ith component of the displacement at (x,, x,, x3) due to the jth
direction point force of magnitude F at ({,, &, &), whose expressions in a homoge-
neous half-space are listed in Press (1965).

Here, we tese the Cartesian coordinate system as is shown in Figure 1. Elastic
medium occupies the region of z = 0 and x axis is taken to be parallel to the strike
direction of the fault. Further, we define elementary dislocations U,, Us, and U; so
as to correspond to strike-slip, dip-slip, and tensile components of arbitrary dislo-
cation. In Figure 1, each vector represents the movement of hanging-wall side block
relative to foot-wall side block. But note that, e.g., although U, in Figure 1 shows
reverse fault-type motion, this changes to normal fault-type movement if dip angle
5 becomes sin26 < 0. In this coordinate system, u;/ at the ground surface are
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expressed as follows

( F [, =& . 1 (a— &)
S i) b} -
“ 4wu {R * R? * A+ [R - & RR-§&)?
F [ 1 N 1 |
o A — — Lt e :
< W o (x, E1)(x: £2) ]Ra A+ RER~ Es)‘).l
F & © 1
Voo B - R
j Usg 41“ {xl El){ R-’ A"‘“R(R_Ea)} (2)
(i P {i_ u 1 }
U, e (xy = &)(x2 — &) B N+ uRR-5)
2 F 1 (=87 u 1 (x2 — £2)° ]r
- .‘{=— T —_—
Ha 47u {R * R? + At pu [R - & R(R - §&)?
e F oyl w1 ]
h uy” = = (x2 — &2) { B N+ aRR- Ea)[ (3)
( ; F ] & K 1 |
uu——(x1"E1)]—E+A+#R(R_&”'
F &3 “ 1 l
dul=— = -
Uy = (2~ &) { R X+uRR-8)|
s F 1 &, _u 1]
* 4Iu{R+Rﬂ+;\+#RI &

L.

where R* = (x, — £)? + (x2 — £2)% + &7
Using equation (1), the contribution from surface element AZ of each elementary
dislocation is written as follows

Strike-slip

;' &u.,-z) ) (6!.;.-1 0u,-3) ]
| - —— e i et
pU,A...I: ( + sin 6 + o + 3, cos 6 |. (5)

Dip-slip

2 3 3 2
L ulUAZ (a_u_.__ + ai)c:os2€5 + (a—"—"— - iEi)sin%], (6)
0ty 9%
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These show the body force equivalents of a double-couple with moment ul’;AX
or ulU,AZ in case of shear fault, and a center of dilatation (intensity AU;AZT)
combined with a double-couple without moment (intensity 2uU3AZ) in case of
tensile fault. Substituting (2), (3), and (4) into (5), (6), and (7), and setting §, = &
= 0, & = —d, we can get the surface displacements due to a point source located at
(0, 0, =d), from which the surface strains and tilts can be easily obtained by
differentiation. The fmal results are listed below using (x, y, 2) instead of (x,, x2,
x3) and the superscnpt to distinguish the quantities related to point sources.

(1) Displacements

For strike-slip

;

For dip-slip

For tensile fault

G : 1
U1l3x‘q .
| 0
Uy ol R + [,%sin 6‘

0

u, = - ’:—-—+Igsm6

z

Uy 3 ]
= ——T[ i/ I,%in 6 cos §|AZ
27

0 _

—i[% — I%in 4 cos 6- AZ

AZ

U,|3xyq AT

2x| R®

Uyl3 ]
= ——‘[ 249 | 19%in 5|as.

27| R®

R&

—2{——- — I%in 6 cos §|AZ.

_ Us| 3xq*
2x| R®

U“[3yq I,%in? 5 |AZ

— 1,%in® 5 |AZ

2x| R®

2
V399" _ 1 o5in? sz

. 2x| R®

(8)

9)

(10)



where

(2) Strains

For strike-ship

SURFACE DEFORMATION IN A HALF-SPACE

p=ycosd+dsin b

gq=ysind—dcosé

T L _xzﬁ."‘_d_
" A+ u’|RR + d)? R¥R + d)®
[0= M 1 oz 3R + d
*"N+ulRR¥d? Y PR+ dy
[

Hie B Xl_ro

Is_k+pl_R‘1] L

[0= K gy 2R+d
T | Y RBR + d)?
go=_# [_1 2 2R+d
* " A+u|RR+d) RY(R + d)?

RR=x*+y*+d*=x2+p* + ¢~

s
- Jg°)sin 6]AB
e

+ J,°)sin 6]&3.

) — J3%in & cos 6] z

— J,%in & cos 6]AE

[ ou, Uyl 3x 5x? .
= ol \2T ) sin
ou’ _ _U[  _15x%q (3i
dy 2= R’ R®
4
a 0 [ 2
;‘; - —% :—g—f (1 = %) + Jo%in
wu’ _ _U 3_’“1(1 _iy_’),,(3_ry
L& 2x | R )"\
For dip-slip
(ou’ _ _Us 3&( _ 52
ox  2x | R® R?
(1]
a:; = -;jz ;—': ( %ﬂ) — J,%in 6 cos 6]AZ
g
<
u’ U _ 15xypgq
x 2« R’
auyll-—b'za_P’i(l _51-2)*.—3-&_
L dy 2 RS R? R®

J2%sin & cos B:IAE.
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For tensile fault

-

u Uf3q® (. 5z
Jx 2x| R®

du’ _ U,
ax

27
o’ _ Uf3q
=':21r R

[ 9y

where s = p sin 6 + q cos é and

r

5 5
= (g + 2y sin 6 — 24

du,”  Us|3 ) 5
3 = ;;{Rif (2sm 6 — }’-’;") - J,%in? rSJAE

— J,%in? 6]}32

2

qu) — J,"sin® 6}32

JoO = - : 3y R"‘::; : c; S+ 35y 5R;:(—R4idd+)-‘d2-
e uL% B A SR;TR4£dd+)*d2-
U
0=l -
I P ‘%Y]'Jl"-

(3) Tilts

For strike-slip

i u,’ U,| 3dg ( 5.:2) . ]
du. _ _Uyddg ( =~ ox° 5laz
dx 2x| R® 1 R? # Byt
(1]
} ou, _ U'[— 1513;dq + (ﬂ + Kgo)sin 6]/.\2.
| 2x| R R®
For dip-slip
g 0
du’ _ _Us = 15xqu — K,%in 6 cos 6];32
ax 27 R
<
du,’ U.| 3d 5ypq .
% = _2_:[F (s - _R—z) — K,%in & cos 6]A2.

“

(15)

(16)

(17)

(18)
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For tensile fault |

0 2
% = 22’[ = 15;‘:‘1 - K_q"sin" 6]&2
Y 4
(1]
%=%[3—§§ (2sin6 —%)—K;“sin’ a]az (19)
T
where
[ Ko= —_# 2R +d _128R2+9Rd+3d"
. A+ u”|RMR +d)? R°(R + d)®
Ko = - 2R+d  ,8R*+9Rd +3d?
1 A2 A+u |RRR+d)? °  RR+d)
3xd
K’ = -l e | - (20)

FINITE RECTANGULAR SOURCE

For a finite rectangular fault with length L and width W (Figure 1), the defor-
mation field can be derived by taking x — £’, y — n’cos § and d — »’sin § in place of
x, y, and d in the equations obtained in the previous section and by performing the

integration
L w
fd:‘;"f dn’. (21)
0 (1]

Following Sato and Matsu'ura (1974), it is convenient to change variables from ¢°,
n’ to & n by

]x—E'=£
] (22)
p—n" =n

where, p = y cos 6 + d sin § as before. Then, the above integration becomes

=L p—W
f dt I dn. (23)
x P

The final results condensed into compact forms are listed below using Chinnery’s
notation || to represent the substitution

f&, Dl =flx,p) = flx, p= W) =f(x=L,p)+fx—L, p— W) (24)
If we take a rectangular fault with length 2L (dashed line in Figure 1), it is only

necessary to replace x in the first and the second terms of the right-hand side of
equation (24) to x + L.
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(1) Displacements

For strike-slip

YOSHIMITSU OKADA

__U[ ko k]
u, = 2th{R+n)+m qR+Ilsma_ H
i ___ﬂ- yq g cos & :
“= T RR + 0 R+,,”23‘“5”
_ ﬂ- dq q sin & .
Lu"& 2I_R(R+H)TR+11 + Isin 5| || . (25)
For dip-slip
] _ Uq g
S Iasmécosé]“
_U yq o £n ;
{ u ﬂR(R+E)+cosétan I1sin 6 cos §
_ Ul dq ; o £n . '
ku,— 21—R(R+£)+sm6tan &E—Issmécosé l (26)
For tensile fault
r Lr- 2
a4 e
u, 5| RR + n) I_-,smé] H
_ U _-dq . £ o En c
1”‘”—2th(1?+£) sin 6{R(R+n)—tan q_R' — I,sin% ’
=%-‘L _ & - &n o
u.u: 21_R(R+£)+0086{R(R+n)_mnIq_R — Issin®h (27)
where
"
I w I -1 £ _sind
)\+glcoséR+3 cos b °
m
Ig=m[-ln(ﬂ+n)]-—f3
I = _* [ 1 y sin 4
’ )\+g[cos¢SR+_c? ln{R+n)+c055L
[ ook 1 P
a—k+“mﬂn(ﬁ+ ) — sin 6 In(R + 9))
I = m 2 4 X + gcos d) + X(R + X)sin 6
! A+ pcosd ER + X)cos 6 (28)
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and if cos 6 = 0,

-

m &g
20\ + u) (R + d)?

I'|="

w [ n yq
L=+ alR+at ®R+ar l"m”’]

o= -t q

uR+
_ n £s
Iy = R (29)

-

p=ycosd+dsind
g=ysind —dcosd
y=mncosd+qsins
d=nsind—qcosd

X? =%+ q% (30)
When cos 4 = 0, we must be careful that there are two cases of sin 4 = +1 and —1.
(2) Strains

For strike-slip

,

du,” Ul 2 )

% - om _E gA, — Jysin 6] “

&u'n e bl- £3d 3 .

v = Qr_Ra(nz + qz) = (F A, + J2)sin & ‘

=]

< —a-uf-gf:acosﬁ-l-(fqth —Jz]smﬁ]"

Bu‘,
yq cos o+

—_—rf—

; = 5 2 + 2
q’A,sin 6 — ;:’RST = = g T cos & — J.}sin 6] H . (31)
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For dip-slip
i 6“.10 U2 Eq .
3;-=2'§5+J381n50085

xo Y in o :

a_L:L°=U -}:'9.+ q cos &

s 52 7S R———-—(R e + Jsin 6 cos 6] “

oy s 2'52‘?_4(_{ 25 £ cos §

. 9y 2x

RR+5  RR+ n)} sin 6 + J5sin 6 cos 6] u . (32)

For tensile fault

L —%[EQ'JA,, + J3sin? 6] H
dx 27

du, a4y i

3‘;_ = _;‘E - _R% — £%gA,sin 6 + Jysin’ 6] ”
<

du, Usf ¢*

e a1 3 > L
. 27R3c056+qA.,sm5+Jtsm 6]1'

R(R + ¢)

i Uy . : in26 .
L %" = —2—:[(3: cos 4 — d sin 8)g*A; — 4508 _ (.q*A, — J,)sin’ 6] | (33)

i

where

Jo= K 1 [ g __1 | sind
""A+ucosd{RR+d? R+d| coso

ook L[ & ] sins
* " AN+ucosdRR+d)}| coso

AT 2 N S
LY +u RR+ n)] />

— M | _cosd gsins . J
A+u R RR+n) !

Js

(34)
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K, and K are given in equation (40), and if cos 6 = 0,

Jo= M g [ 2¢ _1]
"2+ (R+ d)|R(R +4d)

Jo = W Esmé[ 2q* ]
*T20+u) (R+dRR+d)

= 2R+E
7 RYR + §)?
Ao T B_
T RYR + )

(3) Tilts

For strike-slip

& z
% = g—l[ —£q*A,cos & + (% - Kl)sm 6] H

R R‘"‘

For dip-slip
( .

du, U, dq g sin § .
ox _2rR3+R(R+n)+K33m60056

'?;;z 2y3q5 { 2d +£sm5

For tensile fault

au: — U3 q2 7 3 <9
o 2*'[}?3 sin 6 — q°A,cos 6 + Kssin® §

| o

-

o2 sl
\ {R(ms) K'}’s‘“ 6] “

u, _Uldg . _siné yg _ ) }’
&y—2T[Racosa+(£qA.,coso K, sm5|

RR+5 TRR+ )]rsm é + K;sin § cos 6] H

U. . .
" = - ‘:[()7 sin 6 + d cos a)qug + Equ.SIIl 6 cos 6
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where

Koo_#  _E[ 1 sind
"N+ ucosdR(R+d) R(R+n)

A

_ K [_sin& geosd |
K. A+u R +R(R+n)] %

1 f q y
Ky =L - -
| *7 XN+ ucos 6|_R(R +17 R(R+ d)] il
and if cos 6 = 0,
I . £q
m‘x+nmn+m2
. & |' sz
¥ " sin _
“X+uR+dRR+d) ! “

In the indefinite integral expressions stated in this section, some terms become
singular at the special conditions. Returning to the integral (23) and carefully
checking these special cases, we can reach the following rules to avoid all the
singularities. (i) When g = 0, set tan™'(¢7/gR) = 0 in equations (25) to (27). (ii)
When £ = 0, set /s = 0 in equation (28). (iii) When R + n = 0 (this occurs only
when sin 4 < 0 and ¢ = g = 0), set all the terms which contain R + 5 in their
denominators to be zero in equations (25) to (40), and repiace In(R + n) to
—In(R — n) in equations (28) and (29).

DISCUSSION

A compact analytical expression of the surface displacements, strains, and tilts
due to inclined shear and tensile faults in a half-space are given for both point and
finite rectangular sources in the preceding sections. All similar expressions known
to the author were checked to be equivalent to the formulas given here except for
some misprints in the literatures, which are now listed in the Appendix.

The formulas for point sources derived here can be used as an alternative of
Maruyama'’s (1964) expressions to estimate far-field deformation or to construct
the deformation fields by more general faults. The formulas for finite shear fault
derived here are essentially identical to those of Matsu'ura (1977) as to the
displacements and Sato and Matsu'ura (1974) as to the strains and tilts. But here,
some revisions have been made to overcome the following difficulties which are
included in the previous expressions. (i) On the line where the extension of the
fault plane intersects the ground surface, the displacement becomes singular. (ii)
On the lines where the vertical planes containing the inclined edges of the fault
intersect the ground surface, the vertical displacement becomes singular. (iii)
Displacements cannot be evaluated in case of 4 = — x/2. (iv) At the points where
the inclined edges of the fault intersect the ground surface, the strains and tilts
become singular. In addition to this revision, the formulas for tensile fault are newly
added in this paper, and the work to derive the expressions of the surface defor-
mation fields due to buried rectangular faults in a half-space seems to have come
to maturity now.
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As to the surface deformation due to more general polygon-shaped faults, we can
use the results by Comminou and Dundurs (1975). They gave the expressions of
displacement and strain at the free surface of a half-space for an angular dislocation.
Any polygon-shaped faults (shear or tensile) ¢an be constructed by a superposition
of a finite number of angular dislocations.

All the formulas obtained here are composed of the terms of two kinds; ones
independent of the medium constants, A and x and the others dependent on them.
The latters which are denoted by I, J, or K appear in the same fashion in the
formulas of dip-slip case and tensile-fault case. This can be realized by an analogy
with the P — SV coupling in the seismic wave theory, whereas the SH wave
corresponds to the strike-slip case. It is clear that the deformation fields produced
by a vertical fault of dip-slip type and the ones produced by a horizontal fault of
any type do ndt depend on the medium constants, A and u.

The z direction strain components were not given in the preceding sections, but
they can be easily found as follows using the boundary conditions at the free surface.

du, _ _dU,

9z ox
] % _ _9dU

a9z ay

du, A [u, gﬁ)

—=-—— (= +22). 4
| 0z A+2u(ax ay (42)

To assist the development of a computer program based upon thiese expressions,
several numerical results to check it are listed in Table 2. Here, case 1 is for the
point source, and the others are for the finite rectangular sources. A medium is
assumed to be A\ = u in the all cases, and the results are presented in the unit of
UAZS in case 1 and in the unit of U in the others, where U stands for U,, Us, or Us.
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