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of these processes exert zonal forces on the jet that al-

Abstract ter its speed and shape. The wave structures and asso-
ciated fluxes developed by the idealized model are com-

Motivated by the mean current and stratification structupared with observations of the EUC.

associated with the Equatorial Undercurrent (EUC), we Keywords:

examine the stability and wave propagation characteris-instability, internal waves, jets, stratified shear flow.

tics of a highly idealized model flow: the asymmetrically

stratified jet. This is a parallel shear flow in which the

depth-varying current has the sédbrm of a Bickley jet. 1 Introduction

The stratification has a step function structure: the buoy-

ancy frequency takes uniform values above and below #glominant component of the tropical ocean current sys-

center of the jet, with the larger value occurring belowem is the equatorial undercurrent (EUC), a region of in-

The spectrum contains three classes of unstable norigaise turbulence associated with shear instability and in

modes. Two are extensions of the sinuous and varicdéeenal gravity wave radiation. Our purpose here is to ex-

modes of the unstratified Bickley jet; the third has nglore some of the fundamental properties of instability

been described previously. The asymmetric stratificatiBRd wave radiation in this regime via stability analysis and

structure allows instabilities to radiate gravity wave emumerical simulation of a simple model flow.

ergy from the upper flank of the jet to the lower flank, The EUC flows eastward at a depth of approximately

where it encounters a critical layer. From here, wave etB0m, spans a meridional range of a few hundred km cen-

ergy may be reflected, absorbed or transmitted. Absotered on the equator, and has a maximum speed near 1m/s.

tion results in wave saturation and momentum transferfbe current is a nearly permanent feature in both Atlantic

the mean flow, in close analogy with the breaking of orand Pacific oceans, and is forced by the zonal pressure
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gradient that builds up due to westward transport of suvhose instability mechanisms are both broadly relevant
face water by the Trade Winds (e.g. Veronis (1960), sard accessible to detailed study (as opposed to the highly
Qiao and Weisberg (1997) for a recent discussion). Intesmplex and flow-specific instabilities of measured cur-

annual fluctuations in the strength of the Pacific EUC aments, e.g. Sun et al. (1998)). Our hypothesis is that the
an integral component of the El Nino - Southern Oscill&UC exists, on average, in a nearly stable state, but that
tion (ENSO) cycle. this state is frequently perturbed by fluctuations in forc-

Lnsq. The flow adjusts to these perturbations via a range

Shear on the upper and lower flanks of the EUC driv > stabilit hani that lead t w1 .
much of the strong turbulence that characterizes the eq(aal—nS abiiity mechanisms that fead to property fiuxes via

torial oceans (Moum et al., 1989; Peters et al., 1989). ngves and turbulence. We begin here with a model that

. . L isolates the dominant features of the shear and stratifica-
resulting vertical momentum flux distributes momentum

input from the wind into the upper ocean and thereby prtcln(—)n that characterize the EUC,

vides a partial counterbalance to the zonal pressure grathe stability characteristics of the EUC are governed in

dient (Hebert et al., 1991). The EUC is also a region tafrge part by a distribution of stable density stratification

strong internal gravity wave (IGW) activity, which maythat is asymmetric with respect to the current. In partic-

also account for significant momentum fluxes (Moumlar, stratification tends to be weak on the upper flank of
et al., 1989; Lien et al., 1996). Dillon et al. (1989) founthe current, which includes the wind-driven South Equa-

that momentum fluxes due to turbulence act over a r&drial Current and the surface mixed layer (figure 1a,b).

atively shallow layer adjacent to the surface (i.e. mu@ecause of this asymmetry, typical values of the gradient
shallower than the layer over which the zonal pressuRéchardson number tend to be smaller on the upper flank
gradient acts), and therefore suggested that fluxes doken close to or less than the critical value 1/4) and larger
to IGW are also needed to explain the observed curremthe lower flank (figure 1c).

structure. o
Unstable modes of a jetlike current such as the EUC

Application of normal mode stability analysis to theach possess a pair of critical levels (levels at which the
EUC began with Sutherland (1996), who demonstratetean flow velocity matches the phase velocity of the
that the upper flank of the EUC may support shear imode), one on each flank of the jet. A wave energy flux
stabilities that act to radiate energy downward in the forimcident on a critical level interacts with the mean flow,
of IGW. Mack and Hebert (1997) and Sun et al. (1998)ith the result that it is divided into reflected, absorbed,
showed that the dominant IGW signal observed in tlamd transmitted components. The details of this division
equatorial Pacific is associated with this class of instabilepend largely on the local value of the gradient Richard-
ties. Using observed profiles of velocity and density, Sson number,R:. If Ri < 1/4 at the critical level, the
et al. (1998) demonstrated that shear instability can flwave may be over-reflected, i.e. it may gain energy from
momentum to the deepest reaches of the EUC, in acdbe mean flow during the interaction, so that the sum of
dance with the suggestion of Dillon et al. (1989) discuss#te reflected and transmitted components is greater than
above. In order that these results be applicable undeha incoming flux. This process is thought to be a central
range of equatorial flow regimes, the mechanisms of inst&pect of shear instability (e.g. Lindzen and Tung, 1978;
bility must be understood more thoroughly. To this en§myth and Peltier, 1989). Ri > 1/4 at the critical level,
we are analyzing a sequence of simple models that comer-reflection cannot occur, and waves lose energy to the
verge towards an accurate representation of the EUC amelan flow. In this case, trapping of wave energy near the
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critical layer leads to turbulent breakdown via convectin ~ °
instability (Winters and D’Asaro, 1993; Lin et al., 1993 -20f
Winters and D’Asaro, 1994). -407

—60}

@ ) " © @)

The asymmetric distribution of stratification in the EU(
raises the possibility of modes that have local Richar _
son number less than 1/4 at the upper critical level t%‘l‘"”
greater than 1/4 at the lower critical level. In such a cas 120}
we expect that wave energy will be radiated from the u  -140f
per critical level downward through the jet core and 1 -ie0f
the lower critical level. Some of this energy will ther _ig|
be reflected back to the upper critical level, sustainit _,,l_. ‘ P [ . < S
the instability. Some of the energy may be transmitte 0U (Er)ﬁsls)l ONZ (10-35-2) ° 1r3i e :zmzt(és) w0
through the lower critical level, possibly propagating to
great depths. Finally, some energy may be absorbed atftigire 1:Observations taken aboard the R/V Wecoma’aY
lower critical level, causing momentum transfer and tuk40°W, during the Tropical Instability Wave Experiment (Lien
bulent mixing. The pattern of turbulence observed in ti§éal-, 1995). Profiles are averaged over year days 311-315, in-
EUC is suggestive of the processes described above, ItV of 1991 (a) Zonal velocity, (b) squared buoyancy fre-

enhanced turbulence occurring on the lower flank of tﬁgency, (c) gradient Richardson number (the vertical line marks

. . . . . _the critical value 1/4), (d) kinetic energy dissipation rate.
jet where the Richardson number is relatively high (fig- » @) & P

ure 1d,z < —160m). This mechanism is analogous to
the saturation of orographic gravity waves in the middle.

o a jet with stratification larger above its core are obtained
atmosphere. Parameterization of the momentum flux grlﬁlially from the present results

vergences generated by that wave-mean flow interaction - e . . ,
9 9 y Instabilities of the stratified Bickley jet were first stud-

has tl.Jrned out to. be c'rumal to the accuracy of atm%-d numerically by Hazel (1972). This work was contin-
sp_herlc general circulation models (e.g. Lindzen, 198uléd by Sutherland and Peltier (1992) and Sutherland et al.
Fritts, 1989). (1994), who added a region of uniform flow to the cen-
Here, we investigate instability and wave radiation iter of the jet. Here, we extend these investigations by al-
the EUC using the simplest possible model, the asymmietving the stratification to be asymmetric with respect to
rically stratified jet (figure 2). The undercurrent is reghe current. Sutherland (1996) studied waves and insta-
resented by a seéhvelocity profile, i.e. a Bickley jet bility specific to the EUC using a model that included the
(Drazin and Reid, 1981). The buoyancy frequency is deeundary at the surface, but which represented the mean
scribed by a step function whose value changes at the caurrent as a hyperbolic tangent shear layer, thus isolating
ter of the jet (see section 2 for details). This model the upper flank the EUC. He allowed stratification to be
relevant to any jetlike current that exists far from boundveaker above the shear layer than below, and showed that
aries in the presence of asymmetric stratification, atntbis promotes the growth of unstable modes that couple
spheric jet streams being another example. To correspefffitiently with the deeper IGW spectrum. The Bickley
with the EUC, we let the larger value of the buoyancy fréet employed in the present study provides a more realistic
guency occur in the lower half-space, but the propertiesrepresentation of the EUC than the shear layer, and allows

—8ot
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us to extend the results of Sutherland by looking explicit ~ 25 T ‘ ‘
at the reflection, absorption and transmission of energy 21 @ ® ©]
the lower critical level. In future publications, we will ex- 151 R Y L] /
tend this model to include effects of the surface bounde 4| L L .
and the SEC, as well as the seasonal thermocline. He ;]
we focus on the effects of asymmetric stratificationinis | A S B e |
lation from such complications. We approach the stabili
of the asymmetrically stratified jet as a problem of ge
eral relevance, as well as focussing on those aspects n ] Ll
germane to the EUC. ] |
Background flow profiles used in the analyses are ¢
scribed in section 2. Section 3 contains the main rest 7, 05 1 0 o1 02 03 0 1 2
of the investigation. Linear stability analyses are usc. v N? Ri
to establish the spectrum of normal mode instabilities at ] o ]
. o . Figure 2: Background profiles defining the asymmetrically
various values of stratification parameters. In sectlonSAﬂ,altifie d jet. (a) Velocity: (b) Buoyancy gradient: (c) gradient
the results are tested in the nonlinear regime by mean%ghardson number. For this cask, — 0.25 andJu = 0.05.
two-dimensional numerical simulations. The results are
compared with observations of gravity waves the EUC in
section 5. Section 6 contains a summary and concludilrrllga
discussion.

fluid where density is controlled only by temperature,
0 is proportional to the temperature deviation. The initial
nondimensional buoyancy field is defined (up to an arbi-
2 Background states trary additive constant) by

Our mathematical model employs the Boussinesq equa- 9 Ju, 2>0
tions in a physical space measured by the Cartesian co- N? = @9(%9’%0) = I <0 ®3)
ordinates{z,, ., z,}. For most analyses, flow will be o=
restricted to ther, andz, directions. Asterisks are usedrpe constants/;; and.J;, are bulk Richardson numbers
to indicate dimensional quantities; all other quantities ajigat characterize upper and lower layer stratification in
nondimensionalized using velocity scaleand the length comparison with the shear associated with the jet.
scaleh,.

The nondimensional velocity field (z, y, z, t) is given

att = 0 by the standard Bickley jet: 3 Linear stability analyses of nor-

U(z,y,2,0) = sechz. @) mal modes

A nondimensional buoyancyi(z, z,t), is defined in
terms of the density(x, z, t), its representative valye, 3.1 Methods

and the gravitational acceleratign as
The stability analyses are based on the usual Taylor-

g PP 9o @ . : _ o
- Goldstein equation for linear normal modes of an inviscid,

Po u2
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stratified, parallel, Boussinesq shear flow: tions:
- W = i) 8)
L ey =0 @ i= .
= (u—c), —uv
) N2 PU/dz? o7 7(a22+ e
T T ©® ="

For each set of background profiles (i.e. for each set of
The streamfunction has been assumed to have the noragl o5 forJ;, and.J;y), we scan over to identify classes
mode form: of unstable modes. We then choose representative mem-
bers of each class for more detailed study. The typical
U(x, z,t) = U(2) + uip(z) explia(xz — ct)]  (6) choice is the mode for which the exponential growth rate,
given byo = ac; wherec; is the imaginary part of the

in which 12 is an ordering parameter andandc are the Phase speed, is a maximum.

nondimensional streamwise wavenumber and phase veenergetics of the linear, inviscid model are described
locity. Only the real parts of the perturbations are phy<ty the perturbation kinetic energy equation:

cally relevant. We assume that the modes of primary inter- OK _ _du T 4wl — QW o )

est are two-dimensional (i.e. the wavevector is parallel to ot 0z 0z

the background flow), but oblique modes are obtained e-la-g—e overbar indicates a honzontal average and primes de-
ily via Squire’s transformation (Drazin and Reid, 1981'3Ote fluctuations about that average. = (“/2 + wlz)
and will be discussed where relevaiif(z) — —d¥ /d= is the perturbation kinetic energy andis a scaled pres-
andN? = dO/dz are the background profiles of velocityﬁ The remaining quadratic quantities,’, w'¢" and

" correspond to vertical fluxes of horizontal momen-
and buoyancy gradient (squared buoyancy frequency) as
given by (1) and (3). tum, buoyancy and kinetic energy. To compute the flux

profiles, the real parts of the relevant eigenfunctions are
To minimize boundary effects, we impose the rad'at'(?ﬂumphed then averaged over one wavelength insing

condltlondz/)/dz = iy¢) at both upper and lower bo”ndthe standard relatiomy’ — 1Rea(a*b)
aries, with the sign of; chosen in each case to eliminate A useful quantity for the characterization of energy par-

incoming waves (Hazel, 1972; Sun et al., 1998). The rl‘ﬁlomng is the flux Richardson number, defined here as
sulting eigenvalue problem is solved numerically using [wd
w z

the multiple shooting method of Hazel (1972). Because Ry = —"—x—. (10)

uw'w'dz
linear theory does not specify absolute mode amplitudes, /
The momentum flux./w’ is of additional interest because,

at second order ip, it affects the mean flow via the evo-

we normalize the eigenfunctions so that

. lution equation
max = 1. _
—— = g uw.
ot 0z
Eigenfunctions for perturbation quantities other than tfdis effect is of central importance in the application of

streamfunction are recovered using the polarization retas results to the EUC.
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Figure 4: Eigenmodes of the most unstable sinuous (a) and
Figure 3: Nondimensional growth rate (a) and phase speggricose (b) modes for the unstratified Bickley jét (= Ju =
(b) as a function of nondimensional wavenumber for unstaj§ | eftmost column gives the magnitude of the eigenfunction
modes of the classical Bickley jef{ = Ju = 0). Symbol size §(2) (solid curve), normalized by its maximum value, as well as
varies linearly with phase speed to aid in identification. Bulletge phase normalized Byr (dashed curve). Remaining columns
indicate the fast growing mode in each class. show vertical fluxes of energy’w’ and momentumi/w’, re-
spectively. Shaded boxes indicate the region between the upper
and lower critical levels.

3.2 Results

As a point of departure, we briefly review the sinuous and
varicose instabilities of the Bickley jet with, = J =0 UPPer and lower critical levels, as is evident from the en-

(Drazin and Reid, 1981). Figure 3 shows spectra of tRL9y flux profiles in figure 4. Each mode is configured so
growth rate and phase speed, indicating the existencédf© flux momentum outward away from the jet core, thus
the two classes of unstable modes whose properties V&Jding to broaden and weaken the jet.

continuously as a function of wavenumber. Each classWe now begin our discussion of stratification effects
exhibits a well-defined wavenumber at which the growthith a survey of the growth rate of the fastest growing
rate is a maximum (bullets on figure 3). The sinuous modede at each point on thHe, Ji) plane (figure 5). The
dominates at all wavenumbers, and attains its maxim@pecial case/;; = Jr, was investigated by Hazel (1972)
growth rate neary = 1 (figure 3a). The varicose mode isand, as a limiting case, by Sutherland and Peltier (1992).
most unstable at twice the wavelength, and exhibits highfes J; = J;, increases, the growth rate drops monoton-
phase speeds than the sinuous mode. Figure 4 showdahlly and vanishes neafy, = J, = 0.13. The na-
eigenfunctions of the fastest-growing members of eattlre of the dependence of the growth rate on stratification
mode class. The streamfunction of the sinuous mode (fidgranges when eithef;, or Jy (but not both) exceeds a
ure 4a) is even with respect to= 0, whereas the varicosecritical value, which ranges between 0.17 and 0.22 (thin
mode is odd, i.e. undergoes a phase shift at 0. Each curves on figure 5). In this regime, the growth rate be-
mode extracts energy from the mean flow near both tbemes nearly independent of the larger of the two strati-
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Figure 6: Nondimensional growth rate (a) and phase speed
0z % o3 o035 o4 (b) as a function of nondimensional wavenumber for unstable

L modes of the asymmetrically stratified jet wifh = 0.09 and

) Ju = 0. Labels indicate the mode classes. Symbol size varies
Figure 5: Growth rate of the most unstable mode as a fu”ﬁhearly with phase speed.

tion of Jr and Jy. Thin curves indicate the boundaries be-

yond which instability becomes approximately independent of

the larger ofJr andJy. Bullets indicate points at which more

detailed analyses are described later in this section. ification acts to damp the S mode slightly and the V mode

more strongly (figure 6). In addition, growth rate maxima
for both modes are shifted to higher wavenumbers. Both

fication parameters. Instability persists at arbitrarily largodes disappear at low wavenumbers and are replaced by
values of the stratification in either the upper or the low@mhew mode class, denoted “R". The existence of this new
half-space, as long as the stratification in the other hgipde is the main result of the present investigation, and
space is sufficiently weak. It is this asymmetric stratifits characteristics will be described presently.
cation regime that is of primary interest to us in this pa- The reason for the preferential stabilization of the V
per. We will demonstrate that instability in this regime ihode is evident upon inspection of the energy flux profiles
driven by a previously undiscovered mechanism. in figures 7a and b (second column). Not surprisingly,
We first examine the effect of adding weak stratificdoth the S and V modes have lost their symmetry about
tion to the lower half-space by settinfy, equal to 0.09. z = 0. The S mode now extracts energy from the mean
The analysis now reveals three distinct classes of unstatidey preferentially at the upper critical level, while the V
modes (figure 6). Eigenfunctions for the fastest-growingode extracts energy mainly at the lower critical level.
member of each class are shown in figure 7. Two of thde V mode is thus affected more strongly by the stable
mode classes are extensions of the sinuous and varicgisatification in the lower half-space. This distinction is
modes of the unstratified case, and we will refer to theatso evident in the buoyancy flux profiles (fourth column),
as the S and V modes, respectively. The presence of stwdtich indicate that the V mode does more work against
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substituting (11), and assuming that the flux vanishes at
the boundaries, we obtain

d¢ [ww'dz

-180 0 180 -40 -30 -20 -10 0 dt f ﬂdz

-40 0 40
The integral of the momentum flux thus indicates the di-
rection in which the centroid moves as the mode grows to
finite amplitude. The flux due to the S mode tends to raise

-8 0 8

-2 0 2

(13)

-0 o o -0 -0 -0 o the centroid of the jet. This finite-amplitude effect moves

the shear away from the stratified region, the overall effect
of which is to lower the Richardson number and enhance
the growth of the instability. In contrast, the V mode acts

o o5 1 Sige o 0 m S o o o tomove the jet downward into the stratified region.
Y "’,,/2" Energy Flux x 10° Momentum Flux x 10° Buoyancy Flux x 10°

The new mode class seen in figure 6 resembles the S
raode in that it extracts energy from the mean flow pri-

Figure 7:Eigenmodes of the most unstable S (a), V (b) and R~ i - .
marily near its upper critical level (figure 7c). As a re-

(c) modes for the asymmetrically stratified jet wilh = 0.09
and.Ji = 0. Leftmost column gives the magnitude of the eige@_ult, it does relatively little work against gravity. The
function<)(z) (solid curve), normalized by its maximum valueNew mode differs most dramatically from both the S and
as well as the phase normalized by (dashed curve). Remain-V modes in the region below the lower critical level: it
ing columns show vertical fluxes of energyw’, momentum drives strong fluxes of energy, momentum and buoyancy
w/w’ and buoyancy)’w’, respectively. Shaded boxes indicatgownward into the lower half plane. The tilt in the phase
the region between the upper and lower critical levels. profile of the eigenfunction indicates a uniform phase pro-
gression with depth, indicative of wavelike signal propa-

_ _ ) ) ?ation. In other words, the phase speed and wavelength
gravity, relative to its amplitude, than does the S mode. of this mode are such that it excites an IGW field in the

every cells-e, the buoyancy flux is strongly focussed at 1irdsver half plane having a real vertical wavenumber. For
lower critical level.

The flux Richardson numbers of thﬁﬂs reason, we refer to the new instability as the R (for

V and S modes are 0.44 and 0.16, respectively. Note that.. ..
] “‘radiating”) mode.
the momentum flux due to the V mode (figure 7b, third

. B _ Note that the amplitude of the R mode is not uniform
column) is nearly flat except near the critical levels. This . - . .
. | ch stic of K bilities (Eli In the region below the jet; rather, it decays exponentially
is a general characteristic of weak instabilities (ElasseR 1 This behavior should not be confused with
and Palm, 1961). . .
_ evanescence, the decay of signals that do not resonate with
The asymmetry of the momentum flux has an interest- : .
nd imolication for th ] fihe i ol Thany propagating mode. The decay seen here is due to the
g 'mF’ ication for t .e m(.)tlo_n O. t ?Jet as a whole. ?act that the source of the radiation is a disturbance that
centroid of the velocity distribution is . L .
grows exponentially with time. The wave amplitude also
¢ = J zudz (12) grows exponentially with time at any fixed depth. At a
Judz fixed time, however, the signal is strongest at points near-
where the integrals cover the (possibly infinite) verticaist to the source. Exponential growth is also responsible

extent of the flow. Differentiating with respect to time, for the nonzero buoyancy flux carried into the lower half
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o2r 1 Figure 9: Eigenmodes of the most unstable R (a) and S (b)
% 02 oz o5 o8 T 7 T modes for the asymmetrically stratified jet wifla = 0.25 and

Ju = 0. Leftmost column gives the magnitude of the eigen-
function ¢(z), normalized by its maximum value, as well as

Figure 8: Nondimensional growth rate (a) and phase Speﬁﬁde phase normalized B. Remaining columns show vertical
(b) as a function of nondimensional wavenumber for unstat%l

) T lixes of energy’w’, momenturmu/w’ and buoyancy’w’, re-
modes of the asymrnetrlcally stratified jet wifa = 0'25_ and spectively. Shaded boxes indicate the region between the upper
Ju = 0. Labels indicate the mode classes. Symbol size varies

i ] and lower critical levels.
linearly with phase speed.

increased to 0.28, indicating that the mode expends a sig-
plane by the R mode. nificant fraction of the energy it gains from the mean flow

Next, we examine the effect of stronger stratification A doing work against gravity.

the lower half-space, the cagge = 0.25. The V mode is The modes shown in figure 9 clearly illustrate our
now entirely stabilized, and the growth rate of the faste$typothesized mechanism in which gravity waves are
growing R mode is faster than that of the fastest-growit@nched by instability on the upper flank of the jet, prop-
S mode (figure 8). Turning to the energy flux profiles (figgate downward through the jet core, and are absorbed at
ure 9, second column), we see that the R mode still the lower critical level. Note in particular the intense di-
diates energy into the lower half plane as in the previo¥grgence of the momentum flux just above the lower criti-
case, but that energy flux is much weaker than before (& level of the S mode (figure 9b, third column). At finite
ative to the amplitude of the perturbation streamfunctioaMplitude, this divergence will lead to a rapid decelera-
cf. figure 7c). Although the wavelength and phase speli@n of the mean flow and consequent upward migration
allow the R mode to resonate with a free IGW mode, vef§ the critical level in analogy with orographic waves in
little of the mode’s energy is able to penetrate beyond thte atmosphere (Fritts, 1989). This mechanism may ac-
lower critical level. The S mode also fluxes very little erount for turbulence observed on the lower flank of the
ergy into the lower half-space and, as before, it does #d¢C (figure 1d) and may play an important role in the
resonate with any vertically propagating mode. For bof@hal momentum balance.

modes, the buoyancy flux is focussed near the lower criti-Having looked closely at the specific casés = 0,

cal level. The flux Richardson number of the S mode hdg = 0.09 and J;, = 0.25, we now take a broader
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@ to be destabilized as soon dg is increased above zero
(though it is difficult to detect numerically at very small

R Jr). The R mode becomes the dominant instability for
Jr > 0.22. The growth rate continues to increase with
increasing stratification, up to and beyond the larghkst

08 value shown here. The reasons for this relative freedom

(b) ~—
o7 " \\ from buoyancy damping will be explored below.

Both the R and V modes have much larger phase speeds

o than the S mode, indicating that their critical layers are
0.4
located close to the jet core, while the critical layers of
© the S mode lie further out on the flanks of the jet (figure
N 10b).
3
osF---- - For all modes, the dominant wavenumber increases

,/‘/——’ slightly with increasing stratification. The R mode is the

longest, exceeding the S mode in wavelength by a factor
(d) of three or more at ali;, (figure 10c). This difference
1 accounts for the R mode’s ability to couple efficiently
>~05 / with freely propagating gravity waves in the lower half-
space. In fact, the R mode is the only mode that cou-
0 005 01 o5 02 "JZ:’ 03 o 04 oss 05 ples to a free mode with real vertical wavenumber (figure
10d). The vertical wavenumber at which the R mode radi-
Figure 10: Scalar properties of the fastest growing modes &4€S increases strongly with increasing stratification. Over
functions of stratification parametel, for the case/y, = 0. the range shown in figure 10, the vertical wavenumber is
Thin, thick and dashed curves indicate the fastest-growing SaRout twice the horizontal wavenumber.

and V modes, respectively. (a) Growth rate. (b) Phase speed. (Crhg |ocal Richardson number at the lower critical level,
Streamwise wavenumber. (d) Real vertical wavenumber of tih‘ﬁL

corresponding free mode, given by (5).

varies approximately in proportion té;, and is
nearly the same for all three modes. Because the V mode
grows by extracting energy from the mean flow at the
lower critical level, we expect that it will be damped for

view of the dependence of the stability characteristics & iz > 1/4. In fact, i, =0.18 at the largesf;, for

the asymmetrically stratified jet upon the lower stratificj¢hich the V mode is unstable. For largér, only the two

tion parameter/;, . Figures 10, 11 and 12 show variougodes that extract energy at the upper critical level are
scalar properties of the S, V and R mode classes as fusgstable.

tions of J, with J; = 0. For each class, the mode il- In general, instability in strongly stratified cases re-
lustrated is that which maximizes the growth rate. Thiires that modes be configured so as to expend only a
S and V modes are both stabilized by the stratificatiosmall fraction of their energy uptake in doing work against
the former is damped entirely faf;, > 0.3, while the gravity. Because its energy source is in the stratified re-
latter is damped fot/;, > 0.1. The R mode appearsgion, the V mode expends a large fraction of its energy

10
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Figure 11: Scalar properties of the fastest growing modes &sgure 12: Scalar properties of the fastest growing R mode
functions of.J;, for the case/y = 0. Thick, thin and dashed as functions of/;, for the caseJy = 0. (a) Angle between
curves indicate the fastest-growing S, R and V modes, respt wavevector and the x axis. (b) Growth rates of the fastest
tively. (a) Gradient Richardson number at the lower criticairowing mode (dashed) and the fastest growing two-dimensional
level. (b) Flux Richardson number. mode (solid).

working against gravity. By the time the mode disapvavevector. Oblique modes are therefore expected to oc-
pears at/;, = 0.1, its flux Richardson number is abougur in pairs, having equal growth rates and phase speeds
0.5 (figure 11b). The flux Richardson number of the I8t directed at opposite angles from the streamwise direc-
mode increases more slowly, reaching a value 0.38 at tig#. Smyth et al. (1988) noted that the fastest growing
largest.J;, for which the instability exists. In contrastmode is oblique in any region of parameter space where
the R mode is configured so as to do relatively little woitke growth rate increases faster thal{? (where.J is a
against gravity even at the largekt values included here, bulk Richardson number).

and is therefore able to grow despite strong stratificationin the present case, the growth rate of the R mode in-

in the lower half plane. creases faster thzamé/2 for all J;, less than 0.25. Fig-

The fact that the R mode is destabilized by stratificiif® 12a shows the angle by which the wave vector of the
tion raises the possibility that the fastest growing mod@stest growing mode departs from the x axis. This angle
may be oblique, i.e. it may have a nonzero spanwise coplarge for small/.,, but decreases to zero by, = 0.25.
ponent to its wavevector. In unstratified flow, Squire’she R mode is therefore two-dimensional over most of
theorem (Drazin and Reid, 1981) shows that, while th&e largeJ,, values for which it is the fastest growing in-
always exist, no oblique mode can be the fastest growability. An exception to this occurs in the small range
ing. In the presence of stratification, however, Squird%s22 < Jr < 0.25, where a three-dimensional R mode
theorem is modified so that the growth rate of a thredominates. However, the difference in growth rate be-
dimensional mode is related to that of a two-dimensiorf4feen this and the corresponding two-dimensional mode
mode at higher bulk Richardson number (e.g. Smyth al§dess than one half percent (figure 12b). In the nonlinear
Peltier, 1990). Any mode class whose growth rate ifimulations described in the next section, we will examine
creases with increasing stratification has the potentialtyg-dimensional modes only.
have an oblique mode as its fastest growing member. AdNe complete the description of the linear normal modes
long as the mean flow is parallel, the growth rate is af the asymmetrically stratified jet by returning briefly to
ways even with respect to the spanwise component of the case in which the upper level stratification parame-

11
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© 1'? - Figure 14: Eigenmodes of the most unstable R mode for the
8 skl asymmetrically stratified jet witl/;, = 0.25 andJy = 0.05.
0 Leftmost frame gives the magnitude of the eigenfuncth),
@ normalized by its maximum value, as well as the phase normal-
*os // ized by27. Remaining frames show vertical fluxes of energy
0 p'w’, momentumu/w’ and buoyancy’w’, respectively. Shaded
e boxes indicate the region between the upper and lower critical
L levels.
0
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0 cating that their critical levels have moved toward the jet
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 i .
I core. The streamwise wavenumbers at which the modes

are most unstable are not significantly changed from the

Figure 13: Scalar properties of the fastest growing modes 36, = 0 case (figure 13c), but the vertical wavenumber at

functions of /., for the case/y = 0.05. Thick, thin and \\ hicy the R mode resonates is reduced (figure 13d). Be-
dashed curves indicate the fastest-growing S, R and V modes e .

_ calise the stratification is now nonzero at the upper critical

respectively. (a) Growth rate. (b) Phase speed. (c) Streamwise

i vel, the two modes (S and R) that extract their ener
wavenumber. (d) Real vertical wavenumber of the correspong- ( ) 9y

ing free mode. (e) Flux Richardson number. Gradient Richarfr(-)m the mean flow in that region do more work against
son number at the upper (f) and lower (g) critical level. gravity, with the result that their flux Richardson numbers
are generally higher (figure 13e). The gradient Richard-
son number at the upper critical level is now nonzero in
all cases, but it remains substantially smaller than 1/4 for
ter Jy is nonzero. Scalar parameters f@y = 0.05 each unstable mode (figure 13f). The gradient Richardson
are shown as functions of, in figure 13. Comparing number at the lower critical level (figure 13g) is slightly
with the caseJy = 0 (figures 10 and 11), we see thateduced, but it retains the property of being essentially
the growth rates are reduced by the upper level stratégual for the fastest growing mode of each class. The R
cation. The S and V modes are damped at lower valuasde at/;, = 0.25, Jy = 0.05 now shows a significant
of Jr, , and the asymptotic growth rate of the R mode atioyancy flux at the upper critical level, but its tendency
large J, is reduced by about one half. The phase speddsradiate energy into the lower half-space is unchanged
of all modes are increased somewhat (figure 13b), inflem the J;; = 0 case (figure 14, cf. figure 9a).

12
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4 Nonlinear simulations 00 _ 0y 96 _ 0oy ob (15)
ot 0z 0r  Ox 0z
1 _
The unstable normal modes described in the previous sec- + @vz(e —0) + Dy(z,2,t)
tion have the potential to grow to large amplitude, and
thus to generate large fluxes of energy and momentum and W=V (16)

a vigorous turbulent energy cascade. Since linear theoryry, fieldsw(z, 2,t) and<(z, 2,t) represent vorticity
tells us nothing about the amplitude a given instability will , 4 the streamfunction respectively, while:, z, t) rep-

attain, it does not allow us to evaluate the strength of thgs€ o nts the buoyancy as before. The Reynolds number
processes in any real geophysical system. To estimale_ , 1, /,, represents the reciprocal of the nondimen-
the actual fluxes and mixing rates requires solution of tg, | kinematic viscosityPr denotes the Prandt! num-
fully nonlinear initial value problem. To do this in deye he ratio of viscosity to scalar diffusivity. For the
tail, particularly for a flow of geophysical scale, is beyongresem experiments, we choage = 300 and Pr = 1.

the scope of the present study. However, a strongly CQfhte that the diffusion operators are not applied to the
strained nonlinear model offers the opportunity to malf%rizontally-averaged flow (denoted by overbarsp,

useful first estimates. represents a radiative damping term to be described be-
Because the dominant linear instabilities of parallgyy,

shear flows tend to be two-dimensional, it makes senserhe numerical model approximates solutions to the ini-
to investigate their evolution to large amplitude via simyga| value problem defined by (14-16), together with peri-
lations in which motions in the third dimension are SU@'diC boundary conditions in and flux-free boundary con-
pressed. In these simulations, the effects of small-scglgons at the upper and lower limits of the computational
turbulence are represented only crudely via a diffusion afomain. Spatial discretization is Fourier pseudospectral
erator. Aspects of the flow for which these motions afg the horizontal, second-order centered difference in the

crucial, such as turbulent mixing at critical levels, canngértical. Temporal discretization is via a second-order
be evaluated with any confidence. However, these simifams-Bashforth method.

lations are expected to deliver realistic amplitudes for thejn order to mimic the radiation boundary conditions

large-scale aspects of the flow evolution, in particular t@@nployed in the linear analyses (section 3.1), the compu-
fluxes due to wave propagation. tational domain is divided into an inner “physical” layer
and outer sponge layers. In the sponge layers, Rayleigh
damping is applied to the scalar field so as to minimize the
reflection of gravity waves back into the physical layer.
The damping coefficient increases smoothly from zero at

To take full advantage of the restriction to two dimen-

. . . . . the edge of the physical layer, reaching a maximum value
sions, the nondimensional Boussinesq equations are cast 9 phy y 9

. - . ) of v = 0.20 at the boundary of the computational domain,
in vorticity-streamfunction form as:

4.1 Methods

e.g..
1 Zb — 2 —
Dg = —y=(1 — cos — 17
%:%%_%aﬁ (14) 0 72( CObﬂ-Zb—ZB)(a ‘) a7
ot 0z 0x Oz Oz
00 1 wherez, andzg denote the lower boundaries of the phys-

JE— — 2 J—
+—+ Rev (w—0)

ox ical and computational domains, respectively. Within the
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physical domain,Dy = 0. The vertical grid spacing  0.025
is uniform within the physical domain, but varies in thi

sponge layers. The grid interval increases linearly fra ~ 0.02f
its physical-domain value at the inner edge of the spon
layer to three times that value at the domain bounda  0-015]

Flow diagnostics are computed over the physical dom: ¥
only. o.01r

Initial conditions consist of basic states as defined 0.005 o
section 2, with added perturbations proportional to the u PP -
stable normal modes computed in section 3. The pertur gL e e -7

tion amplitudes are chosen so that the perturbation kine 0 50 100 150 200
energy isl0—* times the kinetic energy of the mean flow
att = 0. The physical domain is defined By< = < L; Figure 15: Volume-averaged perturbation kinetic energy as a
-5 < z < 5, whereL is some integer multiple of thefunction of time for simulations S14 (thick solid), R25 (thin
wavelength of the eigenfunction. Upper and lower spongelid) and R2505 (dashed).
layers extend ta = 9 andz = —13.
We have used this methodology to investigate the non-

linear evolution of many of the unstable modes described L
i . ) . increase in kinetic energy. For case SI4.grows to a
in the previous section. Here, we describe three partic- L

) maximum near t=50, then decays slowly. The radiating
ular cases that encompass the range of nonlinear behav- )

mode withJ;, = 0.25 andJy = 0 (R25) grows more

iors found. In each case, the initial condition consists o{ i . ) )
o slowly at first, but exhibits a sharp increase in growth rate
a mean flow specified by the values .&f and Jy, plus

) ) , _ after about t=60 and eventually attains larger energy than
a small perturbation proportional to the eigenfunction of ; )
. i the S case. The reason for this late growth phase will be
some linear normal mode. In the first case, the mean flow

. . . explored below. The R mode withy, = 0.25 andJy =
is characterized by;, = 0.14, Jy = 0, so that stratifica-

L L d0.05 (R2505) grows slowly throughout the simulation.
tion in the lower half-space is significant but the S mode

still dominates. This run is designated S14. The secondlhe temperature, vorticity and perturbation stream-
case, denoted R25, hds = 0.25, J; = 0, so that the function fields for the S mode at t=40 and t=80 are shown
R mode dominates. For the third simulation, we retaifi figure 16. Three wavelengths of the primary instabil-
J. = 0.25 but increaseJy; to 0.05, to see the effect ofity are included in the computational domain to facilitate

stratification in the upper half space. This run is denotédbsequent comparison with the longer R modes. The
R2505. counterclockwise (positive) vorticity of the upper flank of

the jet is concentrated into discrete monopoles, while the
lower flank vorticity appears as curved braids (figure 16,
middle frames). The maximum clockwise vorticity (thick
The evolution of the perturbation kinetic energy, spatialgontours) is larger than the maximum counterclockwise
averaged over the physical domain, is shown for our threarticity (thin contours), due to the baroclinic torque ex-
cases in figure 15. Not surprisingly, the modes with theted by the buoyancy force. The upper edge of the strati-
largest linear growth rates exhibit the most rapid initidiled fluid is distorted into smooth ripples (figure 16, left

4.2 Results

14
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Figure 16:Scaled temperature, vorticity and perturbation streamfunction fields for run S14 at t=40 (a) and t=80 (b). The pertur-
bation streamfunction is defined relative to the horizontally-averaged profile. Shading indicates the original locations of the critical
levels. For the vorticity and the streamfunction, thick (thin) contours indicate negative (positive) values.

hand frames). Further down, however, the scalar fietd maximum value. Analyses of waves approaching a
exhibits large amplitude overturns. This enhanced diitical level by Winters and D’Asaro (1994) have shown
placement begins at the lower critical level, and indicatassimilar result: overturns break down partly via three-
intense wave-mean flow interaction in that region (figutmensional convective motions. Ultimately, our two-
16a, left frames, bottom of shaded region). Enhanced tdimensional flow approaches a state of nonlinear equilib-
bulence observed on the lower flank of the EUC (figuraum, with continued slow evolution due only to diffusion.
1d) may result from a similar mechanism. By t=80, (fig-

ure 16b), the overturning region has migrated upward due’he R mode (figure 17) is distinguished from the S

to wave-induced acceleration of the mean flow. mode by its large wavelength (cf. figure 10c) and slow
growth (figure 10a, figure 15). At= 40, flow distortions

Beyond this point in the flow evolution, it is likely thatdue to the R mode are relatively weak. The perturbation
a fully three-dimensional simulation would reveal maostreamfunction exhibits wave radiation into the lower half
tions in the spanwise direction. Secondary stability ang@lane, as expected on the basis of the stability analyses.
yses of shear-driven billows (e.g. Klaassen and PeltiBy ¢ = 60, the disturbance has reached large amplitude
1985b; Sutherland et al., 1994) have revealed that thraad exhibits strong vorticity and distinct overturning near
dimensional motions become important orf€ereaches the lower critical level. The long wave is now modulated
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Figure 17:Scaled temperature, vorticity and perturbation streamfunction fields for run R25 at t=40 (a), t=60 (b) and t=80 (c). The
perturbation streamfunction is defined relative to the horizontally- averaged profile. Shading indicates the original locations of the

critical levels. For the vorticity and the streamfunction, thick (thin) contours indicate negative (positive) values.

by a disturbulence of shorter wavelength.

plitude disturbance. (By this point, the flow is certain to
By t = 80, the character of the disturbance that origpe influenced by three-dimensional effects, so the present
inated with the R mode has changed dramatically. Thesults must be treated as preliminary. It seems unlikely,
flow is now dominated by a large amplitude, short waviowever, that three-dimensional motions would alter the
length disturbance. Strong overturning is evident. Theain features of the flow.) Downgoing radiation in the
short-wave disturbance has caused long plumes of striativer half-space is still present at= 80, though it is
fied fluid to be ejected into the upper half plane. Not lornweak in comparison with the intense vortices above the
after this, the jet is completely disrupted by the large arjet and is therefore not visible in figure 17c.
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Figure 18: Scaled temperature, vorticity and perturbation streamfunction fields for run R2505 at t=60 (a) and t=120 (b). The
perturbation streamfunction is defined relative to the horizontally- averaged profile. Shading indicates the original locations of the
critical levels. For the vorticity and the streamfunction, thick (thin) contours indicate negative (positive) values.

With the addition of nonzero stratification in the upR mode with R25 is much slower at first, but increases
per half-space (case R2505), the growth of the R modmidly after about t=60. This displacement tends to re-
is slowed considerably. Not until ~ 80 does signifi- duce the effect of the stratification. On the basis of our
cant overturning develop at the lower critical level (figearlier linear stability analyses (e.g. figure 10a), we ex-
ure 18). The secondary instability and subsequent cataset that this will destabilize shorter modes similar to the
trophic breakdown observed in the R25 case is prevent8dmode. (This is confirmed by separate linear stability
As in the case R25, wave radiation into the lower halfnalyses of the case where the discontinuity in stratifica-
plane is evident. tion is located below the center of the jet.) This secondary

effect of jet migration is the reason for the appearance of

The vertical motion of the jet provides a clear indicahe short-wave instability in the R25 case (figure 17) and

tion of wave-mean flow interactions. The location of th@r the Comp|ex evolution of the perturbation kinetic en-
velocity centroid¢ as a function of time is shown for allergy (figure 15).

three simulations in figure 19. The S mode/at= 0.14

displaces the jet upward, as expected on the basis of thAlthough the catastrophic breakdown of the jet coin-
momentum flux of the linear eigenmode (cf. figure 7 arddes with the growth of the short-wave secondary in-
accompanying discussion). Displacement of the jet by thbility, the long-wave disturbance is also essential to
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Figure 19:The centroid of the mean velocity distribution as o 50 100 150 200
function of time, showing the vertical migration of the jet center !

due to the net momentum flux of the unstable mode. Curvlgls ure 20: Vertical flux of horizontal velocity across (a) the

Z:;)rre;spd(;nd to cases S14 (thick solid), S22 (thin solid) and R25|.(|)pper critical level and (b) z=-5. Curves correspond to cases
ashed).

S14 (thick solid), R25 (thin solid) and R2505 (dashed).

the process. A counterexample is provided by simula-
tion S14, which was initialized with the short-wave modeevel grows to a maximum at about the same time that the
alone. In this case, the disturbance equilibrates at fingterturbation kinetic energy peaks (cf. figure 15; 50).
amplitude without destroying the jet. In a separate exp&eyond this point, the disturbance settles into a nonlin-
iment (not shown), the S14 simulation was seeded withr, quasi-equilibrium state in which the momentum flux
a random long-wave disturbance in addition to the shosteross the upper critical level drops to zero. This vanish-
wave eigenmode. The long-wave component eventuahy of the momentum flux is expected, for otherwise the
grew to large amplitude and the jet was disrupted ashackground jet would continue to migrate upwards (rather
the R25 case. In run R2505, secondary instability wdgan remaining steady gt~ 1 as shown in figure 19) and
strongly suppressed by the nonzero stratification in the dpe nonlinear equilibrium state could not be sustained. In
per half space. case R25, the momentum flux at the upper critical level
We conclude this section with a look at the momeimcreases te- 0.01 shortly before the secondary instabil-
tum fluxes that arise at two particular levels in our simity sets in and the jet begins to migrate (cf. figure 19).
lations. Fluxes across the upper critical level (figure 20&@he flux then exhibits large amplitude oscillations. When
correspond to strong instability and overturning above theeak stratification is added to the upper half-space (case
jet, while fluxes across the lower boundary of the physidaP505), the momentum flux at the upper critical level is
domain,z = —5 (figure 20b) represent wave propagatioreduced by more than an order of magnitude. In the R25
into the deep ocean. In the disturbance that develops frand R2505 cases, there is a consistent downward momen-
the S mode (S14), the momentum flux at the upper criticam flux atz = —5 that grows along with the disturbance
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amplitude. In contrast, the momentum flux at z=-5 for tHEOc) or less. This corresponds to an approximate lower
S14 case fluctuates about zero. bound on the zonal wavelength of 500m. For compar-
ison, the observations of Moum et al. (1992) and Lien
etal. (1996) and the analyses of Sun et al. (1998) all deliv-
ered wavelengths in the range 200-350m. In contrast, the
tions wavelength of the S mode is consistent with the observa-
tions. Zonal phase speeds of the modes computed by Sun
The asymmetrically stratified jet represents an incompleiga|. tended to be near zero or even negative, while Lien et
model of the EUC. It accounts for instability due to thg). estimated a phase speed of 0.2m/s. This is in contrast
shear on the upper and lower flanks of the jet, and f@jth the phase speed of the R mode, which is generally

its modification by the asymmetric stratification profilegreater than 0.6, or 0.6m/s in dimensional terms.
but other important factors such as the surface current are

omitted from the model. We now compare the character—The momentum fluxes shown in figure 20a may be

istics of our computed modes with observational analysfa:(s),m pared with the estimates made by Lien et al. (1996)

in order to assess the ability of this limited model to cag—om observations of a large-amplitude wave signal above

ture the physics of the EUC. We compare our results W|Itli]1e core of the EUC. The maximum zonal stress associ-

. . . -2
the observational results of Moum et al. (1992) and Liear'ﬁ(_)d with that disturbance was estimatediam .

. . — . —
et al. (1996), who observed large-amplitude waves on fheur nondimensionalization, this becomes” = 3 x

—4 . _
upper flank of the EUC, and also with stability analysels0 - The stresses our model develops above the jet ex

of measured profiles from the EUC (Sun et al., 1998). ceed this value by l_Jp_tO two orders O_f magnitude (figure
. : 20). The most realistic model result is from run R2505,
Appropriate length and velocity scales for the EUC a;e hich th ﬂ h ical level
h, — 40m andu, — 1m/s (figure 1). The squared or which the momentum flux at the upper critical leve

buoyancy above the EUC is rarely greater than‘ s> approached 0~ at the end of the simulation. Compar-

whereas typical values just below the EUC vary betwe'esnon with the observations of Moum et al. (1992) yields

. . L an even wider discrepancy, as their estimates of the mo-
10~* and10~3s~2. In our nondimensionalization, these pancy

. _mentum flux were an order of magni maller still than
levels of stratification become 0.16 and 1.6, respectivel .e tum flux were an order of magnitude smaller still tha

The domain of interest for the EUC is therefore appro§<-Ose of Lle: etal. In addItIOI-’l, a;]ccele:jat:ons due to lthe
. momentum flux convergence in the model are several or-
imated by0 < Jy < 0.16: 0.16 < J; < 1.6. In the 9

Jz. — Jiy plane shown on figure 5, this domain OCCupiesdaers of magnitude stronger than those driven by the zonal

rectangle in the lower right-hand corner that extends to l%%essure gradientin the equatorial Pacific.
right beyond the largest value dgf, shown. The R mode It therefore appears that our model develops momen-
dominates over most of this stratification regime. Fpr tum fluxes that are much more intense than those found
greater than about 0.1, the flow is stable. on the EUC. The addition of stratification above the jet
The maximum growth rate of the R mode occurs whelamps the instabilities considerably, but even the case
Ju vanishes, and is about 0.05. Scaled for the EUC, tfR2505 develops fluxes that would severely disrupt the
gives an e-folding time of about thirteen minutes. ThEEUC over a period of a few hours. This is in dramatic
is comparable with the fastest growing modes found lgntrast with the EUC, whose large-scale structure varies
Sun et al. (1998). Typical nondimensional values for tloaly on timescales of months to years. These results indi-
streamwise wavenumber of the R mode are 0.5 (figurate that instability governed by the main local structure

5 Comparison with EUC observa-
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of the EUC is more than strong enough to account for thethe lower half plane, its lower critical level provides

observed waves and turbulence; in fact, we must now askarrier against energy leakage at sufficiently high

why the EUC is not considerably more turbulent than it ifa the nonlinear regime, however, the present simulations
reveal no significant change in the downward momentum

flux as a function of stratification.

6 Summary Nonlinear simulations show that both the S and R

modes generate strong wave-mean flow interactions at the

We have examined the normal mode instabilities of a

Bickley jet in a fluid with asymmetric stratification. WeIOWer critical layer, leading to overturning of the tem-

have identified three classes of unstable modes: the S Bﬁaat“re field that would trigger turbulence in a three-

. . . dimensional flow. In both cases, momentum flux diver-
V modes are extensions of the sinuous and varicose in-

stabilities of the unstratified Bickley jet, while the thirc?emfefs c.ause th?f Jet _to m_@rgte upwards_away from the
sHatlflcanon. (This migration is reversed in the case of

mode, denoted “R”, has no counterpart in the unstratifié i ] N
the V mode, but the latter is never dominant.) Migration
T . is slower for the R mode than for the S mode, but when the
Stable stratification in the lower half-space (i.&, > . td bedin to miarat 4. th tis ad i
.. _..jet does begin to migrate upward, the result is a dramatic
0) damps both the S and V modes. For weak stratlflcau{)n i g g P .
. change in the nature of the disturbance. The departure of
(Jr < 0.22), the S mode dominates. At largdy, the ) -~ N
. . the jet from the stratified zone destabilizes a short-wave
fastest growing mode is the R mode, whose long wave-

i ility simil h hich idl
length enables it to couple with free IGW modes and thhnsStabl ity similar to the S mode, which grows rapidly and

. ) . reatly accelerates the breakdown of the jet. It appears
to radiate energy downward away from the jet. This chegr- 4 W : PP

L . . @at no amount of stratification in the lower half-space
acteristic is strongly suggestive of the wave radiation ob- , .
. . o alone can prevent this breakdown, though weak stratifica-
served at depth the in equatorial Pacific.

tion in the upper half space stabilizes the jet considerably.
For J;, < 0.25, the R mode appears as a superposi-

tion of two oblique disturbances whose wave vectors pointBOth linear and nonlinear analyses support the hypoth-
at equal and opposite angles from theaxis. The an- esis that strong turbulence and wave-mean flow interac-

gle of the fastest growing R mode approaches 90 degrli@8s on the lower flank of the jet may result from the
at small.J;, decreases ag; increases, and vanishes d@diation of gravity waves from the upper flank. Waves

Jr = 0.25. Beyond this point, the dominant R modé&'® generated by the dynamic instability of the weakly
is two-dimensional. F06.22 < J; < 0.25, the fastest stratified shear on the upper flank, propagate downward,
growing disturbance is a pair of R modes inclined at up fd break upon encountering the critical level on the more
20 degrees from the axis. However, these modes grov#trongly stratified lower flank.
only marginally faster than their two-dimensional coun- With respect to the EUC, the present results lead to an
terparts. Therefore, while three-dimensional primary iimteresting conclusion: if the EUC were simply an iso-
stability may exert some influence on flow evolution, it iated jet with stable stratification below and mixed fluid
unlikely to be dominant. above, it would be torn apart by shear instability within
The R mode is able to grow despite strong stratificatianfew hours. In reality, of course, the large-scale struc-
because its energy is focussed on the upper flank of thee of the EUC varies only on timescales of months to
jet, away from the stratification. Linear theory suggesyears. We are thus left with the question: what stabilizes
that, although the R mode resonates with the IGW figlkde EUC? A partial answer is provided by the addition

case.
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of stratification above the jet, but the momentum fluxes e
remain at least an order of magnitude larger than observa-
tions. In addition, the wavelength of the dominant R mode
is longer by a factor of two than that of waves observed
near the EUC, and its zonal phase speed is too large. Un-
realistically large momentum fluxes can be reduced by in-
creasing/y to values near the stability boundary, but the
discrepancy in wavelength remains.

We now evaluate the potential importance of several
factors that are missing from the present model.

The South Equatorial Current: The presence of
the counterflowing surface current increases the ki-
netic energy available to drive instability and may
thus be expected to destabilize the flow. How-
ever, preliminary results indicate that the reverse is
true; the surface current actually helps to stabilize
the EUC. Also, the presence of the surface current
should give rise to modes with small or negative
zonal phase velocity, in better agreement with obser-
vations.

e Three-dimensional motions: The main effect of |n symmary, it seems likely that better correspondence
three-dimensional turbulence is to smooth gradierfgth observations will result primarily from refinement of
via enhanced molecular mixing. In the present tWene packground profiles and the upper boundary condition
dimensional simulations, the Reynolds number is sgfher than from the inclusion of forcing or improved tur-
very low (of order10?). As a result, the effects ofpylence modeling. Future publications will describe ex-
turbulent mixing are at least crudely represented afithsjons of the model to incorporate these factors, leading
are, in fact, probably exaggerated. to improved understanding of waves and instability in the

e Forcing: The EUC is sustained by a zonal pressu
gradient. In our model, the forcing needed to sustain

pequatorial zonal current system.
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the EUC, and is expected to exert a stabilizing influ-
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e The ocean surface:Boundary proximity is known

to stabilize long modes (e.g. Hazel 1972), and may
therefore suppress the R mode that leads to the de-
struction of the jet in the present simulations. The
wavelength of the R mode is much larger than the
distance from the jet core to the surface, which
means that the boundary proximity effect is likely to
be significant.
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