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On the stability of heterogeneous shear flows 
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Small perturbations of a parallel shear flow U(y) in an inviscid, incompressible 
fluid of variable density po(y) are considered. It is deduced that dynamic in- 
stability of statically stable flows (pi@) < 0) cannot be other than exponential, 
in consequence of which it suffices to consider spatially periodic, travelling waves. 
The general solution of the resulting differential equation is considered in some 
detail, with special emphasis on the Reynolds stress that transfers energy from 
the mean flow to the travelling wave. It is proved (as originally conjectured by 
G .  I. Taylor) that sufficient conditions for stability are U’(y) 9 0 and J (y )  > $ 
throughout the flow, where J (y )  = - gp;(y)/p,(y) v12(y) is the local Richardson 
number. It also is pointed out that the kinetic energy of a normal mode in an ideal 
fluid may be infinite if 0 < J(y,) < a, where U(y,) is the wave speed. 

1. Introduction 
We shall consider here the stability of a heterogeneous (or stratified) shear 

flow-namely a parallel shear flow U(y ) in an inviscid, non-heat-conducting, 
incompressible fluid of density po(y). The principal measure of stability, in so far 
as the buoyancy effects of the density gradient override its inertial effects, is the 
Richardson number 

J(Y) = P g ( d U / W 2 ,  (1.1) 

where P(Y)  = -d/d9logPo(Y) = -P;(Y)/P,(Y) (1.2) 

is a measure of the static stability of the density stratification (j3 < 0 implies 
static instability). The inertial effects of density gradient are measured by PZ, 
where I is a characteristic length; neglecting these effects, as in meteorological 
and ooeanographic problems, implies IP/Z < 1. 

Analytical studies of heterogeneous shear flow, although finding antecedents 
in the work of Kelvin and Rayleigh on hydrodynamic stability, may be dated 
from G. I, Taylor’s Adams Prize essay of 1915, which was published concurrently 
with a closely related investigation by Goldstein (1931). These two papers, 
dealing primarily with specific flow configurations (see below), were followed 
closely by Synge’s (1933) study of the general boundary-value problem. This 
important paper appears to have escaped the notice of many later workers,? 
who have rediscovered several of Synge’s results. Subsequent work has been 
largely in the hands of meteorologists (often in difficult-to-obtain sources), 

t Including the present writer, who is indebted to Dr Drazin for bringing Synge’s work 
to his attention. 
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with special reference to the problems of atmospheric stability and mountain- 
lee-wave formation (see Hdmboe (1957) for a survey of the latter problem). 

The primary goal of the present investigation is a proof that U'(y)  + 0 and 
J(y )  > & are sufficient conditions for the stability of a heterogeneous shear flow 
(Theorem X in §5), as originally conjectured by Taylor (1915/31). We shall 
follow the usual, normal-mode approach on the ground that dynamic instability 
of a statically stable (/3 > 0) shear flow of an ideal fluid cannot be other than 
exponential. This is not to say that the normal-mode approach is completely 
adequate for an ideal fluid, however, and we shall call attention to the striking 
fact, apparently overlooked by previous workers, that the energies of those 
modes that are comprised by the neutral-stability boundary may be infinite. 
We also remark that none of the existing investigations of continuous shear 
and density profiles has proved that unstable modes exist and are contiguous to 
the loci of neutral modes that are asserted to form the stability boundaries. Such 
a proof is much to be desired, especially in consequence of the aforementioned 
possibility of infinite energy for the neutral modes. (The energy of an unstable 
mode is found to be finite at any fixed time, although tending to infinity exponen- 
tially in time.) 

Throughout our investigation, we shall place special emphasis on the Reynolds 
stress that transfers energy from the mean flow to the disturbance, following 
closely the corresponding treatment of homogeneous shear flow (see Lin 1955: 
this reference will be denoted subsequently by L, followed by the appropriate 
section or equation number). This is, in some instances, less direct than the 
application of standard oscillation theorems to the boundary-value problem 
(as in Synge's paper), but it does throw additional light on the problem and may 
point the way to further progress in the investigation of unstable modes. 

Before proceeding with the mathematical development, we shall outline the 
known results for a few, representative configurations, assuming 1/31 I g 1 except 
as noted. 

Taylor (1931) considered a semi-infinite flow, above a horizontal wall, with 
U' and /3 constant. He concluded that only neutral waves could exist for J > 4 
and that no (harmonic) waves could exist for 0 < J < &. These results were 
clarified and extended by Eliassen, Hailand & Riis (1953), who considered 
flow between two parallel walls with U' and /3 constant. They attacked the 
initial-value problem and showed that a disturbance originating from arbitrary 
initial conditions would behave asymptotically like tJ@'-l), v = (1 - 4J)*, for 
- Q < J < & (and hence be unstable for J < 0) but would be exponentially un- 
stable only for J < -2; for the semi-infinite case, this asymptotic behaviour 
holds for - 2  < J < 4, with exponential instability for J < - 2 .  The initial- 
value problem for the semi-infinite case also has been solved by Case (1960). His 
analysis is less general than that of Eliassen et al. in considering only J > 0, but 
more general in allowing for the inertial effects of density variation. 

Goldstein (1931) considered an  imbedded shear layer of thickness 2h, with 
both U' and /3 constant in IyI < h and vanishing in IyI > h. He concluded that 
harmonic perturbations would be stable for J > $ and unstable for all wave- 
lengths for 0 < J <  &. 

32 Fluid Mech. 10 
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Drazin (19584 has considered a more realistic model for an imbedded shear 
layer, with U ( y )  = Uhhtanh(y/h) and p = const. He too concluded that har- 
monic perturbations would be stable for J ,  = (pg/Uh2) < 4, but predicted insta- 
bility only for a finite range of wavelengths for 0 < J, < t. Drazin concluded 
that his agreement with Goldstein on the value of the critical Richardson 
number, namely J = 2, was coincidental (that it is not coincidental follows from 
Theorem X below, together with the fact that J ( y )  J, in Drazin’s model). 
Menkes (1959, 1960) has extended Drazin’s analysis by including the inertial 
effects of density variation, which are found to be stabilizing. Hdmboe (1960) 
has modified Drazin’s model by letting p = Po sech2 (ylh).  This leads to the neutral 
curve J, = a( 1 - a) in place of Drazin’s result J, = a2( 1 - d), where a = iih and 
ii is the wave-number. 

Neither Drazin’s model nor Hdmboe’s modification thereof yields instability 
for a > 1, in striking disagreement with Goldstein’s result for 0 < J < &. It 
seems clear that the discontinuities in U’ and p at y = & h invalidate Goldstein’s 
result for sufficiently small wavelengths (large a), but it is not clear why his model 
should predict instability for very long wavelengths (small a). Indeed, we should 
expect the result for sufficiently long wavelengths to resemble that for Kelvin- 
Helmholtz instability of a vortex sheet. Assuming a small discontinuity 
Ap, (< p,) in density and a discontinuity AU in velocity, the latter model pre- 
dicts stability for (Lamb 1932, $232) 

k < 2gAPo/Po(AU)2, (1.3) 

or 
2 a = k h < g ( - ) ( $ )  APO = J  

2hPO 
(1.4) 

Curiously enough, Goldstein did obtain (1.4), as a --f 0, for the somewhat cruder 
model having U‘ constant in I y ]  < h and vanishing in I yI > h and density con- 
stant except for equal discontinuities at  y = rf: h (in contrast to the continuous 
density profile for the model described in the penultimate paragraph). Drazin’s 
model predicts stability for a < J8 as a+ 0, but Hdmboe’s modification leads to 
(1.4). The anomalous character of Drazin’s result evidently must be charged to 
the evanescence of his density profile as y -+ co.t 

2. Equations of motion 
The basic equations of motion for our model are the Euler equation 

q f + ( q . V ) q  = -p-1Vr,-gVY, 

P t + ( q * V ) p  = 0, 

v.q = 0, 

the condition of incompressibility 

and the equation of continuity 

where q, p and p denote vector velocity, pressure and density. We shall consider 

t Drazin (private communication) has pointed out that the limiting forms a - J$ and 
a N J,, a + 0, for the neutral stability boundttries in his original model and Holmboe’s 
modification thereof may be deduced from dimensional considerations. 
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only small, two-dimensional disturbances, noting that three-dimensional dis- 
turbances of the same wavelength generally are more stable (Yih 1955). Let 

q = (U+U,V>, P = Po-PAT, (2.4a, b )  

where u and v denote the x- and y-components of the perturbation velocity 
and q denotes the vertical displacement of a particle from its initial positi0n.t 
Introducing (2.4a, b) in (2.1)-(2.3) and neglecting terms of second order in u, ZI 

and y, we obtain the linearized equations 

DT - = 0, 
Dt 

(2.5a) 

( 2 . 5 b )  

and u, + vy = 0, 

where 

/3 is defined by (1.2), subscripts denote partial differentiation, and primes denote 
differentiation with respect to y. 

Taking the scalar product of (2.5a, b) with (u, v), substituting v from (2.6) in 
the product Pgvy, multiplying (2.7) by p -po, adding the results, and integrating 
over the domain under consideration, say (zl, x,)and (yl, y2), weobtain theenergy- 
transfer equation 

Denoting the z-integrals by a bar and assuming either that the disturbance is 
periodic in 2 (in which case the bar may be interpreted as implying an average 
over one wavelength) or that y and v vanish at z = f co (in which case the bar 
must be interpreted as implying integration from z = - co to z = + co), we may 
reduce (2.8) to (cf. Reynolds 1895) 

(2.9) 
a 
at -(T+ V )  = P + Q ,  

where (2.10) 

denotes the kinetic energy, 

(2.11) 

f Equation (2.46) expresses the fact that a particle at the instantaneous elevation y 
has the density corresponding to its original elevation y - 1. An alternative, and in some 
ways more fundamental, approach would be to introduce 1 as the displacement of a stream- 
line in intrinsic oo-ordinates &OT to linearization (cf. Miles, 1959). 

32-2 
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the potential energy, 
p = [ - (P -130) 9-71;: (2.12) 

the rate at which work is done on the perturbation flow by the external pressures 
at the boundaries y1 and yz, and 

Q = /"7U'dy  (2.13) 

the rate at  which energy is transferred from the mean flow to the perturbation 

flow by the Reynolds stress = -pou;i;. (2.14) 

We shall restrict the subsequent development to spatially periodic normal 
modes (see (3.1) below) for which P(y) > 0. We may regard such motions, in so 
far as they exist and are either neutrally stable or exponentially unstable, as 
the dominant components of an asymptotic approximation to the solution of 
appropriate initial-value problems provided that unstable motions growing 
more slowly than an exponential cannot exist.? A straightforward extension of 
the analyses of Eliassen et al. (1953) and Case (1960) leads to the conclusion that : 

I. The non-exponential growth of a small disturbance in a heterogeneous 
shear flow cannot be more rapid than ti(voz-l), where vnl is the maximum 
value of [ 1 - 4J(y)]*. 

I1 

It follows that : 

11. Dynamic instability of a statically stable, heterogeneous shear flow cannot 

We emphasize, however, that statically unstable flows (P < 0 in any finite 
y-interval) may, and generally will, exhibit dynamic instabilities of algebraic 
growth, even though all spatially periodic wave motions are stable. This last 
statement is amply illustrated by the results of Eliassen et al. as described above. 

be other than exponential. 

3. Periodic motions 
We now assume the spatially periodic wave motion 

r (x ,  y, t )  = P(Y) eiWz4, (3.1) 

where k is real, but c may be complex. In  accordance with the usual convention, 
we imply that the imaginary part of the right-hand side of (3.1) is to be discarded 
in the final reckoning; alternatively, we may regard P ( y ; k , k c )  as a double 
Fourier transform with respect to x and t ,  the corresponding spectral variables 
being k and kc. Substituting (3.1) in (2.5)-(2.7), we obtain 

u = - [ ( U - c ) q ] ' ,  9-7 = i k ( U - c ) q ,  p - p ,  = p , ( U ' - ~ ) ~ q ' ,  (3.2a, b , c )  

and (3.3) 
The differential equation (3.3) is especially convenient in the study of non- 

singular oscillations, but we may proceed more directly to the structure of the 

t The importance of aperiodic motions in hydrodynamic stability was recognized and 
developed by Orr (1907), who solved the initial-value problem for small disturbances of an 
inviscid, plane Couette flow. 

[Po( u - C)ZP']' +p@g - k2( u - c)2] P = 0. 
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general solution by eliminating the first derivative of the dependent variable 
through the transformation 

X(Y) = P h )  [WY) - CI m4). 

X”(Y) + h(y)  X(Y) = 0, 

h = /3g( u- c)-2-p;1(po U)’ ( U - c ) - l -  (k2+ p -  QP’). 

$(x, y, t )  = p&y) X(y) eik(z+t), 

(3.4) 

(3.5) 

(3.6) 

(3.7) 

Substituting (3.4) in (3.3), we may place the resulting differential equation in the 
standard form 

where 

We note that the stream function is given by 

and that X(y) eikQ-d) may be regarded as a stream function if the inertial effects 
of density variation are neglected, in which case (3.5) reduces to (the usual 
meteorological approximation) 

X”(y)+[/fg(U-c)-2- U”(U-c)-l-k2]X = 0. (3.8) 

Following Synge (1933), we also may reduce the differential equation for the 
stream function to standard form through the transformation 

= /oui%. 
under which (3.5) goes over to 

(3.9) 

(3.10) 

The point y = yc, defined by 

U(yc) = c, q = U‘(Y,) i 0, (3.11 a, b )  

and designated as the critical layer for the shear flow, is a regular singularity for 
each of the foregoing differential equati0ns.t The exponents of this singularity 
are +( 1 & v), where v = ip = ( I  - 4 4 4  (3.12) 

and J ,  is the Richardson number of (1.1) evaluated at  y = yc. Assuming that 
u is not an integer, and that U(y) and po(y) may be continued analytically into 
the complex neighbourhood of y = yc, we may apply the method of Frobenius 
to obtain two, linearly independent solutions to (3.5) in the form 

X*(Y) = (Y - YC)~(liV)“*(Y), (3.13) 

where w* are analytic functions of y in the neighbourhood of y = yc having the 
form 

(3.14) 

t The assumption U,‘ + 0 implies a simple zero of U - c  at y = yc. The singularity 
would be irregular if UL = 0. We shall not consider this possibility, but it clearly may be 
of considerable importance for jet-type flows. Indeed, Drazin & Howard (personal com- 
munication) have found that the most important longwave instabilities for jet-type shear 
flows are those for which c = U,,, so that 77: = 0. 
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The Wronskian of these solutions is 

W(X+, x-} = x,x: - x; x- = - Y. (3.15) 

The solution X -  degenerates if Y is an integer and, except under very special 
conditions (see below), must be modified to include a component proportional 
to X+(y) log (y - yc). The only statically stable flow in this category is that for 
which J ,  = 0 (Y = l ) ,  and the solutions then are essentially similar to those for 
homogeneous shear flow. We shall not consider them in any detail here, but we 
remark that the logarithmic component is proportional to the discontinuity in 
Reynolds stress at y = ye, as calculated in (5.13) and (5.14) below. The singularity 
at  y = yc is only apparent if this discontinuity vanishes, and both solutions to 
the differential equation then are regular. 

We may regard the singularity at y = yc as a consequence of either (a) our 
assumption of the periodic wave motion of (3.1), or ( b )  our neglect of diffusion 
effects; the branch cut at y = yc can be determined only after either (a) posing 
an initial-value problem and then determining its asymptotic solution as t -+ a, 
or ( b )  introducing the dominant diffusion effects and then determining the asymp- 
totic solution as the diffusion parameters tend to zer0.t The former approach 
(cf. Eliassen et al. 1953 and Case 1960) implies that the path of integration for 
the inverse transform in the kc spectral plane must pass above (kci > 0) the branch 
point at kc = k U ( y )  and hence that 

( U - c )  = ( c - U ) e f i r ,  k Z 0 .  (3.16) 

The latter approach usually has been adopted in considering the stabilityof 
homogeneous shear flow (see L 3.4, 3.6, 8.3-8.9), but in the present instance it is 
necessary to introduce both viscosity and heat conduction to resolve the question. 
The linearized equations of motion then constitute a system of the sixth order 
(cf. L5.2 and 5.3, adding the buoyancy force ( p  -po) g to the y-component of the 
perturbation pressure gradient in L5.2.2 and L(5.3.9)). We shall not present 
these equations here, but we remark that a boundary-layer analysis in the neigh- 
bourhood of y = yc leads to the conclusion that the order of magnitude of the 
actual thickness of the critical layer is given by (cf. L 8.8) 

8 = OC(lu1kPO U')! (KlluR)*l  ( 3 . 1 7 ~ )  

= O[Re-+Pr-+(l -y-1)4], (3.17b) 

where ,u denotes the viscosity, K the heat conductivity, R the universal gas con- 
stant, Re a Reynolds number based on wavelength, Pr the E'randtl number, and 
y the specific heat ratio. 

Much of the discussion of the next two sections will be concerned with neutral 
wave motions, for which ci = 0. We designate such motions as singular or non- 
singular as yc does or does not lie in the open interval (yl, y2). In the former case 

t We also might regard the singularity a t  y = ye tw a consequence of linearization, but 
it is by no means clear that the behaviour of the linear solution in the neighbourhood of 
y = yo could be resolved by a consideration of the non-linear, inviscid periodic flow. 
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we imply that the limit kcx = 0 must be approached through positive values, and 
(3.16) implies the transition relations (note that w*+ = w- for J ,  > 4 and y real) 

and 

where the asterisk denotes the complex conjugate and 

s = o ,  Y>Yc ( 3.1 9 a) 

= 51, kULzO (y < yc). (3.19 b) 

We emphasize that (3.19a, b)  are valid only for real y. 
We conclude this discussion by remarking that the singularity in X -  at 

y = yc for 0 < J ,  < 4 (but not for J ,  = 0) renders both the kinetic and the potential 
energies of (2.10) and (2.11) infinite for singular neutral modes. A specific 
example is provided by Drazin's results for singular neutral modes in the range 
9 < a2 < 1, where his solution is essentially X-;  for 0 < a2 < 4, on the other 
hand, his solution is X,, and the energy is bounded. We observe that these 
infinite energies are a consequence of our too-idealized model and could be 
removed by including diffusion effects. It also seems likely that these modes 
would contribute only a finite amount of energy to the solution of an initial-value 
problem for an ideal fluid provided that the Fourier transform of the initial 
disturbance were continuous in k .  

4. The eigenvalue problem 

spatially periodic wave motion (3.1) subject to the boundary conditions 
We shall consider the eigenvalue problem presented by the assumption of the 

rl = r2 = 0 or 3. = F2 = 0, (4.1 a, b) 

where the subscripts 1 and 2 imply evaluation at y = y1 and y = yz. Many of 
the subsequent results held for more general boundary conditions, but those of 
(4.1) hold for the most important cases of horizontal walls at finite values of 
y1 or yz and/or null conditions at infinity. 

Let 1 be a characteristic length, c* a characteristicvelocity, andB* a character- 
istic measure of /3 (we need not introduce an explioit scale for the density po in 
virtue of the invariance of the eigenvalue problem with respect to changes in 
this scale). We then may pose the secular equation for our eigenvalue problem 

where a = kl, h = p*g12/C$ J*, u = $*l (4.3a, b, c )  

are dimensionless, real parameters but c = c,+ic, may be complex. We may 
assume a > 0 without loss of generality. We define a neutral surface as a locus 
of eigenvalues for which ci = 0 in a (c,., a, A, a)-space. Such a surface will be 
a stability boundary if and only if there exist contiguous eigenvalues for which 
ci > 0 (unstable wave motions). 

We shall assume that U(y) and po(y) are regular functions of y in (yl, y2), 
that these functions may be continued analytically into a neighbourhood of 
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(yl,y2) that includes the singular point y = y,, and that neither U‘(y) nor p(y) 
vanishes in this neighbourhood; on the other hand, we do not exclude the end- 
points y1 and y2 as possible singularities of the differential equation. These 
restrictions, especially the requirements U‘ + 0 and ,8 =# 0, exclude interesting 
problems (although several of the following theorems, e.g. 8, obviously can be 
proved under weaker restrictions), but they guarantee that ci is a continuous 
function of the remaining parameters, and hence that the trajectory of a complex 
eigenvalue must terminate on a stability boundary. 

We fist remark that 

P* - ( U  - c)-lX* - (y - y,) W * V )  (y --f y,), (4.4) 

in consequence of which the boundary conditions (4.1 b)  imply that: 

111. The phase velocity c cannot be equal to U, or U,. 
We observe that this result could not have been inferred from the weaker 

boundary conditions v, = v2 = 0, since v - (U - c) F - (y - y,) * ( l r tV ) .  This 
paradox is a consequence of linearization, since the approximation v = ik( U - c) T,I 
is not uniformly valid in the neighbourhood of U = c. If p ; ( ~ ~ , ~ )  + 0, we may 
regard the boundary condition vl,, = 0 as a direct consequence of the physical 
requirement that a particle at y = yl,2 cannot have a density corresponding to 
an initial position in y 2 (cf. (2 .4b ) ) ;  but if p&~,.,) = 0 the corresponding 
boundary condition, and hence 111, becomes ambiguous as c -+ U1,,. 

Now let us suppose that cz > 0, so that U(y) =t= c in (y,, y2) and P(y) is regular 
there. Then, multiplying both sides of (3.3) by the complex conjugate P*, 
integrating between y1 and y2, integrating [po( U - c),  P I ’  P* by parts, and in- 
voking the boundary conditions (4.1 b),  we obtain (cf. L 8.2) 

g J; Po PIP I 2  dY = s,:” Po( u - c)2 ( IF’ I 2  + k 2 P  12) 4Y. 

CJv; 
(U - c,) (IP‘l2 + k21P12) dy = 0, 

(4.5) 

Equating the real parts of (4.5), we infer that: 

IV. Non-singular neutral modes cannot exist if p(y) < 0 in (yl, ya). 

Taking the imaginary part of ( 4 4 ,  we obtain 

(4.6) 

from which we infer that: 

V. The phase velocity c, for unstable modes (ci > 0) must lie between the 
maximum and minimum values of U(y) in [yl, y,]. This implies 

V, < c, < U, if U’ + 0 in (yl,y2). 

We emphasize that this last result is valid for any finite, positive value of ci. 
If ci -+ O+ it also may be inferred from VII below, subject to the restriction that 
/? and (po U‘)’ do not vanish simultaneously. This more restricted form of V was 
proved originally by Synge (1933) and, independently, by Yih (1957). Drazin 
(1958 b )  proved V as stated above after neglecting the inertial effects of the density 
gradient,. 
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A direct corollary of I11 and V, together with the restrictions guaranteeing the 

VI. A stability boundary consists of singular neutral modes-i.e. modes for 

We remark that the converse of VI is not necessarily true, for we have not demon- 
strated that unstable modes are contiguous to all singular neutral modes. We 
also remark that if I11 were not applicable (as it would not be for homogeneous 
shear flow), we would have to admit c = U. and c = U2 as possible end-points for 
the trajectories of complex eigenvalues and replace (yl, yz) by [yl, y2] in VI. 

continuity of ci, is: 

which ci = 0 and V(y) = c, in (yl,y2). 

5. The Reynolds stress 
We may deduce further important results for periodic motions in general, 

and for the eigenvalue problem of the preceding section in particular, from a 
consideration of the Reynolds stress defined by (2.14). Expressing u and 21 in 
terms of X with the aid of (3.1), (3.2a, b) and (3.4), and substituting the results 
in (2.14), we obtain (for real y) 

7 = *k(X'X*)ie2kcit, (5.1) 

where the subscript i implies the imaginary part. Differentiating (5.1) with 
respect to y and substituting X" from (3.5), we obtain 

( 5 . 2 ~ )  

(5.2b) 

(5.2~) 

(5.3) 

The boundary conditions (4.1) imply 

7. = T2 = 0. (5.4) 

First, let us suppose that ci + 0; then, since &/i3y cannot vanish identically, the 
Reynolds stress must have an extremum and h% must change sign in (yl,y2). 
This result, which constitutes the extension to heterogeneous shear flows of 
Rayleigh's theorem on the necessity of a flex (U" = 0) for an unstable mode in a 
homogeneous shear flow, also follows from the well-known oscillation theorem 
(Ince 1944, ch. XXI) for the differential equation (3.5) subject to the boundary 
conditions (5.4). It was proved originally by Synge (1933) and, independently, 
by Yih (1957) and Drazin (19588). Synge used it to prove that complex values of 
c must lie on one of the family of circles (with y as the family parameter) 

pol(p0 U)! [(c, - U)2 + ct] + 2Pg(c, - U )  = 0, (5.5) 

lC i l  G max.lPgPo/(Pou')'I. (5.6) 

provided that (po U')' and /3 do not vanish simultaneously, and hence that 

This result also was given by Yih (1957) except for an erroneous factor of 2.  
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Synge also proved that complex values of c must be confined to the interiors of 
the looped curves 

in2 [Po 1: po l  4 -2 [(c,  - U)2 + c%]2 - pol(p0 U)’ (c, - U )  [(c, - U)2 + c?] 

-Pg[(c,- V)Z-c$] = 0, (5.7) 

whichoverlap withthe circlesof (5.5) inaregion that cuts the real axisat c, = Urn, 
and c, = U;,. This region excludes c, = Urn, and includes c, = U,,, for 
ci > 0, so that Synge’s results confine the minimum value of c, more severely 
and its maximum value less severely than V above. 

We shall restrict the subsequent discussion of this section to neutral wave 
motions (ci = O).f The condition ci = 0 implies, through (5.2) and (5.3), that the 
Reynolds stress r must be constant except for possible discontinuities at y = ye. 
No such discontinuities can exist for a non-singular motion, in which case (5.4) 
implies T =  0. Only one such discontinuity is possible if U(y) is monotonic in 
(y l ,  y2), and a necessary condition for a singular neutral mode subject to (5.4) is 
that this discontinuity vanish to yield r = 0. We conclude that: 

VII. The Reynolds stress for any neutral oscillation vanishes identically for 
monotonic U(y) if J ,  > 0. 

More than one critical layer may exist if U(y) is not monotonic, however, and 
then the discontinuities in 7 may cancel to satisfy (5.4). 

We may calculate rather simple expressions for the Reynolds stress for neutral 
wave motions by posing a general solution to (3.5) in the form 

X(Y)  = AX+(!!) +BX-(Y).  (5.8) 

(5.9) 

Substituting (5.8) in (5.1) and setting ci = 0 + , we obtain 

7 = $k(lA(2X;XT + IBl”Xl_X. +AB*Xi ,XI  +A*BX;Xl_)i .  

Invoking (3.13) and (3.18a, b), we find that the first two terms in parentheses 
are real for J ,  < 5 (v real), whereas the last two terms are complex conjugates for 
J ,  > $ (Y = ip imaginary). In the former case, we have 

(5.10a) 

= (v+X+XI_)*e--idl+~)S (5.10b) 

- - ye-in(l+v)S + x+x:*,  (5.1 Oc) 

X i ,  X*_ = (X’+ X - ) *  e-in(l+v)S 

with the aid of ( 3 . 1 8 ~ ~ )  and (3.151, and we may reduce (5.9) to 

Similarly, we obtain 
7 = &kv{AB*e-i”(l+”s(~-ar,))i (J, < i). (5.11) 

(5.12) 

If J ,  = 0, we must distinguish betweenpL = 0 (heterogeneous flow with an ex- 
tremum in the density) and g = 0 (heterogeneous flow with negligible buoyancy 

t A necessary condition for any neutral motion is, from (2.9), P+Q = 0. Calculating 
P through (3.1) (3.2b, c), (3.4) and (2.12), we may express this condition in the form 
Q = - P =  T~ U, - T ~  77, - C(T,  - T ~ ) .  This reduces to P = Q = 0 under the boundary con- 
ditions (6.4). 

7 = $kp{ 1 A I 2 edi+/d W V - V ~  - I B I 2 en(i-p) WY--Y 4 (4 > $1. 
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force). In the former case we may approximate ,8 by - (pg/po U'), (U - c) and inte- 
grate (5 .2~)  between yc- and yc+ to obtain (of. L4.3) 

(5.13) 

whereas in the latter case 

(5.14) 

The results (5.11) to (5.14) hold for any neutral wave motion, independently 
of the boundary conditions at y, and y,. We shall proceed further on the assump- 
tion that U ( y )  is monotonic (U' += 0) in (y,, y,), so that only a single critical layer 
can exist and (5.8) to (5.12) remain valid throughout (yl, y,) for fixed A and B. 
Imposing the boundary conditions (5.4) on (5.11), we then obtain (AB*), = 0 
and AB* sin (nu) = 0, which imply either A = 0 or B = 0 (since u cannot be an 
integer), whence : 

VIII. A singular neutral mode X for which 0 < J ,  < $ must be simply pro- 

This theorem, which is illustrated by Drazin's (1958) results, is important in 
connexion with our previous observation that the modal energy associated with 
X -  is infinite if 0 < J ,  < t. 

portional to either X ,  or X-. 

Imposing (5.4) on (5.12), we obtain A = B = 0, whence: 

IX. Singular neutral modes cannot exist for monotonic U(y) if J (y )  > t in 

This result was stated by Synge (1933), who asserted that it follows directly from 
the fact that neither X, nor X -  can be real. This argument appears to overlook 
the fact that X, as given by (5.8), is real if B = A*, in consequence of which I X  can 
follow only after the invocation of appropriate boundary conditions.7 We have 
not, of course, ruled out non-singular neutral modes for J ( y )  > Q in (yl, y,). 

Now let us consider the possibility of unstable modes for J ( y )  > $ in (y,, yz). 
We can approach this question by considering the asymptotic behaviour of c as a 
function of the parameter h (see (4.2) and (4.3)), say c(h). We assume that J ( y )  is 
positive definite and of prescribed functional form, but that h may be varied. 
(It is perhaps simplest, conceptually, to imagine P(y) and U'(y) to be prescribed 
and g varied, but we also may prescribe P(y)/p* and U 1 ( y )  Z/c, and vary any or all 
of /3*, c*, 1 and 9.) Let h, be the minimum value of h for which J(y)  2 2 in (yl, 9,). 
Then, from IX, c(h) must either be definitely complex ( lcil > 0) or non-singular 
(real and not in [U,, U,]) for h > A,. Applying Liouville's method to ( 3 4 ,  we 
obtain the asymptotic solutions 

(Yl, Y2). 

Invoking the boundary conditions X ,  = X ,  = 0, we obtain 

(5.16) 

Prof. Synge (private communication) agrees with this statement. 
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as the asymptotic form of the secular equation. Assuming U' += 0 in (yl, yJ, we 
see that (5.16) can be satisfied only if c is real and not in [U,, U,], corresponding to 
a non-singular neutral mode. It follows that c,(h) = 0 for h > A,, and hence that: 

X. Sufficient conditions for the stability of a heterogeneous shear flow are 
U'(Y) * 0 and J(Y) $in (Y*,Yz). 

6. Concluding remarks 
The most important questions left unresolved by the preceding analysis appear 

to concern (u) the conditions under which a locus of singular neutral modes 
constitutes a true stability boundary, and (b )  the significance of singular neutral 
modes having infinite energies. It appears unlikely that (a) could be resolved 
satisfactorily without fist resolving (b ) .  

It also would be desirable to give further consideration to non-montonic 
velocity distributions, but this would appear to raise some difficult mathematical 
questions. 

I am indebted to my colleague Jorgen Harlmboe for several stimulating discus- 
sions of the problems considered here and to P. G. Drazin for helpful criticism 
and for bringing my attention to Synge's work. 
This work was supported by the United States Atomic Energy Commission 

under Contract AT (11-1)-34, Project 34. 
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