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Abstract. The surface mixed layer of the ocean is often characterized
by density compensation between the horizontal temperature and salinity
gradients. In this contribution we present a combination of theoretical
arguments and numerical simulations to investigate how compensation might
emerge as a result of processes at work within the mixed layer. The dynamics
of the mixed layer are investigated through a simple model. The model
consists of a pair of coupled advection-diffusion equations for heat and salt.
The coupling arises through a nonlinear diffusion operator proportional to the
buoyancy gradient, which parameterizes the combined effect of slumping and
mixing of small-scale horizontal buoyancy gradients. Numerical solutions of
the mixed layer model show that the nonlinear diffusion creates compensation
between the temperature and salinity gradients, while the stirring field
maintains alignment between the two gradients. The results of this work
suggest a new parameterization of the horizontal fluxes of heat and salt for
numerical models of the mixed layer.

1. Introduction

Observations show that the thermohaline structure
of the surface mixed layer (ML) of the ocean is largely
compensated. In other words, temperature and salin-
ity fronts coincide so that the resulting density contrasts
are small relative to the individual contributions of heat
and salt. This phenomenon has been known for some
time for certain fronts at scales of a few tens to one
hundred kilometers (Roden, 1975; Rudnick and Luyten,
1996). Recent high-resolution observations have shown
that compensation exists down to horizontal scales of
tens of meters in the North Pacific (Rudnick and Fer-
rari, 1999; Ferrari and Rudnick, 2000) and throughout
the global ocean on scales of kilometers (Rudnick and

Martin, 2001). An example from a horizontal tow in the
ML of the Subtropical North Pacific is given in Figure 1.
Notice how almost all fluctuations of temperature are
mirrored in salinity so that density gradients are mini-
mized.

One explanation of these observations is that atmo-
spheric forcing conspires to create and juxtapose water
masses with compensating properties. However the ra-
tio of heat to freshwater density fluxes is variable in
large scale maps (Schmitt et al., 1989) and in time se-
ries at a point (Weller et al., 1985), so internal ocean

dynamics is required to account for the observed com-
pensation. Young (1994) and Ferrari and Young (1997)
propose a more satisfactory explanation that relies on
regulating mechanisms at work in the ML. These theo-
retical arguments suggest that compensation is the re-
sult of the preferential diffusion of horizontal density
gradients which occurs because of the combined action
of unbalanced motions and vertical mixing.

The physical explanation of the theory of Young and
collaborators is as follows. Horizontal gradients of tem-
perature and salinity can arise in the ML in response
to non homogeneous atmospheric forcing and entrain-
ment of thermocline waters. At some locations temper-
ature and salinity will compensate each other exactly,
whereas in other locations temperature and salinity will
create strong horizontal density gradients. Much of the
ML will lie between these two extremes. The strong
density gradients slump under the action of gravity and
tend to restratify the ML. Vertical mixing eventually ar-
rests this unbalanced motion by remixing the ML. This
mechanism is essentially thermohaline shear dispersion,
where the shear is driven by the horizontal density gra-
dient, and the vertical mixing results from the variety
of processes that mix the ML. On the other hand, com-
pensated fronts are balanced and therefore do not expe-
rience shear dispersion. The net result is that density
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fronts are diffused, while compensated fronts persist.

The preferential diffusion of horizontal density gradi-
ents can be represented with mixing parameterizations
in which the transport of heat and salt depends nonlin-
early on the density gradient, e.g., with diffusivities pro-
portional to some power of the density gradient (Young,
1994; Ferrari and Young, 1997). In this paper we ex-
amine the establishment of thermohaline compensation
by implementing these nonlinear diffusive parameteri-
zations in a simple model of the ML. Numerical solu-
tions show that the thermohaline structure of the ML
is generated by a balance between the mesoscale strain-
ing field, that acts to increase temperature and salinity
gradients, and the nonlinear diffusion, that arrests the
formation of density gradients but not of compensated
gradients. In agreement with observations, temperature
and salinity gradients tend to be aligned, because both
heat and salt are advected by the same straining field,
and compensated.

The mechanism of compensation described above im-
plicate vertically sheared currents within the ML and it
is not included in numerical models with bulk MLs. In
the last section of the paper we show how to simplify
the nonlinear diffusive parameterization so that it can
be implemented in ocean circulation models to improve
the representation of ML thermohaline dynamics.

The paper is organized as follows. In section 2, we
revisit the arguments of Young and collaborators in the
context of the parameterization of diapycnal fluxes in
the ML. In section 3, we describe numerical simulations
used to test the nonlinear diffusive parameterization of
heat and salt transports in the ML. In section 4, we
suggest a simplified version of the nonlinear diffusive
parameterization to be implemented in bulk ML mod-
els. Finally, conclusions are offered in section 5.

2. Horizontal transport of heat and salt

in the mixed layer

Let us consider the dispersion of some tracer of con-
centration θ in the ML. We model the ML as a vig-
orously mixed, shallow layer, characterized by a small
aspect ratio, i.e., with a depth H much less than the
horizontal scale. The main point here is that there are
two very different time scales: a fast time scale τV over
which the layer is mixed vertically over the depth H
and a longer time scale τH associated with horizontal
transports.

The mathematical model for the transport of a tracer
θ stirred by an incompressible velocity field u is the
familiar advection-diffusion equation,

∂tθ + u · ∇θ = κ∇2θ, (1)

together with appropriate boundary conditions. The
operator on the RHS represents the diffusion of tracer
fluctuations by molecular motions and κ is the molec-
ular diffusivity. The equation in (1) is appropriate to
describe the transport of θ at scales from a few millime-
ters to thousands of kilometers. However, the resulting
description is overly complicated. Our goal is to derive
a simpler model that describes transports in the ML at
large scales and long times by averaging the equation
in (1) over short times and short scales. The key step
in the analysis is to find appropriate scales for the av-
eraging so that we can derive a closed equation for the
averaged concentration θ̄ by folding all the details of
the small scale motions in a suitable operator D that
depends on averaged variables, i.e.,

∂tθ̄ + ū · ∇θ̄ = D(ū, θ̄), (2)

where ū is the averaged velocity field.

Some very popular ML models, referred to as bulk
models (e.g. Kraus and Turner, 1967), choose to aver-
age over the depth H of the ML and the characteristic
time of vertical mixing τV . This choice is quite natural,
because the turbulent fluxes that homogenize vertically
the ML are due to processes such as convection and
Langmuir cells, characterized by coherent eddies which
span the depth H and have an aspect ratio close to one.
In these models, the operator D parameterizes all the
processes that maintain the ML well mixed in the ver-
tical. A problem arises when bulk ML are implemented
in circulation models that resolve horizontal scales that
are orders of magnitude larger than H . In this case
one has to average the tracer equation over H in the
vertical, but over a scale L > H in the horizontal. A
typical solution is to parameterize in series the motions
on scales shorter than H and those on scales between
H and L1. That is, the same operator D is retained
to describe the fluxes that mix vertically the ML, but
a lateral effective eddy diffusivity is introduced to pa-
rameterize the fluxes at larger scales. Here we show
that unbalanced horizontal motions with characteristic
scales between H and L act in parallel with the turbu-
lent motions on scales shorter than H . Therefore it is
necessary to modify the operator D and parameterize
all unresolved motions together.

Let us average equation (1) over the depth H in the
vertical, over a scale L > H in the horizontal and over
a time τH > τV . The scales L and τH have only lower
bounds, but are not specified for the moment. We ob-
tain the Reynolds’ averaged equation,

∂tθ̄ + ū · ∇H θ̄ = −∇H · u′θ′ + κ∇2
H θ̄ + F . (3)

1See Garrett (2001) for a discussion of parameterizations of
unresolved motions in parallel and in series.
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Figure 1. Potential temperature (red line), salinity (blue line) and potential density (black line) from a horizontal SeaSoar
tow at 50 m in Subtropical North Pacific, at 140 degrees west, between 28 and 30 degrees north. This depth is in the middle
of the local mixed layer. The vertical axis for temperature and salinity are scaled by the respective expansion coefficients so
that excursions of temperature and salinity show the change they imply on density.

Here θ̄ and ū are the averaged velocity and averaged
tracer concentration and θ ′ and u′ are departures from
those averages. F represents the flux of tracer induced
by the boundary conditions at the top and bottom of
the ML. The notation∇H is used to remind that deriva-
tives are taken only in the horizontal, because the av-
eraged quantities do not depend on the vertical coor-
dinate. In order to simplify the discussion, we assume
that H is a constant independent of position (for more
on this point see Young, 1994; Garrett and Tandon,
1997).

The next step is to express the first term on the
RHS (called “eddy flux divergence”) in terms of aver-
aged quantities. Mixing-length theories are a common
way to achieve this goal. The argument goes that a
fluid particle carries the value of a conserved, and hence
transferable, tracer for some length l ′, before it is mixed
with its new surroundings. We give a vectorial nature
to l′ to allow for situations which are not isotropic. If
the particle has a concentration of scalar typical of its
surroundings then the eddy flux of tracer θ is given by

u′θ′ = −u′l′ · ∇H θ̄, (4)

where it is assumed that ∇H θ̄ varies little over distances
comparable with the mixing length l′. The tensor u′l′

defines the eddy diffusivity.

In the special case when the statistics of the velocity
field are homogeneous and isotropic, the eddy diffusivity
tensor is a constant, and the eddy transport assumes the

form of a down-gradient Fickian diffusion:

u′θ′ = −k∇H θ̄, (5)

This kind of closure is commonly applied to ML models
and the two relevant scalars (temperature and salinity)
are diffused with the same eddy diffusion coefficient,
and are independent from each other.

However in the ML there are lateral inhomogeneities
in the buoyancy2 field at scales larger than H . Hor-
izontal buoyancy gradients slump under the action of
gravity and drive horizontal eddy fluxes. Therefore we
expect the transport of tracer to be in the direction of
and to increase with ∇HB. This breaks the assump-
tions of homogeneity and isotropy. Therefore a down-
gradient Fickian diffusion cannot be used to model the
ML at scales larger then H . A more appropriate ex-
pression for the diffusivity tensor is,

u′l′ = γf(|∇HB̄|)∇HB̄∇H B̄, (6)

where γ is a constant and f(|∇HB̄|) a non-dimensional
function whose form depends on the details of the
hydrodynamic instabilities that dominate in the eddy
field. The expression (6) is rationalized as follows. Ac-
cording to mixing-length theories, the diffusivity tensor

2Buoyancy B is defined as ρ = ρ0
[
1− g−1B

]
, where ρ is

the fluid’s density, ρ0 is a constant reference density and g is the
acceleration of gravity. With this definition, B has the dimensions
of acceleration.
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can be expressed in terms of the characteristic velocity
veddy and length leddy of the transfer process, that is
u′l′ ∝ ueddy leddy. In our case the length scale is given
by leddy = ueddy τV , where τV is the time for which
the slumping process acts, before it is arrested by the
turbulent fluxes that mix vertically the ML. The eddy
velocity is in the direction of ∇HB̄ with a magnitude
proportional to |∇HB̄|. Thus we get the expression in
(6), where the tensor ∇HB̄∇HB̄ arises from the direc-
tion of the eddy velocity field and γf(|∇HB̄|) is a pos-
itive semidefinite term that determines the magnitude
of the flux. Notice that both the unbalanced motions at
scales larger than H and the turbulent fluxes at scales
shorter than H enter in the closure in 6. That is the
processes of slumping and mixing act in parallel.

Plugging (6) into (4) gives the eddy tracer flux,

u′θ′ = −γf(|∇HB̄|)
(
∇HB̄ · ∇H θ̄

)
∇HB̄. (7)

Notice that, even though the flux is in the direction of
∇B̄, u′θ′ · ∇θ̄ < 0. Thus the flux of tracer tends to
be down the tracer gradient, but only the projection of
the tracer gradient along the direction of the buoyancy
gradient contributes to the flux.

We now apply the closure in (7) to the advection-
diffusion equations for heat and salt in the ML,

∂tT + u · ∇T =

= γ∇ ·
[
f
(
|∇B|

)(
∇B · ∇T

)
∇B

]
+ FT , (8)

∂tS + u · ∇S =

= γ∇ ·
[
f
(
|∇B|

)(
∇B · ∇S

)
∇B

]
+ FS , (9)

where FT and FS represent the thermohaline fluxes
from the top and bottom of the ML. We dropped over-
bars and we replaced ∇H with ∇ for convenience, but
keep in mind that all variables are averaged over scales
larger thanH and times longer than τV and that deriva-
tives are taken only in the horizontal. We assume a lin-
ear equation of state and measure T and S in buoyancy
units units, so that,

B = T − S. (10)

The nonlinear advection-diffusion equations (8) and (9),
together with (10), form a closed system whose solution
is fully determined once the forcings FT and FS and the
large scale velocity field u are prescribed.

By adding and subtracting (8) and (9), we obtain
closed equations for buoyancy and spice V = T + S
(Veronis, 1972; Munk, 1981), viz.,

∂tB + u · ∇B =

= γ∇ ·
[
f
(
|∇B|

)(
∇B · ∇B

)
∇B

]
+ FB ,(11)

∂tV + u · ∇V =

= γ∇ ·
[
f
(
|∇B|

)(
∇V · ∇B

)
∇B

]
+ FV ,(12)

where FB = FT − FS and FV = FT + FS . We can
now see how the equations in (11) and (12) model the
development of compensation in the ML. The prod-
uct f

(
|∇B|

)(
∇B · ∇B

)
must be an increasing func-

tion of |∇B| to be consistent with our assumption that
eddy fluxes are driven by buoyancy gradients. Under
this constraint, the nonlinear diffusion always dissipates
buoyancy, even more so when |∇B| is large. Also spice
is dissipated where |∇B| is large. However large val-
ues of |∇V | can survive in regions where |∇B| is small.
In terms of temperature and salinity this means that
compensated fronts, for which ∇T ≈ ∇S persist, while
buoyancy fronts are short lived.

Young (1994) and Ferrari and Young (1997) derive
formally equations of the form of those in (8) and (9)
to parameterize the transport of heat and salt on hori-
zontal scales of a few kilometers in the ML. These theo-
retical works are examples of the closures we have been
discussing when the averaging is done over the depth of
the ML, over horizontal scales of a few kilometers and
time scales of a few hours. Nonlinear diffusion arises
because the horizontal transport of heat and salt is by
shear dispersion, and the shear flow doing the disper-
sion is driven by slumping horizontal buoyancy gradi-
ents. The strength of the shear dispersion increases
as the horizontal buoyancy gradient squared, that is
f
(
|∇B|

)
= 1 in (8) and (9).

At scales larger than the Rossby radius of deforma-
tion Ro, unbalanced motions are influenced by rotation
in the form of baroclinic instability. Therefore, if one
is to parameterize the transport of heat and salt on
horizontal scales larger than Ro, say 10 km for a typi-
cal ML, the closure must include the transports due to
eddies generated at baroclinically unstable gradients.
Green (1970) and Stone (1972) derived expressions for
the tracer fluxes generated by baroclinic waves. Their
results predict that the baroclinic eddy fluxes across
a buoyancy gradient are proportional to the absolute
value of the diapycnal buoyancy gradient. Green and
Stone considered only zonally-averaged models and did
not investigate the direction of the fluxes. If their ar-
guments are extended to two horizontal dimensions to
parameterize diapycnal fluxes of heat and salt in the
ML, one obtains nonlinear diffusion equations of the
form in (8) and (9) with f(|∇B|) = |∇B|−1. Notice,
however, that a full parameterization of baroclinic in-
stability should include the eddy fluxes along isopycnals
as well (Marshall and Shutts, 1981). This issue is not
pursued further here, because we focus on the role of di-
apycnal fluxes on the establishment of the temperature-
salinity relationship in the ML.

Chris Garrett, during the meeting, suggested that
symmetric instability might also drive thermohaline
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fluxes in the ML. Haine and Marshall (1997) used nu-
merical simulations to study what hydrodynamical in-
stabilities control the transfer of buoyancy through the
ML on scales of some tens of kilometers. Their conclu-
sion is that nonhydrostatic baroclinic instability pro-
vides the dominant mode of lateral buoyancy transfer.
However symmetric instability plays an important role
during the slumping process by setting to zero potential
vorticity along isopycnal surfaces. Clearly more work
need to be done to formulate a closure that takes into
account the effects of both symmetric and baroclinic
instabilities.

3. Thermohaline alignment and

compensation in the mixed layer

The nonlinear advection-diffusion equations in (8)
and (9) are now used to investigate how compensation
appears in the ML. Suppose that spatial variations in
temperature and salinity are created by surface fluxes
that vary on large horizontal scales. Mesoscale stirring
will create small-scale temperature and salinity gradi-
ents by stretching and folding the large scale thermo-
haline patterns. Large density gradients will disappear
quickly as a result of nonlinear diffusion, while com-
pensated gradients will persist for longer times. Thus
we expect that the temperature and salinity gradients
present at small scales at any particular moment will be
typically compensated. We are now going to test this
scenario with a numerical model.

3.1. Numerical model

The parameterization in (8) and (9) is tested with nu-
merical simulations in which temperature and salinity
are advected using a velocity field generated by solving
the equivalent barotropic equations in the streamfunction-
vorticity formulation,

∂tζ + J(ψ, ζ) = −µζ + ν∇6ζ + Fζ, (13)

where ψ is the streamfunction, ζ = ∇2ψ the relative
vorticity and J the Jacobian operator. The forcing Fζ is
applied in spectral space at a scale of 6 km with constant
amplitude and random phases. The bottom drag coef-
ficient is set to µ = 3 · 10−6 s−1 and the hyper-viscosity
to ν = 3 · 106 m6 s−1. The result is a two-dimensional
turbulent field with meandering vortices of a diameter
of approximately 3 km (half the forcing scale) and RMS
velocities of 0.1 m s−1 (Figure 2). The domain of inte-
gration is a biperiodic square of 51.2× 51.2 km2 with a
mesh of 100 m. This is a poor model of the mesoscale
dynamics of the ML. In particular we are neglecting
feedbacks between the buoyancy and the velocity fields.
But our goal is to show that compensation develops at
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Figure 2. Snapshot of the vorticity field obtained by in-
tegrating the equivalent barotropic equations. The typical
size of vortices is about 3 km, that is half the wavelength of
6 km at which the vorticity equation is forced.

scales small scales, regardless of the details of the stir-
ring field and, in this context, the model in 13 suffices.

The temperature and salinity equations in (8) and
(9) are integrated with f(|∇B|) = 1, that is we use the
closure in Young (1994) and Ferrari and Young (1997).
The value of γ is set to 1014 m2s3 appropriate for typical
ML parameters (details in Ferrari and Young, 1997).
However the qualitative results discussed in the rest of
this paper do not depend on the particular choice of
f(|∇B|).

Temperature and salinity are forced with orthogonal
sinusoidal patterns, that is we set FT = F0 cos qx in the
RHS of (8) and FS = F0 sin qy in the RHS of (9). The
sinusoids have a wavelength equal to the domain size,
i.e., q = 2π/51.2 km−1. The amplitude F0 is chosen
such as to have thermohaline fluctuations of 1◦C and
0.35 psu, at the scale of the domain. These forcings do
not to impose any correlation between temperature and
salinity fluctuations. Further details on the numerical
code are given in Ferrari and Paparella (2001).

3.2. Complex density ratio

It is common to quantify compensation in terms of
the density ratio, defined as the change in buoyancy due
to temperature divided by the change in buoyancy due
to salinity,

R1D ≡

̂ · ∇T


̂ · ∇S
, (14)

where temperature and salinity are defined in buoyancy
units, and 
̂ is the direction along which the cut is taken.

In two-dimensions, it is convenient to introduce a
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complex density ratio as,

R ≡
Tx + iTy
Sx + iSy

. (15)

The complex density ratio has both a magnitude and a
phase, R = |R| exp(iφ): |R| is the ratio of the magni-
tudes of the temperature and salinity gradients and φ
is the angle between them. If the gradients are parallel
(φ = 0◦) or antiparallel (φ = 180◦), there is thermoha-
line alignment and the definition of R in the complex
plane is equivalent to that in (14) regardless of the ori-

entation of 
̂. When |R| > 1, the change in buoyancy
due to temperature is greater than the change in buoy-
ancy due to salinity along the direction of ∇B, that
is |∇B · ∇T | > |∇B · ∇S| and the buoyancy-front is
temperature-dominated. The opposite is true if |R| < 1
and the buoyancy-front is salinity-dominated. The par-
ticular case |R| = 1 and φ = 0◦ describes thermohaline
compensation.

Because the magnitude of the complex density ratio
is infinite when the salinity gradient vanishes, we char-
acterize fronts in terms of the phase φ and the Turner
angle,

Tu ≡ arctan |R|, (16)

choosing the branch where 0 ≤ Tu ≤ π/2. All statistics
will be computed in terms of φ and Tu. For convenience,
results are discussed in terms of φ and |R|, because their
values are more familiar.

In the following we use the joint pdf P(Tu, φ) to de-
scribe the degree of alignment and compensation in the
ML. The joint pdf is normalized according to

∫ π/2

0

dTu

∫ 2π

0

dφ P(Tu, φ) = 1. (17)

3.3. Results of numerical simulations

For the simulations we use kilometers to measure dis-
tances and hours to measure time. Therefore vorticity
is given in h−1 and buoyancy in km h−2. We set to zero
the initial vorticity, temperature and salinity. After an
initial transient of several eddy turnover times, kinetic
energy, enstrophy, temperature and salinity variances
settle to a constant value; i.e. the system reaches an
equilibrium between the variance input by the forcing
at large scales and dissipation at small scales.

In Figures 3 and 4, we show snapshots of spice and
buoyancy 700 h after the beginning of the simulation.
It is difficult to recognize in these snapshots the large
scale patterns of buoyancy and spice imposed by the
forcing described in section 3.1. But the sinusoidal pat-
terns emerge clearly if one averages the fields over times
of the order of a few hundred hours. At small scales the

two fields are remarkably different. A comparison of the
black contours in the two figures shows that gradients
of spice are sharper than those of buoyancy: buoyancy
contours are evenly spaced, while spice contours are ex-
tremely packed in a few regions and widely spaced in
others. Sharp spice gradients with no signature in buoy-
ancy imply ∇T ≈ ∇S, i.e., thermohaline compensation.

The small scale variability in Figures 3 and 4 is
produced by stirring the large scale thermohaline pat-
terns. The temperature and salinity gradients, com-
puted across the grid spacing of 100 m, are typically
aligned. Alignment occurs because the isolines of T
and S are stretched by the same stirring field and thus
both tracers end up with gradients pointing in the same
directions (Hua, 2001). This is shown through the joint
pdf P(Tu, φ) (Figure 5). The overwhelming majority of
points in the pdf have angles very close to either φ = 0◦

or φ = 180◦. But this is not the whole story, because
not all values of |R| are equally probable along those
two angles. The pdf has a clear peak at R = 1. This
is the signature of nonlinear diffusion which selectively
dissipates all gradients whose density ratio is different
from one and establishes compensation. Stirring alone
does not produce a single peak in the pdf, because it
acts only on the relative orientation of ∇T and ∇S but
not on the ratio of their magnitudes. This was checked
by running a simulation in which the nonlinear diffusion
was set to zero. In this limit, the pdf P(Tu, φ) is indeed
collapsed along the angles φ = 0◦ and φ = 180◦, but it
does not have a single mode.

Compensation is not maintained always and every-
where in the domain. There are regions, in Figures 3
and 4, where buoyancy and spice gradients are compa-
rable. This happens when the stirring field momentarily
creates large buoyancy gradients at small scales. These
gradients do not persist for long, though, because non-
linear diffusion restores compensation in a few hours.
At any time, a one dimensional cut through the do-
main shows many compensated fronts and some rare
buoyancy fronts. This result agrees with the thermo-
haline structure found by Ferrari and Rudnick (2000)
in the ML of the Subtropical North Pacific (Figure 1),
where almost all temperature and salinity fluctuations
are compensated.

4. Implications for numerical models of

the mixed layer

In the previous sections we have suggested that the
thermohaline compensation observed in the ML is con-
sistent with preferential diffusion of horizontal buoy-
ancy gradients. The theoretical argument implicates
vertically sheared currents within the ML as the agent
which produces the preferential horizontal transport of
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Figure 3. Snapshots of spice at the same time of figures 2
and 4. The colored pattern hints at the large-scale sinu-
soidal checkerboard, imposed on the spice field through the
thermohaline forcing.
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Figure 4. Snapshots of buoyancy at the same time of
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scale sinusoidal checkerboard, imposed on the buoyancy field
through the thermohaline forcing. At small scales buoy-
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Figure 5. Joint pdf P(Tu, φ) of the complex density ratio R
defined in section 3.2. The azimuthal position in the radar
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during which the simulation was in equilibrium. Nearly all
points lie along the line of alignment, that is at angles φ = 0◦

and φ = 180◦. The maximum of the pdf is at R = 1 and
shows that thermohaline fronts are typically compensated.

density. Numerical models with bulk MLs do not in-
clude this physics. The purpose of this last section is
to suggest a simple parameterization of ML horizon-
tal transports that might improve the representation of
thermohaline dynamics in numerical models with bulk
ML.

Bulk ML parameterizations ignore the potential en-
ergy stored in horizontal buoyancy gradients. But we
contend that the release of this potential energy plays
an important role in establishing compensation. The
system in (11) and (12) describes the horizontal dynam-
ics of the vertically-averaged fields and could be imple-
mented in a bulk ML model. However the nonlinear
diffusive terms on the RHS of (11) and (12) are difficult
to integrate numerically. In small regions with large
buoyancy gradients the diffusive constraint on the time
stepping becomes severe (Ferrari and Paparella, 2001)
and the whole calculation proceeds very slowly. The
path we follow here is to derive a substitute model that
retains the basic physics of (11) and (12), but that is
easy to integrate numerically. That is we write a linear
model that diffuses horizontal buoyancy gradients more
efficiently than spice gradients in the following way,

Bt + u · ∇B = κB∇
2B, (18)

Vt + u · ∇V = κV∇
2V. (19)
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By setting κB � κV buoyancy gradients decay faster
than spice gradients. The main advantage of the model
in (18) and (19) over that in (11) and (12) is that the
diffusivities are independent of the buoyancy gradients
and therefore the diffusive constraints on the time step-
ping do not grow unbounded.

In order to match observations, the two diffusivi-
ties κB and κV must be chosen such that compensa-
tion happens mostly at scales below 10 km (Ferrari and
Rudnick, 2000). That is the dissipation cutoff scale for
buoyancy must be of the order of 10 km, while the dis-
sipation cutoff scale for spice must be smaller. The
dissipation cutoff scale for buoyancy can be estimated
as,

Ldiss ≈

√
κB
σ
, (20)

where σ is the RMS strain rate of to the mesoscale eddy
field u. A reasonable strain rate in the ML is of the or-
der of 10−5 s−1. By imposing Ldiss ≈ 10 km, it follows
that κB ≈ 103 m2 s−1. The choice of κV is somewhat
arbitrary, but it should be a couple of orders of magni-
tude smaller than κB , so that there is at least a decade
between the cutoff scales of spice and buoyancy.

The final step is to write the linear model in (18) and
(19) in terms of temperature and salinity, by using once
more the linear expressions for buoyancy B = T−S and
spice V = T + S,

Tt + u · ∇T = κ+∇
2T − κ−∇

2S, (21)

St + u · ∇S = κ+∇
2S − κ−∇

2T, (22)

where κ+ = (κB + κV )/2 and κ− = (κB − κV )/2. The
coupling between the salt and heat fluxes in (21) and
(22) is formally similar to the Soret and DuFour effects
that operate on a molecular level (Caldwell, 1973). The
main difference is that, in the present case, all terms
in the RHS of (21) and (22) are of the same order and
none can be neglected. Only for κB = κV , the coupling
between temperature and salinity disappears.

The parameterization in (21) and (22) has been
tested by integrating the equations with the velocity
field and thermohaline forcings described in section 3.1.
The lower panel of Figure 6 shows the pdf of the merid-
ional density ratio at a scale of 3 km obtained with the
linear model. The pdf has a clear peak at R = 1, as
in the observations (upper panel of Figure 6). Notice
that the large scale density ratio for the same simula-
tion is uniform. Thus compensation is a result of the
parameterization in (21) and (22), and is not due to the
external forcing.
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Figure 6. Probability density function of the horizontal
mixed-layer Turner angle across a distance of 3 km along
25-35 degrees in the North Pacific (upper panel) and across
the same distance in a simulation with the proposed mixed
layer parameterization (lower panel). The values of Turner
angle and density ratio are indicated on the upper and lower
axes. The pdfs have a peak close to R = 1 and represent
thermohaline fields characterized by buoyancy compensa-
tion.

5. Conclusions

We have shown that the ubiquitous compensation
of thermohaline gradients observed in the ML is consis-
tent with the theoretical arguments of Young (1994) and
Ferrari and Young (1997). Compensation can be ex-
plained as the preferential diffusion of horizontal buoy-
ancy gradients which occurs because unbalanced motion
due to these gradients is stronger in the ML than in the
more nearly geostrophic interior. The horizontal pres-
sure gradients associated with the buoyancy gradients
produce “exchange flows” which act to restratify the
ML in the vertical. The turbulent fluxes, that contin-
uously mix the ML in the vertical, oppose the restrati-
fication and weaken the horizontal buoyancy gradients.
This process is essentially shear dispersion of buoyancy,
where the shear flow is driven by the density gradients
themselves.

The theoretical arguments of Young and collabora-
tors implicate that eddy fluxes of heat and salt in the
ML are in the direction of the buoyancy gradients and
act to weaken the horizontal buoyancy stratification.
That is, the thermohaline diapycnal fluxes remove the
energy stored in horizontal buoyancy gradients. The sit-
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uation is reversed below the ML base, where the avail-
able potential energy is believed to be removed by adi-
abatic processes. The difference in the two cases is that
there are strong diabatic motions in the ML at small
scales, while flows are mostly along isopycnals in the
ocean interior. Expressions like the one in (7) might be
a first step toward a better parameterizations of diapy-
cnal fluxes in the ML.

We implemented the nonlinear diffusive parameteri-
zation of heat and salt in a simple, idealized model of
the ML. Numerical simulations showed that buoyancy-
driven diffusion is complemented and locally enhanced
by the mesoscale stirring field. The strain in the ve-
locity field continuously creates thermohaline gradients
at small scales. Nonlinear diffusion selectively removes
buoyancy gradients. As a result at any single time typi-
cal temperature and salinity gradients are compensated,
in agreement with the observations of Ferrari and Rud-
nick (2000). Our model does not include any feedback
between the velocity field and buoyancy, as due to ro-
tation. An obvious direction for future research is to
investigate whether this feedback plays an important
role in the establishment of the temperature-salinity re-
lationship of the ML.

Our discussion emphasized the role of diapycnal
fluxes in removing horizontal buoyancy gradients. A
question arises as to what maintains the long-lived
buoyancy fronts observed at some locations in the ML
(e.g. Roden, 1975; Rudnick and Luyten, 1996). First,
these fronts have horizontal scales of a few tens of kilo-
meters. The buoyancy-driven fluxes, discussed above,
are mostly active at scales shorter than, say, 10 kilome-
ters and are weaker at larger scales. Second, ML fronts
are believed to be maintained by surface forcing or by
convergences in the velocity field. When this is the case,
the diapycnal thermohaline fluxes do not remove com-
pletely the buoyancy gradient. Instead an equilibrium
is reached between nonlinear diffusion and forcing. The
result is a buoyancy front in which temperature and
salinity partly oppose each other, but do not compen-
sate. Observations indeed show partial cancellation of
the thermohaline components at many ML fronts.

We also derived a linear model that reproduces the
preferential diffusion of horizontal buoyancy gradients.
The linear parameterization produced realistic distribu-
tions of the density ratio in a simple, idealized model
of the ML. It remains an open question whether the
new parameterization would produce realistic diapyc-
nal fluxes and water mass conversions, if implemented
in high-resolution ocean models with bulk ML.
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