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Small disturbances relative to a horizontally stratified shear flow are considered 
on the assumptions that the velocity and density gradients in the undisturbed 
ff ow are non-negative and possess analytic continuations into a complex velocity 
plane. It is shown that the existence of a singular neutral mode (for which the 
wave speed is equal to the mean speed a t  some point in the flow) implies the 
existence of a contiguous, unstable mode in a wave-number (a),  Richardson- 
number ( J )  plane. Explicit results are obtained for the rate of growth of nearly 
neutral disturbances relative to Holmboe's shear flow, in which the velocity and 
the logarithm of the density are proportional to tanh (ylh). The neutral curve for 
this configuration, J = J,(a), is shown to be single-valued. Finally, it  is shown 
that a relatively simple generalization of Holmboe's density profile leads to a 
configuration having multiple-valued neutral curves, such that increasing J may 
be destabilizing for some range(s) of a. 

1. Introduction 
We shall consider here the stability of a parallel shear flow U(y) in a horizontally 

stratified, perfect, incompressible fluid of density p(y) extending from y = y1 to 
y = yz. Defining 

we shall impose the u priori restrictions that the vorticity U'(y)  and the static 
stability h ' ( y )  be positive-definite functions of y in the open interval (yl, y,) that 
may be continued analytically into the complex-y plane in the neighbourhood of 
(yl, y2). We also shall neglect the inertial effects of density stratification 
( Boussincsq approximation), an approximation tantamount to the restriction 

A(!!) = 1% "9/P(Y)l, (1 .1)  

h'(y) h< 1,  (1.9) 

where h is an appropriate characteristic length (which we need not fix a t  this 
stage) . 

Following Drazin & Howard (1961), we choose a Cartesian (x, y) co-ordinate 
system moving in the positive-x direction with the average of the velocities at 
y = y1 and y = y2 and measure y from the plane of this average velocity. Then, 
using the subscripts 1 and 3 to imply evaluation a t  y = yl and y = yz, we choose 

V = U, = -9 and cr = $(&Al) ( 1 . 3 q  b )  

its characteristic measures of speed and density change and define 

14 

J = q h / V 2  and a = lih (1.4a,0) 
Fluid Mcch. 16 
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i ts  the (reference value of the) Richardson number and the dimensionless wave 
number of a periodic disturbance of wavelength 3rrIk. We also define 

(1.5) 

as the local Richardson number. 

respect to small disturbances of the basic flow. 

bance must be of the form 

Having these definitions, we may reeapitulatc the following theorems with 

(i) The stream functioiit for an (infinitesimal) unstable wave-like distur- 

+(y) eik(,r-c‘), k > 0, c = c,+ i c ,  (1.6) 
with ci > 0. 

circle based on ([<, Cj2). 

(SNM’s)-i.e. modes for which c ,  = 0 and U(yJ = cr wit.h y1 < ye < yz. 

(ii) The complex wave speed for any uiist>abIe mode must lie inside the semi- 

(iii) A stability boundary (or neutral curve) consists of singular neutral modes 

(iv) The stream function for an SNM must be of the form 

$ = (Y/yc)A‘l+”’ f ( Y )  (Y, < Y 9,) (1 .71~)  

= (yc - y)”l+”’f(y) e-k(1+14 i n  (Y1 Y < Y C L  ( 1 . 7 b )  

where f (y) is an analytic function of y in the neighbourhood of (yl, y,) that  may 
be taken to be real (by factoring a complex constant, if necessary) for y in [yl, y,]. 
The parameter 1’ is given by 

and must be real in (1.7). 
I’ = [ l -  44(ye)]6, (1.8) 

(v) A sufficient condition for stability is JJy) > j, everywhere in (yl. y,). 
(vi) The neutral curve for an infinite shear flow (y, = -yl = 00) is given by 

d = a in the joint limit J ,  a + 0. If 0 < J < a < 1 there is one and only one 
unstable mode for given a and J ;  moreover, the principle of exchange of stabilities 
holds in this iieighbourhood in the sense that c,,/cI -+ 0 as ci --f 0 + . 

Theorems (i), (iii), (iv) and (v) were proved by the writer (Miles 1061, herein- 
after designated as I), (ii) and (v) by Howard (1961), and (vi) by Drazin & Howard 
(1961). Theorem (vi) depends on the approximation (l.?), but Theorems (i)-(v) 
do not. Theorems (iv) and (vi) require U’(y) to be positive definite in (yl, y,), but 
Theorems (i)-(iii) and (v) do not.$ 

Theorem (vi) implies the existence of at least one neutral curve and a conti- 
guous unstable mode for an important class of shear flows. This neutral curve 
is not necessarily unique (see below), however, and it therefore is of interest to 
establish the existence of unstable modes iii the neighbourhood of any neutral 
curve for non-small cx and/or J .  We shall achieve this goal in $0 2-4 below through 
:b general formulation that permits the explicit calculation of an uiist,ablc modr 

-f Subsequently, wo sha,ll refer to $(y) simply (if looscly) as the stream function. 
1 Howard proved that gh’(y) - tU’z(y) 2 0 in (yl, yz) is sufficient for stability provideti 

that U(y) is continuous and pieccwise twice continuously differcmt.iwble. Tho proof of’ 
Theorem (v) given by Miles (1961) mas based on the additional rcst>riction U’(y) > 0 in 
(!yl,yz). Drazin & Howard (1961) do not statc all of (vi) above, but i t  may be infcrrcd from 
(18) in their paper after posing the restriction U’(y) > 0 in (yl, y p ) .  
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by iteration from its antecedant SNM. Underlying this formulation is thc 
fundamental result that: 

(vii) The characteristic equation for the eigenvalue problem may be placed 
in the form F(a,  J ,  c) = 0,  where F is an entire function of each of a and J and an 
analytic function of c in any complex domain that excludes the domain of U ,  
q i ~ a  independent variable for +. We may choose the c-domain as the semi-circle 
of Theorem (ii), which excludes the end points C< and U,, and the U-domain as an 
arc that connects Z< and I?& and lies outside of this semi-circle. 
-4 direct corollary is that: 
(viii) If an eigensolution exists for some set of z, J and c ,  say (uo,Jo,co), 

then c is a continuous function of a and ?J in the neighbourhood of (ao, J,, co); 
accordingly, the existence of a neutral curve in an (a,J)-plane implies the 
existence of contiguous, complex eigenvalues; conversely, the (a ,  J)-trajectory 
of a complex eigenvalue with a positive imaginary part can terminate only 0 1 1  

a neutral curve. 
Theorem (vii) is due essentially to Lin (19.15; see especially pp. 332, 553)) who 

established it for homogeneous shear flows ( J  = 0); the extension of his proof 
to our problem is straightforward. It is based on the facts that the coefficients 
of the linear differential equation for ~, (2.8) below, are entire functions of each 
of GI and J and analytic functions of c in the aforementioned domains and that 
the boundary conditions on @ are independent of (or, more generally, they could 
be entire functions of) a, J and c. t (We note that the function X, introduced in 
place of F in 3 4 below, is not an entire function of J in consequence of the change 
of dependent variable from $ to 2 ;  however, X is an entire function of v, thc 
parameter introduced in place of J in this transformation.) 

Theorem (viii) follows from an expansion of F about (ao, J,, co), together with 
the remark that if (a,,&) is a point on a neutral curve, the value of c corre- 
sponding to a neighbouring point can be real only if this point also lies on the 
neutral curve. We emphasize that c is not generally an analytic function of z 
and J ;  in particular, c(a,J)  may have algebraic brarich points, iinplied by 
(aF/&), = 0 (e.g. a. = Jo = c, = 0 in $5  below). We also emphasize that the 
expansion of F may not converge uniformly with respect to I c, - U, I or I c, - [I2 I. 
The end points Ul, are excluded as possible eigenvalues for c if J > 0, but special 
difficulties could arise for a, + 0,  J, a 0, co i Ul, (cf. Lin's discussion of honio- 
geneous shear flows). 

We shall illustrate this general formulation by considering the velocity profile 

U ( y )  = V tanh ( y / h )  (1.9) 

in conjunction with the density profile 

h ( y )  = [l - rsech2(y/h)] tanh (y lh) ,  - 4 < r < 1. (1.10) 

t Lin (1945) was interested in proving the existence of' unstable cigenvalues in thc 
neighbourhood of an eigenvalue c = c, = U(y,), wherc ys is a flex point for the velocity 
profile. No such restriction is implied on c in Theorem (vii); on the other hand, Theorem (viii) 
does not guarantee the existence of unstable eigcnvalues, although thcir existence IS 
implied by thc development of $ 4  below. 

14.2 
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The special cases r = 0 and r = 1 have been considered previously by Holmboe 
(1960) and Garcia (1961), respectively, but they started from the assumption 
c = 0 and did not prove that their results comprised all possible SNM's. We shall 
demonstrate that: only stationary ( c  = 0) SNM's are admissible if r < 0.895; thc 
most critical SNM's are stationary, and hence the principle of exchange of 
stabiIities holds, for r < 0.947; a t  least two nonstationary SNM's exist for 
rp: < r < 1, where 0.956 < rli < 1. 

Perhaps the most interesting property of the configuration of (1.9) and (1.10) 
is that ( 9  6 below) the neutral curve J = Jo(a) is not single-valued if r > Q and 
consists of more than one distinct branch if r > 0.895. Previous examples of 
multi-valued neutral curves for heterogeneous shear flows are known, to be sure, 
but these generally have involved domains in which q(y) was arbitrarily small. -1 
For example, Goldstein (1931) considered 

ld h ( y )  = 

-0- 

and obtained the two neutral ciirves (in the present notation) 

J = 2c(( 1 T e-za)-l  - 1. (1.12) 

These are qualitatively similar to the lowest branches obtained by Garcia (2961; 
see ( 6 . 1 0 ~ ~ )  below with r = 1 and n = 0 therein). 

2. General formulation 

is given by (see, e.g., I) 
The boundary-value problem for $(y) on the basis of the approximation (1.3) 

pY'+[gh'(U-c)-2- U''(U-c)-1-k2]$ = 0 (2.1) 

and $1 = $2 = 0, (2.5) 

together with the auxiliary condition that the path of integration must pass 
below the branch point at y = yc (cf. (1.7) and (4.11)). 

We shall consider @ as a function of the dimensionless velocity 

and introduce the functions S(z)  and B(z) through the transformations 

U'(Y) = (Y/h)&X) (2.4) 

and h ( y )  = r r [ B ( z ) d z  
0 

(2.6) 

These definitions imply z1 = - 1, x2 = 1, and 

h ' ( y )  = (0-/h) B(z)  X(z). (3.6) 

t We also recall that there are configurations for which no neutral curve exists. Such is 
thc case if U'(y) and h ' (y )  are constant above a solid boundary (see Taylor 1931 and 
Eliasson, Hailand & ?&is, 1953). 
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We also introduce the dimensionless wave speed 

2, = c/v, ( 2 . 7 )  

and note that Iz,I < 1 for unstable modes in consequence of Howard’s ‘semi- 
circle’ theorem ((ii) above). Substituting (3.3)-(3.7) into (2.1) and (3.3), we 
obtain 

(3.8) 

and $ = O  ( z = * l ) .  (2.9) 

One of the advantages of the differential equation (2.8), compared with (2.1), 
is that it  allows us to place rather immediate constraints on those configurations 
that will admit of reasonably simple analysis. Let us suppose, for example, that 
S ( z )  and B(z) are polynomials, that S(x) has at least two, and only, simple zeros, 
and that the degree of E(z) does not exceed that of S ( z ) .  Then (2.8) is a differential 
equation of the Fuchsian type (Ince 1944, p. 370)-although not the most 
general of that type-and we may represent its solution by the Riemann symbol 

I 

1 (2.10) 

z1 ... “.I1 cc 

, jr=P i(l+V) p1 ... $($!-1+T) Zj, 

&l-V)  - / L 1  ... -p>qf Q ( Z - 1 - 7 )  

(2.1 1)  
1 zc 

wlicrr S(z,,J = 0, /(,,L = - a/S’(zm) (m = 1, ..., M ) ,  

(2.12) 

(2.13) 

The subscript c implies evaluation at z = 2,. 

3. Singular neutral modes 
We may pose the solution to (2.8) for an SNM in the form 

$ = (z-z,)*(1+v)g(z; a )$(z ;  zc,a,l’), (3.1) 

where we have factored ( Z - Z $ ~ + ~ )  and g(z ;  a)  in order to render $ an analytic 
function of x in the neighbourhoods of z = z, and z = f 1, respectively. We may 
achieve the latter goal and satisfy the boundary conditions (2.9) either by choosing 

9 = 1 and $( 5 1; z,,a,v) = 0 if S( 1) > 0 (3.2n) 

or by requiring g to be an analytic function of z in the neighbourhood of ( -  1 , l )  
that vanishes at  z = 2 1 according to 

g ( z ;  a) - (1 z)p* if ~‘7( I )  = 0, (3.50) 

where ,I[, are defined by (2.11) with z = & 1. The notation g ( z ;  a )  implies that 9 is 
to I3e independent of both z, and 1’ (which would not be possible if B were per- 
mitted to have poles at z = k 1). 

It follows from (3.1) and (3.3),  together with Theorems (iii) and (iv), that 
$ ( z ;  zc, a, 11) must be an analytic fuiiction of z in the neighbourhood of [ - 1 ,1 ]  
that may be normalized to be real in [ - 1,1]. 
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Substituting (3.1) into (2.8), we may place the result in the form 

r,qi = (pQ')'+ (.-zc)-'S-1pqq!J = 0, 

wherr p = ( z  - z c ) l - + Y  $ q z ;  a) X ( Z ) ,  

(2.3) 

(3.4) 

(3.5) 

and the primes imply differentiation with respect to z. TTie observe that q is an 
analytic function of z in the neighbourhood of [ - 1 , 1 ]  and, pun function of the 
independent parameters z ~ ,  a and 1' (rather than x,, a and J ) ,  an analytic function 
of 2,. in the neighbourhood of [ - 1,1] and an entire function of each of a and 1 1 .  

We shall be especially concerned with configurations for which both S(z)  and 
B(z )  are even functions of z ( U  and h odd functions of y). It then follows from 
(3.3) and (3.5), together with the boundary conditions on 4 and the fact that  Q 
must be regular a t  z = zcc, that  q and $ have the reciprocal propertics (for real 

(3.6) 

( 3 . 7 )  

g ( z )  = AS/+), /c = -a/&, ( 3  8) 

3 and 2,) 
y(-z, -",,a,Z') = -p(x; z c , a , l ' )  

+ ( - z ;  - I  *,' a, 1,) = # ( z ;  z , ,  a,  v). and 

A convenient choice of g(z)  for such confignrations is 

where AS'; = kS"(z), z = 1. Substituting (3.8) into ( 3 . 5 ) ,  we ohtain 

q ( z , z c )  = $ ( l - V Z )  [(x,/B,)B-As] (x-z , ) - l  

+ [( 1 + v ) p  - $(l - 191 I'i' + p ( 2  - 2 ( )  AS" 

+ a"(s'/s;)2 - 11 s-yz - zc).  (3.9) 

4. Nearly neutral modes 
Now let us suppose that an SNM exists for 1' = ~ t ~ , ( a )  and zc = zo(a), say 

q!J,,(z) = Q ( z ;  20,  a,  %), 

?/b = (2 - zc):(l+y)g(z; a) #o(Z)  x(z; zc, a, v). 

(4.1) 

and seek a contiguous (a  fixed, 11 4 i t o  and z, +. z,,) solution to (2.8) in the form 

(4.3) 

Having satisfied the boundary conditions (2.9) in accordance with either ( 3 . 2 ~ )  
or ( 3 . 2 b ) ,  we require ,y to be reguIar at z = -F. 1. On the other hand, x must be 
singular a t  z = z ,  if (4.2) is to  represent an unstable mode, for $must contain the 
solution of exponent +( 1 - v),  as well as that of $( 1 + v), in this neighbourhood if 
there is to  be a transfer of energy from mean flow to disturbance (see I, $ 5 ) .  
We also note that must have poles a t  the zeros, if any, of #,,; but this has no 
substantial effect on the following analysis. 

Substituting (4.3) into (L ' .S) ,  we may place the result in the form 

(P& x')' + ($0 Ldo) x = 0, (4.3) 
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where the operator L is defined by (3.3)-(3.5); but LQo + 0 unless zc = zo and 
1' = 1'". Invoking t,he condition 

L,Q, = 0 ( z p  = zo, 1' = I'") ,  (4.4) 

we obt'airi (4.5u) 

= ( z - 2 3 c ) " g ~ ( 2 :  a)R(z;  zc,a,l'), ( 4 . 5 b )  

R = - (zc - z,,) Sqb" $5; + [(v - 1'") h'- ( z ,  - X") 9-2 (g")'] $h" $h;, + (q  - qo)&, (4.6) 

and 'lo = q ( 2 ;  Zo, a,  l',,). (4.7) 

where 

Referring to the properties of y and (/. established in the preceding section, we 
remark that R is an analytic function of z in the neighbourhood of [ - 1,1],  an 
analytic function of z, in the neighbourhood of z, = z,,, and an entire function of 
1' that tends uniformly to zero as v --f ito(a) and z, +- .&a). We therefore may 
construct the required solution to (4.3) in the neighbourhood of Z, = zo and 
1' = vo through a joint espaiision of R in Z, - z,, and v - tio. 

We may proceed to such a construction through the integral cyuationf 

which follows from two integratioiis of (4.3) and the normalization 

,y(l)  = 1. (4.9) 

The requirement that x be regular at z = - 1 then yields 
1 

X(.,, a, I ? )  = ( z  - 2,)J'qyz) R(z) x ( z )  dz  = 0 (4.10) 

as the eigeiivalue equation. (We also may obtain (4.10) simply by integrating 
(4.3) from z = - 1 to z = + 1.) We recall that the paths of integration in (4.8) 
and (4.10) must pass under the branch point a t  z = z, (see I for discussion), 

(4.11) which implies (cf. (1.7)) (. - zc)u = ( z ,  - z ) v  e - - i n v .  

We may solve the integral equation (4.8) either by developing both R and x 
as joint expansions in z, - zo and 1' - IT,, and then equating the coefficients of like 
powers or by iteration, starting with the zeroth approximation 

,y = 1+o(zc-20,1'-lJ").  (4.15) 

We shall consider in this section only the first approximation, for which purpose 
we mag approximate (4.6) in the form 

R ( z ; z ~ , ~ ,  V )  = (Z~-XO)R,,(Z; Z",CI, Z ' ~ ) + ( ~ ' - ~ J ~ ) I $ , ( Z ;  z ~ , ~ , z J ~ ) ,  (4.13) 

where Ra and Rb are both real for -1 6 z 6 1. Substituting (4.12) and (4.13) 
into (4. lo), we may place the result in the form 

X(zc ,  a, v) = a(z,, a ,  I J " )  (zr - X") + b(Z,, a,  1'") (Y - I!") 

+ O[(-,.  - zo)2, (ZC - zo) (/I - V " ) ,  (Y - 1'")2], (4.14) 

(4.15) 

t We have suppressed the explicit appearance of the parameters z c ,  a and v in g ,  12 and x. 

I ( ,  0 = ( Z  - Z J " O  g 2 ( ~ ;  a )  Ra, b ( z ;  x", v", a )  dz, SII where 
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with the path of integration indented under z = zo. We observe that 

- 1  < zo < 1, Vo < 1 

in consequence of Theorems (iii) and (iv). It follows that both a and b are com- 
plex numbers except at vn(a) = 0. 

We have chosen to work in terms of 11 - vo(a), rather than J - Jo(a), in order to 
avoid the analytical difficulties associated with the branch point of 17 qua function 
of 4. In  the hial  analysis, however, we require a relation between z, - zo(a) and 
J-J(a).  Expanding (3.13) about z, = zo and J =  Jo, substituting the linear 
approximation into (4.14), and requiring the resulting approximation to X to 
vanish, we obtain 

(4.16) 

where the subscript zero implies evaluation at  z = zn. We conclude from (4.16) 
that, in so far as alb is a complex number, the imaginary part of z, changes sign 
with J - Jo(a) and hence that the SNM characterized by J = Jo(a) and z, = zo(a) 
marks a transition from a positively damped (stable) to a negatively damped 
(unstable) mode as the neutral curve J = Jo(a) is crossed.? We emphasize, 
however, that J > Jo(a) does not necessarily imply stability, although such an 
apriori conclusion is valid by virtue of Theorem (v) if the neutral curve J = Jo(a) 
is unique and single valued. We also emphasize that the imaginary part of v0 a/b 
tends to zero as vo tends to any of 0 or & 1, in consequence of which (4.16) does 
not provide a uniformly valid approximation to the imaginary part of z, in the 
neighbourhoods of these points on the neutral curve. We shall see, in the specific 
example of the following section, how this difficulty can be circumvented by 
constructing uniformly valid approximations to R and x that reduce to those of 
(4.12) and (4.13) except near vo = 0 or 

Now let us suppose that both B(z) and X(z) are even functions of z .  It then 
appears likely from symmetry and physical considerations that an SNM will 
exist for zo = 0. Assuming zo = 0,  we may infer from (3.6) and (3.7) that q and 
q5,, are odd and even functions of z ,  respectively, and hence, from (4.6) and (4.13), 
that R, and Rb are even and odd functions. Invoking these properties in (4.15), 
choosing g according to (3.8), and substituting the resulting expressions for a 
and b into (4.16), we obtain 

1. 

which implies the principle of exchange of stabilities (cf. Theorem (vi)). 
Wc remark that, in so far as the unstable eigenvalue that descends to zo = 0 

according to  (4.17) is unique, it must remain imaginary, for complex wave speeds 

t It slioixld be borne in mind that, in consequence of (4.11), the esistence of z, as an 
eigcnvalur does not imply the admission of its complrs conjugate as an eigenidiie. 
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necessarily occur in pairs. 7 We shall carry through the argument for the specific 
example of the following section, where the uniqueness of the SNM can be 
established. 

5. HBlmboe’s configuration 

considerations appear to demand Ui = 

for the shear then is given by = - +., 

which implies the velocity profile of (1.9). The simplest, corresponding choice 
for B(x) is 

which, in conjunction with (5.1) and (2.3)-(2.5), implies the density profile of 
(1 .lo) with r = 0. In  short, 

If we assume a configuration of infinite extent (yl = -a, y, = cc), physical 
= 0. The simplest admissible form 

(5.1) 

B(2) = 1, (5.4) 

U ( y ) / V  = h(y)/cr = taiih (ylh). 

JpJ) = J cosh“ (ylh), 

(5.3) 

(5.4) 

The corresponding, local Richardson number, as given by (1.5), is 

which increases monotonically with y2. 
The configuration described by (6.3) was proposed origiiially by Holmboe 

(1 960) as mathematically simpler and physically more acceptable than that 
considered by Drazin (1958).$ Holmboe obtained a solution for the stream 
function by inspection and then determined the neutral curve of (5.13) below. 
The following derivation proves that this neutral curve is unique and that it 
comprises all possible SNM’s. We shall show subsequently (3 6 below), however, 
that this uniqueness is a consequence of the special simplicity of the density 
profile and not (as might have appeared to be a plausible conjecture) merely of 
the restrictions that U’(y) and h’(y)  be even, positive-definite functions of y in 
(yl, yz) and that 4(y) increase monotonically with y3. 

Substituting (5.1) and (5.2) into (2.10)-(2.13), we obtain 

“C 1 CCJ 

$? = ;.I & ( ; + I t )  4. + ( 1 + T )  2 1 ,  (5.5) 
-+-a $ ( I - V )  -&X ~k(1 - -7 )  

1’ = (1 -q$, J .  = J/(l-g), (5 .6 )  

and 7 = 3. (5.7) 

Assuming ,I. to have the form ( 3 . 1 ) ,  with q tlefiiied by (3.8), we then may reduce 
the differential equation (3.3) to 

(5.8) 

(5.9) 

t Complex wave speeds would occur in quartets if the coniplcx conjugate of ( J  .‘i) WC‘I’C 

admitted as a singnlar neutral niodfe. 
2 Drazin (1958) consicleretl U(y) = 1’tanli (y/h) and h ( y )  = a ( y / / i ) .  This implies 

H ( z )  = l / ( l - z z ) ,  which rrndcrs the exponents with respect, to : = i J tlcpendcnt on 
both a and J .  

( z  - zJ (1 - 2,) I$”+ [(1+ v) (1 -9) - 4( 1 +a) ( 2 - z z , )  z ]  $’+ qQ = 0 

wit,h q = ($+ & + a )  (+ - - ~ P - ‘ X )  (z-.zc) + [ B a +  (3  + v) (9 - kv-a)] q,. 
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The Riemaiin function with four regular singularities, as described by either 
(5.5) or (5.8), has been studied in some detail by Heuii (1859). We may infer 
from his results that the solution to (5.8) that is regular at z = z, can also be 
regular at z = t. 1 for a > 0 if and only if it is a polynomial. 

Let us suppose that q3 is a polynomial of degree T L ;  then, in consideration of the 
behaviour of @ a t  z = GQ, our supposition requires 

Q ( l + I ~ ) + u + n + ; ( 1 * 7 )  = 0. (5.10) 

lnvoliiiig the restrictions a > 0 and 11 > - 1, we see that (5.10) can be satisfied 
only if TL = 0 and the choice ;( 1 - r )  = - 1 is made for the exponent with respect 
to z = GQ; solving for 1’ then yields 

I’ = 1’ 0 (a)  = 1 - 2z. ( 5 . 1 1 ~ )  

Substituting (5.11 a)  into (6.9) yields q = ?a+ which must vanish if 0 = constant 
is to satisfy (5.8). IVe conclude that (5 .11~)  and 

2, = 0 ( 5 . l l b )  

are necessary aiid sufficiciit conditions for the existence of a solution to (5.8) that 
is regular at each of z = zc ,  - 1 < zc < 1, and z = i 1. We may normalize this 
solution to Q 3 1. (6.11c) 

Substituting (5.11 a ,  0 )  into (5.6), we obtain 

J = Jo(a) = ~ ( 1 - a )  (0 < u < l), (5.12) 

which is a symmetric parabola in an (a, J)-plane with its maximum a t  a = $ and 
J = $ (note that i t o  < 0 for Q < a < 1). Solutions corresponding to (a ,  J)-points 
above this curve must represent stable modes in consequence of Theorems (iii), 
(v) and (viii) in 5 1 above; solutions corresponding t o  points below this curve 
must represent unstable modes in consequence of Theorems (iii), (vi) and (viii). 
Drazin & Howard (1961) have calculated az, for these unstable modes through 
a second-order expansion in a and J, but it appears to be worth while to deter- 
mine an approximation that is uniformly valid everywhere in the neighbourhood 
of the neutral curve-in particular, in the (a ,  J )  neighbourhoods of (0, 0 ) ,  (+, i), 
and (1,0), where v0 tends to 1, 0, and - 1 ,  respectively, and the approximations 
of (4.19) and (4.13) are inadequate. 

We shall proceed as in $ 3  3 and 4, but with such modifications as are required 
to achieve the aforementioned goal of uniform validity. Substituting (5.1 1 u, b ,  c )  
and the associated result qo = 0 into (4.6) yields 

R(z,  xc) = q(2 ,  ZJ. (5.13) 

At this point, we modify the formulation of 9 4 slightly by developing R and ?I in 

6 = l( I - I , )  = L-i1r-u (5.14) 
powers of 

and ax,, rather than v- if,, and z,. Substituting (5.11)-(5.14) into (4.8) and setting 
x = 1 in the resulting integral, we find that an adequate approximation for our 
purpose is given by 

x ( z )  = 1 +clog ( z  - 2,) + O(W, a,, az,). (5.15) 

3 1 0  
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Substituting (5.11)-(5.15) into (4.10) then yields 

1 

L -1 
S ( 2 , )  = [ ( 1 - Z2)a  ( z  - xJ' [(:k - €2) (2 - 2(.) + _.(a + 26,) 2, 

+ 3C"Z - x,) log (2 - Z J ]  d z  + 6, (5.16) 

wlierc. here and subsvqueiitly, 6 stands for any error term having the com- 
position 

6 = O(C2JJ, C22,, €EZ,, GL2$). (5.17) 

\Ve note that 6 = O($, tz,, $), except in the (a ,  11)-neighbourhoods of (3, O), wherv 
the retention of terms of O(e2) in (5.16) is required, and (0, I ) ,  where the retentioil 
of ternis in z3 is required (the terms of first order in x, being O(a2) as CI + 0). 

It is readily seen that the integral in (5.16) is an analytic function of z ,  in 
jz,I < 1. Expanding the integraiid in z,, interpreting the phase of zv in accordnncc 
with (4.1 1) ,  expressing the resulting integrals in terms of beta functions, ant1 
neglecting further terms of the same order as those already comprised by 6, TVC 

may reduce the integral as follows: 

+ 3e%( 1 - 22)'2 log 2)- clz -t 6,  (5.18 / / )  

- - ; ( :k -$ ) ( l  - r f n J J ) B ( $ v +  l . x +  l)+ij.rC:"f(a-e) (1  + c - y  Ij(+v+i , tx+ l ) Z C  

- (a++€)  (I-e-inl')B($ij,a+- I )$+S,  (5 .1Sb)  

(5 .1XC)  

Substituting v from (5.6) into (5.18c),  we find that the dependence of 1' on x, is 
significant (within t'he approximations already invoked) only in the neighbour- 
hood of a = 0, where J = O(a) as € 4 0 and 

(5.19) 

= :Ic( 1 + @na) I?(-$ -(a, 1 + a )  - in$ + a( 1 - e2ina) .B( 1 -a ,  1 + a )  z, 

- S( 2 2  + e )  2; + 6. 

€ = J (  1 - x,3)-1- a + O[a2( 1 - -")-a]. -c 

Taking this into account, we find that an approximation to  S that is uniforrn1.y 
valid with respect to a and J is given by 

.X(z,) = $E(I+e2fra)R(&-a, 1 +a)-inE2 

+ a( 1 - e2ina)  B( 1 - a,  1 + a )  z, - Baz; + 6, (5.20) 

where. = 1- 3 a- (* -J )& (0 < a !  < Q), (5.21 0)  

WC now write az, = zy,  (5.22) 

- - +-L%+((t-J)i (4 < a 6 1) .  (5.21 b )  

where the real part of y is t.he (dimensionless) exponential rate of growth of t,he 
disturbance. Multiplying (5 .20)  through by +a exp ( - ij.ra)/B(~: - a,  1 + a )  and 
equat'ing the result to zero, we then obtain 

y3++zB(i-: l - a ) s i i i ( j . r ~ ) y + a c o s ( ~ a ) E - - ~ 7 ~ E ~ + a 6  = 0. ( 5 . 5 3 )  

The quadratic equation ( 5 . 2 3 )  has real roots in a finite neighbourhood of the 
neutral curve J = .Jo(a); one and only one of these is positive if and only if 
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J < J,(a); and this root vanishes uniformly, and changes sign, with Jo(a) - J, in 
accordance with (4.17). Suitable approximations t o  the unstable roots are 
given by 

y = [(l - 4J)i + 3a - 11 cot (-na)/B(+, 1 - a )  (0 < a < 3) (5.34) 

except in the (a, J )  neighbourhoods of ( 0 , O )  and (4, $1. Suitable approximations 
in these ncighbourhoods are given by 

y = {a[J,(a) - J ]  + (+naz)z}i - $na2 + O(a3),  

J < J ~ ( ~ )  + p a 3  + 0 ( ~ 4 ) ,  

and y = [ (1-4J)4-2a+1]/B(+,a-+)  (; < a < I )  (5.25) 

(5.26) 

and y=J , (a ) -J ,  a+&, J + i .  (6.27) 

We note that Drazin & Howard's (1961, equation (43)) approximation reduces 
to (5.26) as a --f 0 but gives values of y that are low by factors of 2 / ~  and as 
0: --f + and 1, respectively, when compared with (5.27) and (5.25). It therefore 
appears likely that the wave number for maximum instability, a,,(J), must lie 
to the right of the curve plotted in their figure 3 . t  

We conclude this section by remarking that the unstable eigenvalue deter- 
mined from (5.20) must remain imaginary, and hence that the corresponding 
unstable mode must remain stationary (c, = 0)  for 0 < J < J,(a), rather than 
merely in the neighbourhood of J = Jo(a) - . This follows from the considerations 
that: (a )  the singular neutral eigenvalue z, = 0 is unique; ( b )  z, must be a 
continuous function of a and J within the semicircle of Theorem (ii) and must 
tend to x, = 0 as J --f Jo(a) - ; and (c) complex wave speeds necessarily occur 
in pairs (if c,+ici  is an eigenvalue, so also must be -c,+ic, by virtue of 
symmetry). 

We emphasize that statement ( b )  does not hold for damped waves. For 
example, (5.33) yields a stable, as well as an unstable, eigenvalue for J < Jo(a), 
and our analysis does not preclude the existence of more than one such (stable) 
eigenvalue; moreover, (5 .23)  yields a pair of stable eigenvalues if J > .J,(a), which 
tend to z, = 0 and - i-na as J -+ Jo(a) + and are complex if 

.lo(.) + *7rZa3 < J < 1.  

6. A configuration with multivalued neutral curves 

ferential equation for ik basically unchanged is given by 
A simple generalization of Hdmboe's configuration that leaves t,he dif- 

B(z)  = l - r + 3 ~ ' ,  -+ < r < 1, (6.1) 

which, in conjuiiction with (5.1) and (3.3)-(2.5), implies the density profile of 
( l . l O ) . $  The corresponding, local Richardson number, as given by (1.5), is 

q(y) = J [ (  1 - Y )  cosh2 (y/h) + 3r sinh2 (ylh)] 3 (1 - Y) J .  (6.2) 
Howard (privatc communication) concurs in this opinion and informs us that Dr A. 

Michalkt: in Berlin has obtained ccfir(0) = 0.4436, from a direct, numerical solution of the! 
c~igenvaluo problem posed by a homogeneous shear flow with tho velocit,j- profile of (1.9) 
above. 

:I A closcly relat'otl configtiration has been considered by Drazin 6: Hoxml  (private 
communication). 
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The restriction - $ < r < 1 guarantees that B(z) > 0 for - 1 < 2 < 1 and implies 
that J(y) increases monotonically with y2. 

The configuration dcscribed by (1.9) and 
h ( y )  = cr tanh3 (y lh) ,  (6.3) 

corresponding to r = 1 in ( l . l O ) ,  has been considered by Garcia (1961). He 
assumed c = 0 and obtained results equivalent to (6.9) and ( 6 . 1 0 ~ ~ )  below with 
r = 1 therein. We remark that, in this very special case, the singularity of the 
differential equation (2.1) a t  y = yG = 0 is only apparent. See also the remarks 
a t  the end of the paragraph following (6.14) below. 

Substituting (5.1) and (6.1) into (2.10)-(3.13), (3.8) and (3.9), we obtain the 
Rieniann function (5.5), with 

I ! =  (1 -44) ; ,  & =  J(l-r+3rz,3)/(1-z?) (6.4) 
and T = ({I+ 12rJ)J, (6 .5 )  
and Heun's differential equation (5.8) with 

= [ $ ( T 2  - tT2) - 21 (2 + 2,) + [ 1 - 1' - ( 1 4- V )  a] X - (a f a2) (2 - X c ) .  (6.6) 
It follows, as in S 5 ,  that the solution for an SNM must be a polynomial in x and 
that the exponents of the differential equation (5.8) for a polynomial solution of 
degree n must be constrained according to (5.10), which we now rewrite in the 

form a+n  = an(J,zc; 1') = + ( T - - V ) - ~ .  (6.7) 

If  r < 0 the maximum value of T is 3 and the right-hand side of (6.7) cannot 
exceed 1 (since v > - 1). It then follows, from the restriction a > 0, that only 
n = 0 is admissible, and this implies z, = 0, just as in 5 5 .  If r > 0 the right-hand 
side of (6.7) may exceed 1 (since T may exceed 3), but we anticipate (and shall 
demonstrate subsequently) that z, = 0 gives the most critical SNM, and hence 
the stability boundary, for any even value of n and that no SNM exists for odd 
values of n if r < 0.947. 

Considering first, then, stationary SNM's, we substitute (6.6) into (5.8), 
eliminate 1' through (6.7), and set z, = 0 to obtain 

Introducing z2 as the independent variable, we may transform (6.8) to the hyper- 
geometric equation and obtain the polynomial solutions 

(6.9) 
for n even. There are no solutions to (6.8) that are regular at each of z = z, = 0 
and z = 

Substituting (6.4) and (6.5) into (6.71, setting z, = 0, and indicating explicitly 
that 17 may be either positive or negative, we obtain the neutral curves corre- 
sponding to the SNM's of (6.9) in the form 

~ , ( J , o ;  1.) = ~ ( 0 + l ~ r ~ ) S 3 3 [ 1 - 4 ( 1 - r ) ~ ] t - l ,  (6.10a) 

C( 1 - X 2 )  $"+ [ ( T -  2cC- 2%- 1) (1 - Z 2 )  - 2(1 +a) z2] (p' +n(T  -%) Z(p = 0. (6.8) 

4 = 2 1  F(-" )2  2 ? 1  F 7 - h .  2 , 2  .'T-E-'lZ; X 2 )  (n = 0,2,  ...), 

1 if n is odd. 

where 

= 3 [1+ (2) ._i T 4 ( 1  - 4J,y - 1,  
3 3 I - r  

(6.lOb) 

(6.10c) 
1 - r  

c& = (1  - r )  J (2, = 0). (6.11) 
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The two branches of art given by (6.10) have the limiting values 0 and 1 at J = 0 
and join a t  .4 = &. There are no solutions for J, > 2 ,  as we also may infer directly 
from Theorem (v) and the fact that J l (y)  3 J,. The maximum value of a,  is 
simply 1 if r 6 +, but if r > 

at J, = 3(2r - I) /&-(  1 + 2 ~ ) .  (6.126) 

Invoking the requirement a, > n (a  > O ) ,  we then may determine the maximum 
value of n, say N ,  for which the SNM of (6.9) is admissible from the inequality 

( f i  . I n )  

(6.14) 

Summing up, we infer from the foregoing results that the neutral curve 
J = Jo(a) is no longer single valued if r > $ and that there are at least 3N+ 1 
distinct neutral curves (each having two braiiches), say J = Jo(a; * L ) ,  if r satisfies 
(6.14) with N even; in particular, N = 0 if r 6 0.895, N = 3 if 0.895 < r < 0.968, 
and N --f co as r --f 1 .  Increasing J then may have a destabilizing effect for some 
range of a, although i t  remains true that J, > $ is a sufficient condition for 
stability for any discrete value of a and a necessary condition for stability for 
a complete spectrum of a (a 2 0) .  

The neutral curves for r = -$, 0 and 2 are compared in an (a,Jc) plane in 
figure 1; those for r = 0.9 are plotted in an (a ,  4) plane in figure 3; and those for 
r = 0.9 and 1 are compared in an (a,  J )  plane in figure 3. We emphasize that the 
neutral curve J = .&(a; n) is a stability boundary only for the ntli mode; e.g. for 
r = 0.9 (see figure 3) the n = 0 mode is stable for a = 0 and J > 0, but the n = 3 
mode is unstable for a = 0 and 0.20 < Jc < 0.25. 

Stability is impossible for r = 1, since unstable modes exist for every ( a , J ) -  
point in a > 0 and J > 0. This limiting case violates our initial restriction to posi- 
tive-definite density gradients, however, and instability is a consequence of thc 
fact that J, = 0. 

It is of interest to compare the result (6.lOn) with that given by Draziii S: 
Howard’s (1961) small-a approximation. Substituting (1.9) and (1.10) into their 
(37) ,  we obtain 

J = a - ( 1 - - r + ~ r 2 ) a ~ + 0 ( a 3 ) ,  (6.15) 

which agrees with (6.10) within the indicated approximation. This approxima- 
tion happens to be exact for r = 0, as observed by Drazin & Howard, but if 
T > 4 it is obviously quite wide of the mark for non-small a and fails to  reproduce 
the bulge characterized by (6.12). 

We now proceed to consider the existence of nonstationary SNM’s for r > 0. 
We shall find it instructive, for this purpose, to examine (6.7) in an (an ,  .r)-plane. 



a 

FIGURE 1. The neutral curves givcn by ( 6 . l O b )  for n = 0 and T = - $, 0 and $. 

r = 0.9 

a 

FIGURE 2. The neutral curves given by (6 .10b)  for n = 0 and 2 and 7 = 0.9. 

Eliminating J between (6.4) and (6.51, we may express vin terms of r and a single 

(6.26) parameter s:  
1’ = [I -s(72- 9)]&, 

s = (s0+;‘c2)/(1 -& so = ( I  -?“) /3r .  (6.1’7) 

Substituting (G.16) into (6.7),  we may transform the result to 

4(01 ,+1)~-4(01 ,+1)~+(1  + S ) T ~  = I+%, (6.28) 



334 Jolt,n W .  Miles 

which represents a family of ellipses with parameter s ( r  > 0 impiies s 2 so > 0) .  
Kach member of this family passes through an = 0 and an = 1 at r = 3 ( J =  0) 
and lies between the straight lines r = 3(an + 1) 1 for 

3 < 7 < (9+s-1)1 (0 < .I, < i); 
moreover, the two branches of a,, qua function of r ,  must join on the straight 
line r = 2 ( q L  + 1). The maximum value of a, for J > 0 is given by 

(4,,,,, = 1 (8 3 9, (6.10a) 

= -1,[(l+S)(l+ns)/s]:-l (0 < s 6 +). (6.10 b)  

12 

4 

n 
"0 1 2 3 4 

U 

FIGURE 3. 'rhc neutral ctirves given by ( 6 . 1 0 ~ )  for T = 0.9 and 1. 

Invoking the requirements a, > n (a > 0) and .7 > 0, we infer from (6.19a) 
that n = 0 is the oiily admissible possibility for s 2 &. This implies z, = 0, as in 
$5, whence s e so 2 4 implies 0 6 r ,< Q. We also may infer, from the considera- 
tions that the right-hand side of (6.19b) is a monotonically decreasing function of 
s and that s is a monotonically increasing function of z:, that z, = 0 yields an 
upper bound to n, namely N ,  as givcn by (6.13) and (6.14). This does not guarantee 
the existence of an SNM for n = N ,  however, since z,, = 0 is not generally admis- 
sible as an eigenvalue unless n is even (see below). 

Now let us suppose that 

0 < z ; <  1, s o < s <  $. (6.20) 

The neutral curve (on which zc is not, in general, constant) then must lie inside 
the eIlipse obtained by setting s = s, (zc= 0) in (6.18). It foIlows that the most 
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critical SNM must correspond to z, = 0, if this eigenvalue is admissible, and 
hence that z, = 0 gives the stability boundary for even values of n < N ,  albeit 
nonstationary SNM’s may exist for such values of n .  

To proceed further, we must determine those values of z, that, in conjunction 
with the constraint (6.7), permit polynomial solutions of (5.8), say 

n 

m = O  
$ = 3 c,, zm. (6.21) 

Substituting (6.6) into (5.8) and eliminating v from the result with the aid of (6.7), 
we obtain the differential equation to be satisfied by (6.21) in the form 

(z-2,) ( 1  - z2)  4” + [ ( T -  2a- 3n - 1 )  ( 1 - 22) - 3( 1 + a )  z ( z  - z,)] 4’ 
+ { n ( T - m )  (z-2,) + [7a+ (2n+ 1 )  (T-a) - (en2+ Bn+ 3 ) ] z , ) $  = 0. (6.32) 

Substituting (6.21) into (6.22) and equating the coefficients of zm separately to 
zero for rn = 0,1, . . . , n (the coefficient of zn+l vanishes identically by virtue of 
(6.7)) then yields n + 1 linear equations in co, cl, . . ., c,. Observing that each of 
these equations is linear in z,, we infer from the requirement that their deter- 
minant vanish that there exist n t  1 distinct polynomial solutions to (6.22), 
corresponding to n+ 1 distinct values of z,.t We also may infer, from (3.6) and 
(3.7), that these eigenvalues would comprise Q(n+ 1) pairs of equal and opposite 
values of z, if n is odd or Qn such pairs plus z, = 0 if n is even. It is by no means 
clear, however, that each of the non-zero values of 2,“ determined in this fashion 
is both in the singular-neutral interval (0 , l )  and compatible with the satisfaction 
of (6.7) for a > 0 and J > 0. 

The explicit determination of any of the nonstationary SNM’s and its asso- 
ciated neutral curve in an (a,  J)-plane appears to lead to an intractable algebraic 
problem. We shall rest content with a demonstration that at  least one such SNM 
exists, remarking that this result suffices to disprove the not uncommon con- 
jecture that sufficient conditions for the non-existence of nonstationary SNM’s, 
and hence for the validity of the principle of exchange of stabilities, are that 
li’(y) and h’(y) be positive-definite, even functions of y in ( - co, ..).I 

Returning to (621) ,  substituting it into ( 6 2 2 ) ,  setting n = 1, and requiring 
the determinant of the resulting equations in c,, and c1 to vanish, we obtain 

(6.23) 

t We note that this last result is in agreement with Heine’s (1878, vol. 1, pp. 472ff)  
theorem for Fuchsian differential equations; however, the direct application of Heinc’s 
theorem would require the coefficients of 4“ and 4’ in (5.8), and hence zr ,  to be assigned 
u priori and then would imply the existence of n + 1 determinations of q. The corrosponding 
Q are Heunpolynoiniuls (Erdolyi, Magnus, Oberhethger & Tricomi 1953, vol. 1, p. 218 anti 
vol. 3, pp. 60fY). 

1 L. N. Howard (private communication) has dcmonstritted that) the conjecture is 
definitely false for the configurat,ion obtained by replacing U(y) = y by U(y) = 0 for [yI < h 
in (1.11). The resulting configuration has a nonstationary SNM, and the principle of exchange 
of stabilities does not apply; an SNIT also exists, but it is non-singular. This is an extreme 
example, however, since U’(y) and h’(y) are neither positive-definite nor bounded, and the 
Concentrated vortex sheets a t  y = i 1 are suscept’iblo to Kelvin-Helmholtz instability. 
Holmboe ( 1  962) has obt,ained similar results for t.he configuration obtained by replacing 
h ( y )  in (1.11) by h ( y )  = crsgn y. 

15 Fluid Mech. 16 
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Eliminating s between (6.17) and (6.18), we also must have 

(7 - 2a - 3) (2a + 5 -7) -so(r2- 9) 
(7- 2a- 3) (2a+ 5 - 7 ) +  ( 7 2 -  9) * 

2," = (6.24) 

A neutral curve exists if (6.23) and (6.24) can be satisfied simultaneously for 
a > 0, r > 3 and 0 < 2," < 1. We know from the preceding discussion that such 
a curve must lie inside the ellipse obtained by setting s = so (2, = 0) in (6.18) and 
that its two branches (for a qua function of r )  must join at least once on the 
straight line 7 = 2a + 4 (it might be either a closed loop, intersecting 7 = 2a + 4 
twice to give maximum and minimum values of r ,  or an open loop terminated by 
a = 0). We also know, from Theorems (vii) and (viii), that the neutral curve must 
be continuous in a > 0, and we therefore may infer its existence or non-existence 
from the existence or non-existence of at least one simultaneous solution of (6.23) 
and (6.24) for r = 3 a +  4 and a > 0. 

Substituting r = 2a + 4 in (6.33) and (6.24), we obtain 

1 -s0(2a+ 1) (2a+ 7) 
- - (7 = 2a+4). 

(2a + 3) ____ 
'," = (2;+ 1)  (a + 2 )  ( 2a2 + 7a + 4) 1 + (2a + 1) (2a +7) 

(6.25a,b) 

Eliminating 2," between (6.25a, b) ,  we may place the resulting sextic equation 
for a in the alternative forms 

16s0 a'+ 1 6 0 ~ ~  a5 + 4( 1 5 0 ~ ~  - 1)  a4 + 16(66s0 - 1)  a3 + ( 9 0 5 ~ ~  - 3) ~1.'  

+ 2 ( 1 8 3 ~ ~ + 1 5 ) ~ + 8 ( 7 s ~ + 2 )  = 0, (6.26) 

(6.37) 

Invoking Descartes' rule of signs, we find that (6.26) has no positive real roots 
if so > 1/66 ( r  < 22 /33  = 0.9565) and either 0 or 2 such roots if so < 1/66. We also 
find that the right-hand side of (6.37) has one and only one positive real zero, 
d: + 1.33, and that so > 0 for a > 1-33. It follows that there exists a positive 
value of so, say so* ( r  = r*), such that there exist exactly two positive real values 
ofd:forwhich(6.35a,b)canbesatisfiedifO < so < so+ 6 1/66(1 > r > Ti. > 0.956). 
The corresponding neutral curve would be a closed loop having a minimum value 
of r in excess of r = 2(2 x 1.33 + 4) = 13-33, corresponding t o  a minimum value 
of J in excess of 14.1. The numerical calculation of r* would be straightforward, 
but it suffices for our purpose to have demonstrated its existence and established 
the lower bound 0.956. 

Now let us return to (6.14), which yields the upper n-bounds N = 0, 1 , 2 ,  3, . . . 
for r in [ O , &  (&,0-895], (0.895, 0.9471, (0.947, 0-968], ..._ Bnt, from the pre- 
ceding paragraph, no SNM exists for n = 1 if r < 0.956. We conclude that the 
admissible values for n are 0 for - & 6 r < 0.895 and 0 and 2 for 0-895 < r < 0.947, 
that the most critical SNM's for these values of n are stationary (2, = 0), that the 
corresponding stability boundaries are given by (6.10), and that the principle of 
exchange of stabilities holds relative to these boundaries (see penultimate 
paragraph of 3 4). 
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7. Conclusions 
We conclude that: 
(ix) The existence of an SNM implies the existence of a contiguous unstable 

mode in an (a ,  J)-plane. 
(x) The neutral curve J = Jo(a) is not generally single-valued; moreover, 

several distinct neutral curves may exist for a given configuration, each such 
curve corresponding to  a distinct SNM. 

(xi) The principle of exchange of stabilities holds for a stationary SNM if 
U'(y) and h ' (y )  are positive-definite, symmetric functions of y that possess 
analytic continuations into a complex- U plane, but lionstationary SNM's may 
exist even though these restrictions are satisfied. 

I am indebted to P. G. Drazin and L. N. Howard for helpful criticism and 
discussion, including the destruction of spurious arguments advanced in the 
original draft of this paper. I am also indebted to my colleague W. A. Coppel for 
bringing Heun polynomials to my attention. 
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