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Abstract

Motivated by the mean current and stratification structure

associated with the Equatorial Undercurrent (EUC), we

examine the stability and wave propagation characteris-

tics of a highly idealized model flow: the asymmetrically

stratified jet. This is a parallel shear flow in which the

depth-varying current has the sech2 form of a Bickley jet.

The stratification has a step function structure: the buoy-

ancy frequency takes uniform values above and below the

center of the jet, with the larger value occurring below.

The spectrum contains three classes of unstable normal

modes. Two are extensions of the sinuous and varicose

modes of the unstratified Bickley jet; the third has not

been described previously. The asymmetric stratification

structure allows instabilities to radiate gravity wave en-

ergy from the upper flank of the jet to the lower flank,

where it encounters a critical layer. From here, wave en-

ergy may be reflected, absorbed or transmitted. Absorp-

tion results in wave saturation and momentum transfer to

the mean flow, in close analogy with the breaking of oro-

graphic gravity waves in the middle atmosphere. Trans-

mission beyond the lower flank may partly account for

wave signals observed in the deep equatorial ocean. All

of these processes exert zonal forces on the jet that al-

ter its speed and shape. The wave structures and asso-

ciated fluxes developed by the idealized model are com-

pared with observations of the EUC.
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1 Introduction

A dominant component of the tropical ocean current sys-

tem is the equatorial undercurrent (EUC), a region of in-

tense turbulence associated with shear instability and in-

ternal gravity wave radiation. Our purpose here is to ex-

plore some of the fundamental properties of instability

and wave radiation in this regime via stability analysis and

numerical simulation of a simple model flow.

The EUC flows eastward at a depth of approximately

100m, spans a meridional range of a few hundred km cen-

tered on the equator, and has a maximum speed near 1m/s.

The current is a nearly permanent feature in both Atlantic

and Pacific oceans, and is forced by the zonal pressure

1



Dyn. Atm. OceansSubmitted 17 July, 2001, accepted 8 May 2002. W.D. Smyth & J.N. Moum

gradient that builds up due to westward transport of sur-

face water by the Trade Winds (e.g. Veronis (1960), see

Qiao and Weisberg (1997) for a recent discussion). Inter-

annual fluctuations in the strength of the Pacific EUC are

an integral component of the El Nino - Southern Oscilla-

tion (ENSO) cycle.

Shear on the upper and lower flanks of the EUC drives

much of the strong turbulence that characterizes the equa-

torial oceans (Moum et al., 1989; Peters et al., 1989). The

resulting vertical momentum flux distributes momentum

input from the wind into the upper ocean and thereby pro-

vides a partial counterbalance to the zonal pressure gra-

dient (Hebert et al., 1991). The EUC is also a region of

strong internal gravity wave (IGW) activity, which may

also account for significant momentum fluxes (Moum

et al., 1989; Lien et al., 1996). Dillon et al. (1989) found

that momentum fluxes due to turbulence act over a rel-

atively shallow layer adjacent to the surface (i.e. much

shallower than the layer over which the zonal pressure

gradient acts), and therefore suggested that fluxes due

to IGW are also needed to explain the observed current

structure.

Application of normal mode stability analysis to the

EUC began with Sutherland (1996), who demonstrated

that the upper flank of the EUC may support shear in-

stabilities that act to radiate energy downward in the form

of IGW. Mack and Hebert (1997) and Sun et al. (1998)

showed that the dominant IGW signal observed in the

equatorial Pacific is associated with this class of instabili-

ties. Using observed profiles of velocity and density, Sun

et al. (1998) demonstrated that shear instability can flux

momentum to the deepest reaches of the EUC, in accor-

dance with the suggestion of Dillon et al. (1989) discussed

above. In order that these results be applicable under a

range of equatorial flow regimes, the mechanisms of insta-

bility must be understood more thoroughly. To this end,

we are analyzing a sequence of simple models that con-

verge towards an accurate representation of the EUC and

whose instability mechanisms are both broadly relevant

and accessible to detailed study (as opposed to the highly

complex and flow-specific instabilities of measured cur-

rents, e.g. Sun et al. (1998)). Our hypothesis is that the

EUC exists, on average, in a nearly stable state, but that

this state is frequently perturbed by fluctuations in forc-

ing. The flow adjusts to these perturbations via a range

of instability mechanisms that lead to property fluxes via

waves and turbulence. We begin here with a model that

isolates the dominant features of the shear and stratifica-

tion that characterize the EUC.

The stability characteristics of the EUC are governed in

large part by a distribution of stable density stratification

that is asymmetric with respect to the current. In partic-

ular, stratification tends to be weak on the upper flank of

the current, which includes the wind-driven South Equa-

torial Current and the surface mixed layer (figure 1a,b).

Because of this asymmetry, typical values of the gradient

Richardson number tend to be smaller on the upper flank

(often close to or less than the critical value 1/4) and larger

on the lower flank (figure 1c).

Unstable modes of a jetlike current such as the EUC

each possess a pair of critical levels (levels at which the

mean flow velocity matches the phase velocity of the

mode), one on each flank of the jet. A wave energy flux

incident on a critical level interacts with the mean flow,

with the result that it is divided into reflected, absorbed,

and transmitted components. The details of this division

depend largely on the local value of the gradient Richard-

son number,Ri. If Ri < 1/4 at the critical level, the

wave may be over-reflected, i.e. it may gain energy from

the mean flow during the interaction, so that the sum of

the reflected and transmitted components is greater than

the incoming flux. This process is thought to be a central

aspect of shear instability (e.g. Lindzen and Tung, 1978;

Smyth and Peltier, 1989). IfRi > 1/4 at the critical level,

over-reflection cannot occur, and waves lose energy to the

mean flow. In this case, trapping of wave energy near the
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critical layer leads to turbulent breakdown via convective

instability (Winters and D’Asaro, 1993; Lin et al., 1993;

Winters and D’Asaro, 1994).

The asymmetric distribution of stratification in the EUC

raises the possibility of modes that have local Richard-

son number less than 1/4 at the upper critical level but

greater than 1/4 at the lower critical level. In such a case,

we expect that wave energy will be radiated from the up-

per critical level downward through the jet core and to

the lower critical level. Some of this energy will then

be reflected back to the upper critical level, sustaining

the instability. Some of the energy may be transmitted

through the lower critical level, possibly propagating to

great depths. Finally, some energy may be absorbed at the

lower critical level, causing momentum transfer and tur-

bulent mixing. The pattern of turbulence observed in the

EUC is suggestive of the processes described above, with

enhanced turbulence occurring on the lower flank of the

jet where the Richardson number is relatively high (fig-

ure 1d,z < −160m). This mechanism is analogous to

the saturation of orographic gravity waves in the middle

atmosphere. Parameterization of the momentum flux di-

vergences generated by that wave-mean flow interaction

has turned out to be crucial to the accuracy of atmo-

spheric general circulation models (e.g. Lindzen, 1981;

Fritts, 1989).

Here, we investigate instability and wave radiation in

the EUC using the simplest possible model, the asymmet-

rically stratified jet (figure 2). The undercurrent is rep-

resented by a sech2 velocity profile, i.e. a Bickley jet

(Drazin and Reid, 1981). The buoyancy frequency is de-

scribed by a step function whose value changes at the cen-

ter of the jet (see section 2 for details). This model is

relevant to any jetlike current that exists far from bound-

aries in the presence of asymmetric stratification, atmo-

spheric jet streams being another example. To correspond

with the EUC, we let the larger value of the buoyancy fre-

quency occur in the lower half-space, but the properties of
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Figure 1:Observations taken aboard the R/V Wecoma at0oN ,

140oW , during the Tropical Instability Wave Experiment (Lien

et al., 1995). Profiles are averaged over year days 311-315, in-

clusive, of 1991. (a) Zonal velocity, (b) squared buoyancy fre-

quency, (c) gradient Richardson number (the vertical line marks

the critical value 1/4), (d) kinetic energy dissipation rate.

a jet with stratification larger above its core are obtained

trivially from the present results.

Instabilities of the stratified Bickley jet were first stud-

ied numerically by Hazel (1972). This work was contin-

ued by Sutherland and Peltier (1992) and Sutherland et al.

(1994), who added a region of uniform flow to the cen-

ter of the jet. Here, we extend these investigations by al-

lowing the stratification to be asymmetric with respect to

the current. Sutherland (1996) studied waves and insta-

bility specific to the EUC using a model that included the

boundary at the surface, but which represented the mean

current as a hyperbolic tangent shear layer, thus isolating

the upper flank the EUC. He allowed stratification to be

weaker above the shear layer than below, and showed that

this promotes the growth of unstable modes that couple

efficiently with the deeper IGW spectrum. The Bickley

jet employed in the present study provides a more realistic

representation of the EUC than the shear layer, and allows
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us to extend the results of Sutherland by looking explicitly

at the reflection, absorption and transmission of energy at

the lower critical level. In future publications, we will ex-

tend this model to include effects of the surface boundary

and the SEC, as well as the seasonal thermocline. Here,

we focus on the effects of asymmetric stratification in iso-

lation from such complications. We approach the stability

of the asymmetrically stratified jet as a problem of gen-

eral relevance, as well as focussing on those aspects most

germane to the EUC.

Background flow profiles used in the analyses are de-

scribed in section 2. Section 3 contains the main results

of the investigation. Linear stability analyses are used

to establish the spectrum of normal mode instabilities at

various values of stratification parameters. In section 4,

the results are tested in the nonlinear regime by means of

two-dimensional numerical simulations. The results are

compared with observations of gravity waves the EUC in

section 5. Section 6 contains a summary and concluding

discussion.

2 Background states

Our mathematical model employs the Boussinesq equa-

tions in a physical space measured by the Cartesian co-

ordinates{x∗, y∗, z∗}. For most analyses, flow will be

restricted to thex∗ andz∗ directions. Asterisks are used

to indicate dimensional quantities; all other quantities are

nondimensionalized using velocity scaleuo and the length

scaleho.

The nondimensional velocity fieldU(x, y, z, t) is given

at t = 0 by the standard Bickley jet:

U(x, y, z, 0) = sech2z. (1)

A nondimensional buoyancy,θ(x, z, t), is defined in

terms of the densityρ(x, z, t), its representative valueρo

and the gravitational accelerationg∗ as

θ = −ρ− ρo

ρo
× g∗ho

u2
o

. (2)
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Figure 2: Background profiles defining the asymmetrically

stratified jet. (a) Velocity; (b) Buoyancy gradient; (c) gradient

Richardson number. For this case,JL = 0.25 andJU = 0.05.

In a fluid where density is controlled only by temperature,

θ is proportional to the temperature deviation. The initial

nondimensional buoyancy field is defined (up to an arbi-

trary additive constant) by

N2 ≡ ∂

∂z
θ(x, y, z, 0) =

JU , z > 0

JL, z ≤ 0.
(3)

The constantsJU andJL are bulk Richardson numbers

that characterize upper and lower layer stratification in

comparison with the shear associated with the jet.

3 Linear stability analyses of nor-

mal modes

3.1 Methods

The stability analyses are based on the usual Taylor-

Goldstein equation for linear normal modes of an inviscid,
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stratified, parallel, Boussinesq shear flow:

d2ψ̂

dz2
+ γ2(z)ψ̂ = 0; (4)

γ2(z) =
N2

(U − c)2
− d2U/dz2

U − c
− α2. (5)

The streamfunction has been assumed to have the normal

mode form:

ψ(x, z, t) = Ψ(z) + µψ̂(z) exp[iα(x− ct)] (6)

in which µ is an ordering parameter andα andc are the

nondimensional streamwise wavenumber and phase ve-

locity. Only the real parts of the perturbations are physi-

cally relevant. We assume that the modes of primary inter-

est are two-dimensional (i.e. the wavevector is parallel to

the background flow), but oblique modes are obtained eas-

ily via Squire’s transformation (Drazin and Reid, 1981)

and will be discussed where relevant.U(z) = −dΨ/dz
andN2 = dΘ/dz are the background profiles of velocity

and buoyancy gradient (squared buoyancy frequency) as

given by (1) and (3).

To minimize boundary effects, we impose the radiation

conditiondψ̂/dz = iγψ̂ at both upper and lower bound-

aries, with the sign ofγ chosen in each case to eliminate

incoming waves (Hazel, 1972; Sun et al., 1998). The re-

sulting eigenvalue problem is solved numerically using

the multiple shooting method of Hazel (1972). Because

linear theory does not specify absolute mode amplitudes,

we normalize the eigenfunctions so that

max
z

ψ̂ = 1. (7)

Eigenfunctions for perturbation quantities other than the

streamfunction are recovered using the polarization rela-

tions:

ŵ = iαψ̂ (8)

û = −ψ̂z

π̂ = (ū− c)ψ̂z − ūzψ̂

ω̂ = −(α2 + γ2)ψ̂

θ̂ =
−N2

U − c
ψ̂

For each set of background profiles (i.e. for each set of

values forJL andJU ), we scan overα to identify classes

of unstable modes. We then choose representative mem-

bers of each class for more detailed study. The typical

choice is the mode for which the exponential growth rate,

given byσ = αci whereci is the imaginary part of the

phase speed, is a maximum.

Energetics of the linear, inviscid model are described

by the perturbation kinetic energy equation:

∂K

∂t
= −∂ū

∂z
· u′w′ + w′θ′ − ∂

∂z
π′w′. (9)

The overbar indicates a horizontal average and primes de-

note fluctuations about that average.K = 1
2 (u′2 + w′2)

is the perturbation kinetic energy andπ is a scaled pres-

sure. The remaining quadratic quantities,u′w′, w′θ′ and

π′w′ correspond to vertical fluxes of horizontal momen-

tum, buoyancy and kinetic energy. To compute the flux

profiles, the real parts of the relevant eigenfunctions are

multiplied, then averaged over one wavelength inx using

the standard relationa′b′ = 1
2Real(â∗b̂).

A useful quantity for the characterization of energy par-

titioning is the flux Richardson number, defined here as

Rf = −
∫
w′θ′dz∫
u′w′dz

. (10)

The momentum fluxu′w′ is of additional interest because,

at second order inµ, it affects the mean flow via the evo-

lution equation

∂ū

∂t
= − ∂

∂z
u′w′. (11)

This effect is of central importance in the application of

our results to the EUC.
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Figure 3: Nondimensional growth rate (a) and phase speed

(b) as a function of nondimensional wavenumber for unstable

modes of the classical Bickley jet (JL = JU = 0). Symbol size

varies linearly with phase speed to aid in identification. Bullets

indicate the fast growing mode in each class.

3.2 Results

As a point of departure, we briefly review the sinuous and

varicose instabilities of the Bickley jet withJL = JU = 0
(Drazin and Reid, 1981). Figure 3 shows spectra of the

growth rate and phase speed, indicating the existence of

the two classes of unstable modes whose properties vary

continuously as a function of wavenumber. Each class

exhibits a well-defined wavenumber at which the growth

rate is a maximum (bullets on figure 3). The sinuous mode

dominates at all wavenumbers, and attains its maximum

growth rate nearα = 1 (figure 3a). The varicose mode is

most unstable at twice the wavelength, and exhibits higher

phase speeds than the sinuous mode. Figure 4 shows the

eigenfunctions of the fastest-growing members of each

mode class. The streamfunction of the sinuous mode (fig-

ure 4a) is even with respect toz = 0, whereas the varicose

mode is odd, i.e. undergoes a phase shift atz = 0. Each

mode extracts energy from the mean flow near both the
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Figure 4: Eigenmodes of the most unstable sinuous (a) and

varicose (b) modes for the unstratified Bickley jet (JL = JU =

0). Leftmost column gives the magnitude of the eigenfunction

φ̂(z) (solid curve), normalized by its maximum value, as well as

the phase normalized by2π (dashed curve). Remaining columns

show vertical fluxes of energyp′w′ and momentumu′w′, re-

spectively. Shaded boxes indicate the region between the upper

and lower critical levels.

upper and lower critical levels, as is evident from the en-

ergy flux profiles in figure 4. Each mode is configured so

as to flux momentum outward away from the jet core, thus

tending to broaden and weaken the jet.

We now begin our discussion of stratification effects

with a survey of the growth rate of the fastest growing

mode at each point on the(JL, JU ) plane (figure 5). The

special caseJU = JL was investigated by Hazel (1972)

and, as a limiting case, by Sutherland and Peltier (1992).

As JU = JL increases, the growth rate drops monoton-

ically and vanishes nearJU = JL = 0.13. The na-

ture of the dependence of the growth rate on stratification

changes when eitherJL or JU (but not both) exceeds a

critical value, which ranges between 0.17 and 0.22 (thin

curves on figure 5). In this regime, the growth rate be-

comes nearly independent of the larger of the two strati-
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Figure 5: Growth rate of the most unstable mode as a func-

tion of JL and JU . Thin curves indicate the boundaries be-

yond which instability becomes approximately independent of

the larger ofJL andJU . Bullets indicate points at which more

detailed analyses are described later in this section.

fication parameters. Instability persists at arbitrarily large

values of the stratification in either the upper or the lower

half-space, as long as the stratification in the other half

space is sufficiently weak. It is this asymmetric stratifi-

cation regime that is of primary interest to us in this pa-

per. We will demonstrate that instability in this regime is

driven by a previously undiscovered mechanism.

We first examine the effect of adding weak stratifica-

tion to the lower half-space by settingJL equal to 0.09.

The analysis now reveals three distinct classes of unstable

modes (figure 6). Eigenfunctions for the fastest-growing

member of each class are shown in figure 7. Two of the

mode classes are extensions of the sinuous and varicose

modes of the unstratified case, and we will refer to them

as the S and V modes, respectively. The presence of strat-
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Figure 6: Nondimensional growth rate (a) and phase speed

(b) as a function of nondimensional wavenumber for unstable

modes of the asymmetrically stratified jet withJL = 0.09 and

JU = 0. Labels indicate the mode classes. Symbol size varies

linearly with phase speed.

ification acts to damp the S mode slightly and the V mode

more strongly (figure 6). In addition, growth rate maxima

for both modes are shifted to higher wavenumbers. Both

modes disappear at low wavenumbers and are replaced by

a new mode class, denoted “R”. The existence of this new

mode is the main result of the present investigation, and

its characteristics will be described presently.

The reason for the preferential stabilization of the V

mode is evident upon inspection of the energy flux profiles

in figures 7a and b (second column). Not surprisingly,

both the S and V modes have lost their symmetry about

z = 0. The S mode now extracts energy from the mean

flow preferentially at the upper critical level, while the V

mode extracts energy mainly at the lower critical level.

The V mode is thus affected more strongly by the stable

stratification in the lower half-space. This distinction is

also evident in the buoyancy flux profiles (fourth column),

which indicate that the V mode does more work against
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Figure 7:Eigenmodes of the most unstable S (a), V (b) and R

(c) modes for the asymmetrically stratified jet withJL = 0.09

andJU = 0. Leftmost column gives the magnitude of the eigen-

function ψ̂(z) (solid curve), normalized by its maximum value,

as well as the phase normalized by2π (dashed curve). Remain-

ing columns show vertical fluxes of energyp′w′, momentum

u′w′ and buoyancyθ′w′, respectively. Shaded boxes indicate

the region between the upper and lower critical levels.

gravity, relative to its amplitude, than does the S mode. In

every case, the buoyancy flux is strongly focussed at the

lower critical level. The flux Richardson numbers of the

V and S modes are 0.44 and 0.16, respectively. Note that

the momentum flux due to the V mode (figure 7b, third

column) is nearly flat except near the critical levels. This

is a general characteristic of weak instabilities (Eliassen

and Palm, 1961).

The asymmetry of the momentum flux has an interest-

ing implication for the motion of the jet as a whole. The

centroid of the velocity distribution is

ζ =
∫
zūdz∫
ūdz

, (12)

where the integrals cover the (possibly infinite) vertical

extent of the flow. Differentiatingζ with respect to time,

substituting (11), and assuming that the flux vanishes at

the boundaries, we obtain

dζ

dt
=

∫
u′w′dz∫
ūdz

. (13)

The integral of the momentum flux thus indicates the di-

rection in which the centroid moves as the mode grows to

finite amplitude. The flux due to the S mode tends to raise

the centroid of the jet. This finite-amplitude effect moves

the shear away from the stratified region, the overall effect

of which is to lower the Richardson number and enhance

the growth of the instability. In contrast, the V mode acts

to move the jet downward into the stratified region.

The new mode class seen in figure 6 resembles the S

mode in that it extracts energy from the mean flow pri-

marily near its upper critical level (figure 7c). As a re-

sult, it does relatively little work against gravity. The

new mode differs most dramatically from both the S and

V modes in the region below the lower critical level: it

drives strong fluxes of energy, momentum and buoyancy

downward into the lower half plane. The tilt in the phase

profile of the eigenfunction indicates a uniform phase pro-

gression with depth, indicative of wavelike signal propa-

gation. In other words, the phase speed and wavelength

of this mode are such that it excites an IGW field in the

lower half plane having a real vertical wavenumber. For

this reason, we refer to the new instability as the R (for

“radiating”) mode.

Note that the amplitude of the R mode is not uniform

in the region below the jet; rather, it decays exponentially

with depth. This behavior should not be confused with

evanescence, the decay of signals that do not resonate with

any propagating mode. The decay seen here is due to the

fact that the source of the radiation is a disturbance that

grows exponentially with time. The wave amplitude also

grows exponentially with time at any fixed depth. At a

fixed time, however, the signal is strongest at points near-

est to the source. Exponential growth is also responsible

for the nonzero buoyancy flux carried into the lower half

8
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Figure 8: Nondimensional growth rate (a) and phase speed

(b) as a function of nondimensional wavenumber for unstable

modes of the asymmetrically stratified jet withJL = 0.25 and

JU = 0. Labels indicate the mode classes. Symbol size varies

linearly with phase speed.

plane by the R mode.

Next, we examine the effect of stronger stratification in

the lower half-space, the caseJL = 0.25. The V mode is

now entirely stabilized, and the growth rate of the fastest-

growing R mode is faster than that of the fastest-growing

S mode (figure 8). Turning to the energy flux profiles (fig-

ure 9, second column), we see that the R mode still ra-

diates energy into the lower half plane as in the previous

case, but that energy flux is much weaker than before (rel-

ative to the amplitude of the perturbation streamfunction,

cf. figure 7c). Although the wavelength and phase speed

allow the R mode to resonate with a free IGW mode, very

little of the mode’s energy is able to penetrate beyond the

lower critical level. The S mode also fluxes very little en-

ergy into the lower half-space and, as before, it does not

resonate with any vertically propagating mode. For both

modes, the buoyancy flux is focussed near the lower criti-

cal level. The flux Richardson number of the S mode has
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(a) R
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Figure 9: Eigenmodes of the most unstable R (a) and S (b)

modes for the asymmetrically stratified jet withJL = 0.25 and

JU = 0. Leftmost column gives the magnitude of the eigen-

function ψ̂(z), normalized by its maximum value, as well as

the phase normalized by2π. Remaining columns show vertical

fluxes of energyp′w′, momentumu′w′ and buoyancyθ′w′, re-

spectively. Shaded boxes indicate the region between the upper

and lower critical levels.

increased to 0.28, indicating that the mode expends a sig-

nificant fraction of the energy it gains from the mean flow

in doing work against gravity.

The modes shown in figure 9 clearly illustrate our

hypothesized mechanism in which gravity waves are

launched by instability on the upper flank of the jet, prop-

agate downward through the jet core, and are absorbed at

the lower critical level. Note in particular the intense di-

vergence of the momentum flux just above the lower criti-

cal level of the S mode (figure 9b, third column). At finite

amplitude, this divergence will lead to a rapid decelera-

tion of the mean flow and consequent upward migration

of the critical level in analogy with orographic waves in

the atmosphere (Fritts, 1989). This mechanism may ac-

count for turbulence observed on the lower flank of the

EUC (figure 1d) and may play an important role in the

zonal momentum balance.

Having looked closely at the specific casesJL = 0,

JL = 0.09 and JL = 0.25, we now take a broader

9
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Figure 10: Scalar properties of the fastest growing modes as

functions of stratification parameterJL for the caseJU = 0.

Thin, thick and dashed curves indicate the fastest-growing S, R

and V modes, respectively. (a) Growth rate. (b) Phase speed. (c)

Streamwise wavenumber. (d) Real vertical wavenumber of the

corresponding free mode, given by (5).

view of the dependence of the stability characteristics of

the asymmetrically stratified jet upon the lower stratifica-

tion parameterJL . Figures 10, 11 and 12 show various

scalar properties of the S, V and R mode classes as func-

tions of JL with JU = 0. For each class, the mode il-

lustrated is that which maximizes the growth rate. The

S and V modes are both stabilized by the stratification:

the former is damped entirely forJL > 0.3, while the

latter is damped forJL > 0.1. The R mode appears

to be destabilized as soon asJL is increased above zero

(though it is difficult to detect numerically at very small

JL). The R mode becomes the dominant instability for

JL > 0.22. The growth rate continues to increase with

increasing stratification, up to and beyond the largestJL

value shown here. The reasons for this relative freedom

from buoyancy damping will be explored below.

Both the R and V modes have much larger phase speeds

than the S mode, indicating that their critical layers are

located close to the jet core, while the critical layers of

the S mode lie further out on the flanks of the jet (figure

10b).

For all modes, the dominant wavenumber increases

slightly with increasing stratification. The R mode is the

longest, exceeding the S mode in wavelength by a factor

of three or more at allJL (figure 10c). This difference

accounts for the R mode’s ability to couple efficiently

with freely propagating gravity waves in the lower half-

space. In fact, the R mode is the only mode that cou-

ples to a free mode with real vertical wavenumber (figure

10d). The vertical wavenumber at which the R mode radi-

ates increases strongly with increasing stratification. Over

the range shown in figure 10, the vertical wavenumber is

about twice the horizontal wavenumber.

The local Richardson number at the lower critical level,

RiL, varies approximately in proportion toJL, and is

nearly the same for all three modes. Because the V mode

grows by extracting energy from the mean flow at the

lower critical level, we expect that it will be damped for

all RiL > 1/4. In fact,RiL=0.18 at the largestJL for

which the V mode is unstable. For largerJL, only the two

modes that extract energy at the upper critical level are

unstable.

In general, instability in strongly stratified cases re-

quires that modes be configured so as to expend only a

small fraction of their energy uptake in doing work against

gravity. Because its energy source is in the stratified re-

gion, the V mode expends a large fraction of its energy

10



Dyn. Atm. OceansSubmitted 17 July, 2001, accepted 8 May 2002. W.D. Smyth & J.N. Moum

       
0

0.5

1
(a)

R
i L

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.5

1
(b)

R
f

J
L

Figure 11: Scalar properties of the fastest growing modes as

functions ofJL for the caseJU = 0. Thick, thin and dashed

curves indicate the fastest-growing S, R and V modes, respec-

tively. (a) Gradient Richardson number at the lower critical

level. (b) Flux Richardson number.

working against gravity. By the time the mode disap-

pears atJL = 0.1, its flux Richardson number is about

0.5 (figure 11b). The flux Richardson number of the S

mode increases more slowly, reaching a value 0.38 at the

largestJL for which the instability exists. In contrast,

the R mode is configured so as to do relatively little work

against gravity even at the largestJL values included here,

and is therefore able to grow despite strong stratification

in the lower half plane.

The fact that the R mode is destabilized by stratifica-

tion raises the possibility that the fastest growing mode

may be oblique, i.e. it may have a nonzero spanwise com-

ponent to its wavevector. In unstratified flow, Squire’s

theorem (Drazin and Reid, 1981) shows that, while they

always exist, no oblique mode can be the fastest grow-

ing. In the presence of stratification, however, Squire’s

theorem is modified so that the growth rate of a three-

dimensional mode is related to that of a two-dimensional

mode at higher bulk Richardson number (e.g. Smyth and

Peltier, 1990). Any mode class whose growth rate in-

creases with increasing stratification has the potential to

have an oblique mode as its fastest growing member. As

long as the mean flow is parallel, the growth rate is al-

ways even with respect to the spanwise component of the

0

50

100

φ

(a)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0
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J
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σ
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Figure 12: Scalar properties of the fastest growing R mode

as functions ofJL for the caseJU = 0. (a) Angle between

the wavevector and the x axis. (b) Growth rates of the fastest

growing mode (dashed) and the fastest growing two-dimensional

mode (solid).

wavevector. Oblique modes are therefore expected to oc-

cur in pairs, having equal growth rates and phase speeds

but directed at opposite angles from the streamwise direc-

tion. Smyth et al. (1988) noted that the fastest growing

mode is oblique in any region of parameter space where

the growth rate increases faster thanJ1/2 (whereJ is a

bulk Richardson number).

In the present case, the growth rate of the R mode in-

creases faster thanJ1/2
L for all JL less than 0.25. Fig-

ure 12a shows the angle by which the wave vector of the

fastest growing mode departs from the x axis. This angle

is large for smallJL, but decreases to zero byJL = 0.25.

The R mode is therefore two-dimensional over most of

the largeJL values for which it is the fastest growing in-

stability. An exception to this occurs in the small range

0.22 < JL < 0.25, where a three-dimensional R mode

dominates. However, the difference in growth rate be-

tween this and the corresponding two-dimensional mode

is less than one half percent (figure 12b). In the nonlinear

simulations described in the next section, we will examine

two-dimensional modes only.

We complete the description of the linear normal modes

of the asymmetrically stratified jet by returning briefly to

the case in which the upper level stratification parame-

11
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Figure 13: Scalar properties of the fastest growing modes as

functions of JL for the caseJU = 0.05. Thick, thin and

dashed curves indicate the fastest-growing S, R and V modes,

respectively. (a) Growth rate. (b) Phase speed. (c) Streamwise

wavenumber. (d) Real vertical wavenumber of the correspond-

ing free mode. (e) Flux Richardson number. Gradient Richard-

son number at the upper (f) and lower (g) critical level.

ter JU is nonzero. Scalar parameters forJU = 0.05
are shown as functions ofJL in figure 13. Comparing

with the caseJU = 0 (figures 10 and 11), we see that

the growth rates are reduced by the upper level stratifi-

cation. The S and V modes are damped at lower values

of JL , and the asymptotic growth rate of the R mode at

largeJL is reduced by about one half. The phase speeds

of all modes are increased somewhat (figure 13b), indi-
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Figure 14: Eigenmodes of the most unstable R mode for the

asymmetrically stratified jet withJL = 0.25 andJU = 0.05.

Leftmost frame gives the magnitude of the eigenfunctionψ̂(z),

normalized by its maximum value, as well as the phase normal-

ized by2π. Remaining frames show vertical fluxes of energy

p′w′, momentumu′w′ and buoyancyθ′w′, respectively. Shaded

boxes indicate the region between the upper and lower critical

levels.

cating that their critical levels have moved toward the jet

core. The streamwise wavenumbers at which the modes

are most unstable are not significantly changed from the

JU = 0 case (figure 13c), but the vertical wavenumber at

which the R mode resonates is reduced (figure 13d). Be-

cause the stratification is now nonzero at the upper critical

level, the two modes (S and R) that extract their energy

from the mean flow in that region do more work against

gravity, with the result that their flux Richardson numbers

are generally higher (figure 13e). The gradient Richard-

son number at the upper critical level is now nonzero in

all cases, but it remains substantially smaller than 1/4 for

each unstable mode (figure 13f). The gradient Richardson

number at the lower critical level (figure 13g) is slightly

reduced, but it retains the property of being essentially

equal for the fastest growing mode of each class. The R

mode atJL = 0.25, JU = 0.05 now shows a significant

buoyancy flux at the upper critical level, but its tendency

to radiate energy into the lower half-space is unchanged

from theJU = 0 case (figure 14, cf. figure 9a).
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4 Nonlinear simulations

The unstable normal modes described in the previous sec-

tion have the potential to grow to large amplitude, and

thus to generate large fluxes of energy and momentum and

a vigorous turbulent energy cascade. Since linear theory

tells us nothing about the amplitude a given instability will

attain, it does not allow us to evaluate the strength of these

processes in any real geophysical system. To estimate

the actual fluxes and mixing rates requires solution of the

fully nonlinear initial value problem. To do this in de-

tail, particularly for a flow of geophysical scale, is beyond

the scope of the present study. However, a strongly con-

strained nonlinear model offers the opportunity to make

useful first estimates.

Because the dominant linear instabilities of parallel

shear flows tend to be two-dimensional, it makes sense

to investigate their evolution to large amplitude via simu-

lations in which motions in the third dimension are sup-

pressed. In these simulations, the effects of small-scale

turbulence are represented only crudely via a diffusion op-

erator. Aspects of the flow for which these motions are

crucial, such as turbulent mixing at critical levels, cannot

be evaluated with any confidence. However, these simu-

lations are expected to deliver realistic amplitudes for the

large-scale aspects of the flow evolution, in particular the

fluxes due to wave propagation.

4.1 Methods

To take full advantage of the restriction to two dimen-

sions, the nondimensional Boussinesq equations are cast

in vorticity-streamfunction form as:

∂ω

∂t
=
∂ψ

∂z

∂ω

∂x
− ∂ψ

∂x

∂ω

∂z
(14)

+
∂θ

∂x
+

1
Re

∇2(ω − ω̄)

∂θ

∂t
=
∂ψ

∂z

∂θ

∂x
− ∂ψ

∂x

∂θ

∂z
(15)

+
1

RePr
∇2(θ − θ̄) +Dθ(x, z, t)

ω = ∇2ψ (16)

The fieldsω(x, z, t) andψ(x, z, t) represent vorticity

and the streamfunction, respectively, whileθ(x, z, t) rep-

resents the buoyancy as before. The Reynolds number

Re = uoho/ν represents the reciprocal of the nondimen-

sional kinematic viscosity.Pr denotes the Prandtl num-

ber, the ratio of viscosity to scalar diffusivity. For the

present experiments, we chooseRe = 300 andPr = 1.

Note that the diffusion operators are not applied to the

horizontally-averaged flow (denoted by overbars).Dθ

represents a radiative damping term to be described be-

low.

The numerical model approximates solutions to the ini-

tial value problem defined by (14-16), together with peri-

odic boundary conditions inx and flux-free boundary con-

ditions at the upper and lower limits of the computational

domain. Spatial discretization is Fourier pseudospectral

in the horizontal, second-order centered difference in the

vertical. Temporal discretization is via a second-order

Adams-Bashforth method.

In order to mimic the radiation boundary conditions

employed in the linear analyses (section 3.1), the compu-

tational domain is divided into an inner “physical” layer

and outer sponge layers. In the sponge layers, Rayleigh

damping is applied to the scalar field so as to minimize the

reflection of gravity waves back into the physical layer.

The damping coefficient increases smoothly from zero at

the edge of the physical layer, reaching a maximum value

of γ = 0.20 at the boundary of the computational domain,

e.g.:

Dθ = −γ 1
2
(
1− cosπ

zb − z

zb − zB

)
(θ − θ̄) (17)

wherezb andzB denote the lower boundaries of the phys-

ical and computational domains, respectively. Within the

13
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physical domain,Dθ = 0. The vertical grid spacing

is uniform within the physical domain, but varies in the

sponge layers. The grid interval increases linearly from

its physical-domain value at the inner edge of the sponge

layer to three times that value at the domain boundary.

Flow diagnostics are computed over the physical domain

only.

Initial conditions consist of basic states as defined in

section 2, with added perturbations proportional to the un-

stable normal modes computed in section 3. The perturba-

tion amplitudes are chosen so that the perturbation kinetic

energy is10−4 times the kinetic energy of the mean flow

at t = 0. The physical domain is defined by0 ≤ x < L;

−5 ≤ z ≤ 5, whereL is some integer multiple of the

wavelength of the eigenfunction. Upper and lower sponge

layers extend toz = 9 andz = −13.

We have used this methodology to investigate the non-

linear evolution of many of the unstable modes described

in the previous section. Here, we describe three partic-

ular cases that encompass the range of nonlinear behav-

iors found. In each case, the initial condition consists of

a mean flow specified by the values ofJL andJU , plus

a small perturbation proportional to the eigenfunction of

some linear normal mode. In the first case, the mean flow

is characterized byJL = 0.14, JU = 0, so that stratifica-

tion in the lower half-space is significant but the S mode

still dominates. This run is designated S14. The second

case, denoted R25, hasJL = 0.25, JU = 0, so that the

R mode dominates. For the third simulation, we retain

JL = 0.25 but increaseJU to 0.05, to see the effect of

stratification in the upper half space. This run is denoted

R2505.

4.2 Results

The evolution of the perturbation kinetic energy, spatially

averaged over the physical domain, is shown for our three

cases in figure 15. Not surprisingly, the modes with the

largest linear growth rates exhibit the most rapid initial
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Figure 15: Volume-averaged perturbation kinetic energy as a

function of time for simulations S14 (thick solid), R25 (thin

solid) and R2505 (dashed).

increase in kinetic energy. For case S14,K grows to a

maximum near t=50, then decays slowly. The radiating

mode withJL = 0.25 andJU = 0 (R25) grows more

slowly at first, but exhibits a sharp increase in growth rate

after about t=60 and eventually attains larger energy than

the S case. The reason for this late growth phase will be

explored below. The R mode withJL = 0.25 andJU =
0.05 (R2505) grows slowly throughout the simulation.

The temperature, vorticity and perturbation stream-

function fields for the S mode at t=40 and t=80 are shown

in figure 16. Three wavelengths of the primary instabil-

ity are included in the computational domain to facilitate

subsequent comparison with the longer R modes. The

counterclockwise (positive) vorticity of the upper flank of

the jet is concentrated into discrete monopoles, while the

lower flank vorticity appears as curved braids (figure 16,

middle frames). The maximum clockwise vorticity (thick

contours) is larger than the maximum counterclockwise

vorticity (thin contours), due to the baroclinic torque ex-

erted by the buoyancy force. The upper edge of the strati-

fied fluid is distorted into smooth ripples (figure 16, left

14
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Figure 16:Scaled temperature, vorticity and perturbation streamfunction fields for run S14 at t=40 (a) and t=80 (b). The pertur-

bation streamfunction is defined relative to the horizontally-averaged profile. Shading indicates the original locations of the critical

levels. For the vorticity and the streamfunction, thick (thin) contours indicate negative (positive) values.

hand frames). Further down, however, the scalar field

exhibits large amplitude overturns. This enhanced dis-

placement begins at the lower critical level, and indicates

intense wave-mean flow interaction in that region (figure

16a, left frames, bottom of shaded region). Enhanced tur-

bulence observed on the lower flank of the EUC (figure

1d) may result from a similar mechanism. By t=80, (fig-

ure 16b), the overturning region has migrated upward due

to wave-induced acceleration of the mean flow.

Beyond this point in the flow evolution, it is likely that

a fully three-dimensional simulation would reveal mo-

tions in the spanwise direction. Secondary stability anal-

yses of shear-driven billows (e.g. Klaassen and Peltier,

1985b; Sutherland et al., 1994) have revealed that three-

dimensional motions become important onceK reaches

its maximum value. Analyses of waves approaching a

critical level by Winters and D’Asaro (1994) have shown

a similar result: overturns break down partly via three-

dimensional convective motions. Ultimately, our two-

dimensional flow approaches a state of nonlinear equilib-

rium, with continued slow evolution due only to diffusion.

The R mode (figure 17) is distinguished from the S

mode by its large wavelength (cf. figure 10c) and slow

growth (figure 10a, figure 15). Att = 40, flow distortions

due to the R mode are relatively weak. The perturbation

streamfunction exhibits wave radiation into the lower half

plane, as expected on the basis of the stability analyses.

By t = 60, the disturbance has reached large amplitude

and exhibits strong vorticity and distinct overturning near

the lower critical level. The long wave is now modulated
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Figure 17:Scaled temperature, vorticity and perturbation streamfunction fields for run R25 at t=40 (a), t=60 (b) and t=80 (c). The

perturbation streamfunction is defined relative to the horizontally- averaged profile. Shading indicates the original locations of the

critical levels. For the vorticity and the streamfunction, thick (thin) contours indicate negative (positive) values.

by a disturbulence of shorter wavelength.

By t = 80, the character of the disturbance that orig-

inated with the R mode has changed dramatically. The

flow is now dominated by a large amplitude, short wave-

length disturbance. Strong overturning is evident. The

short-wave disturbance has caused long plumes of strati-

fied fluid to be ejected into the upper half plane. Not long

after this, the jet is completely disrupted by the large am-

plitude disturbance. (By this point, the flow is certain to

be influenced by three-dimensional effects, so the present

results must be treated as preliminary. It seems unlikely,

however, that three-dimensional motions would alter the

main features of the flow.) Downgoing radiation in the

lower half-space is still present att = 80, though it is

weak in comparison with the intense vortices above the

jet and is therefore not visible in figure 17c.
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Figure 18: Scaled temperature, vorticity and perturbation streamfunction fields for run R2505 at t=60 (a) and t=120 (b). The

perturbation streamfunction is defined relative to the horizontally- averaged profile. Shading indicates the original locations of the

critical levels. For the vorticity and the streamfunction, thick (thin) contours indicate negative (positive) values.

With the addition of nonzero stratification in the up-

per half-space (case R2505), the growth of the R mode

is slowed considerably. Not untilt ∼ 80 does signifi-

cant overturning develop at the lower critical level (fig-

ure 18). The secondary instability and subsequent catas-

trophic breakdown observed in the R25 case is prevented.

As in the case R25, wave radiation into the lower half-

plane is evident.

The vertical motion of the jet provides a clear indica-

tion of wave-mean flow interactions. The location of the

velocity centroidζ as a function of time is shown for all

three simulations in figure 19. The S mode atJL = 0.14
displaces the jet upward, as expected on the basis of the

momentum flux of the linear eigenmode (cf. figure 7 and

accompanying discussion). Displacement of the jet by the

R mode with R25 is much slower at first, but increases

rapidly after about t=60. This displacement tends to re-

duce the effect of the stratification. On the basis of our

earlier linear stability analyses (e.g. figure 10a), we ex-

pect that this will destabilize shorter modes similar to the

S mode. (This is confirmed by separate linear stability

analyses of the case where the discontinuity in stratifica-

tion is located below the center of the jet.) This secondary

effect of jet migration is the reason for the appearance of

the short-wave instability in the R25 case (figure 17) and

for the complex evolution of the perturbation kinetic en-

ergy (figure 15).

Although the catastrophic breakdown of the jet coin-

cides with the growth of the short-wave secondary in-

stability, the long-wave disturbance is also essential to
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Figure 19:The centroid of the mean velocity distribution as a

function of time, showing the vertical migration of the jet center

due to the net momentum flux of the unstable mode. Curves

correspond to cases S14 (thick solid), S22 (thin solid) and R2505

(dashed).

the process. A counterexample is provided by simula-

tion S14, which was initialized with the short-wave mode

alone. In this case, the disturbance equilibrates at finite

amplitude without destroying the jet. In a separate exper-

iment (not shown), the S14 simulation was seeded with

a random long-wave disturbance in addition to the short-

wave eigenmode. The long-wave component eventually

grew to large amplitude and the jet was disrupted as in

the R25 case. In run R2505, secondary instability was

strongly suppressed by the nonzero stratification in the up-

per half space.

We conclude this section with a look at the momen-

tum fluxes that arise at two particular levels in our simu-

lations. Fluxes across the upper critical level (figure 20a)

correspond to strong instability and overturning above the

jet, while fluxes across the lower boundary of the physical

domain,z = −5 (figure 20b) represent wave propagation

into the deep ocean. In the disturbance that develops from

the S mode (S14), the momentum flux at the upper critical
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Figure 20: Vertical flux of horizontal velocity across (a) the

upper critical level and (b) z=-5. Curves correspond to cases

S14 (thick solid), R25 (thin solid) and R2505 (dashed).

level grows to a maximum at about the same time that the

perturbation kinetic energy peaks (cf. figure 15,t = 50).

Beyond this point, the disturbance settles into a nonlin-

ear, quasi-equilibrium state in which the momentum flux

across the upper critical level drops to zero. This vanish-

ing of the momentum flux is expected, for otherwise the

background jet would continue to migrate upwards (rather

than remaining steady atζ ∼ 1 as shown in figure 19) and

the nonlinear equilibrium state could not be sustained. In

case R25, the momentum flux at the upper critical level

increases to∼ 0.01 shortly before the secondary instabil-

ity sets in and the jet begins to migrate (cf. figure 19).

The flux then exhibits large amplitude oscillations. When

weak stratification is added to the upper half-space (case

R2505), the momentum flux at the upper critical level is

reduced by more than an order of magnitude. In the R25

and R2505 cases, there is a consistent downward momen-

tum flux atz = −5 that grows along with the disturbance
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amplitude. In contrast, the momentum flux at z=-5 for the

S14 case fluctuates about zero.

5 Comparison with EUC observa-

tions

The asymmetrically stratified jet represents an incomplete

model of the EUC. It accounts for instability due to the

shear on the upper and lower flanks of the jet, and for

its modification by the asymmetric stratification profile,

but other important factors such as the surface current are

omitted from the model. We now compare the character-

istics of our computed modes with observational analyses,

in order to assess the ability of this limited model to cap-

ture the physics of the EUC. We compare our results with

the observational results of Moum et al. (1992) and Lien

et al. (1996), who observed large-amplitude waves on the

upper flank of the EUC, and also with stability analyses

of measured profiles from the EUC (Sun et al., 1998).

Appropriate length and velocity scales for the EUC are

ho = 40m and uo = 1m/s (figure 1). The squared

buoyancy above the EUC is rarely greater than10−4s−2,

whereas typical values just below the EUC vary between

10−4 and10−3s−2. In our nondimensionalization, these

levels of stratification become 0.16 and 1.6, respectively.

The domain of interest for the EUC is therefore approx-

imated by0 ≤ JU ≤ 0.16; 0.16 ≤ JL ≤ 1.6. In the

JL − JU plane shown on figure 5, this domain occupies a

rectangle in the lower right-hand corner that extends to the

right beyond the largest value ofJL shown. The R mode

dominates over most of this stratification regime. ForJU

greater than about 0.1, the flow is stable.

The maximum growth rate of the R mode occurs when

JU vanishes, and is about 0.05. Scaled for the EUC, this

gives an e-folding time of about thirteen minutes. This

is comparable with the fastest growing modes found by

Sun et al. (1998). Typical nondimensional values for the

streamwise wavenumber of the R mode are 0.5 (figure

10c) or less. This corresponds to an approximate lower

bound on the zonal wavelength of 500m. For compar-

ison, the observations of Moum et al. (1992) and Lien

et al. (1996) and the analyses of Sun et al. (1998) all deliv-

ered wavelengths in the range 200-350m. In contrast, the

wavelength of the S mode is consistent with the observa-

tions. Zonal phase speeds of the modes computed by Sun

et al. tended to be near zero or even negative, while Lien et

al. estimated a phase speed of 0.2m/s. This is in contrast

with the phase speed of the R mode, which is generally

greater than 0.6, or 0.6m/s in dimensional terms.

The momentum fluxes shown in figure 20a may be

compared with the estimates made by Lien et al. (1996)

from observations of a large-amplitude wave signal above

the core of the EUC. The maximum zonal stress associ-

ated with that disturbance was estimated as0.3Nm−2.

In our nondimensionalization, this becomesu′w′ = 3 ×
10−4. The stresses our model develops above the jet ex-

ceed this value by up to two orders of magnitude (figure

20). The most realistic model result is from run R2505,

for which the momentum flux at the upper critical level

approached10−3 at the end of the simulation. Compar-

ison with the observations of Moum et al. (1992) yields

an even wider discrepancy, as their estimates of the mo-

mentum flux were an order of magnitude smaller still than

those of Lien et al. In addition, accelerations due to the

momentum flux convergence in the model are several or-

ders of magnitude stronger than those driven by the zonal

pressure gradient in the equatorial Pacific.

It therefore appears that our model develops momen-

tum fluxes that are much more intense than those found

on the EUC. The addition of stratification above the jet

damps the instabilities considerably, but even the case

R2505 develops fluxes that would severely disrupt the

EUC over a period of a few hours. This is in dramatic

contrast with the EUC, whose large-scale structure varies

only on timescales of months to years. These results indi-

cate that instability governed by the main local structure
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of the EUC is more than strong enough to account for the

observed waves and turbulence; in fact, we must now ask

why the EUC is not considerably more turbulent than it is.

6 Summary

We have examined the normal mode instabilities of a

Bickley jet in a fluid with asymmetric stratification. We

have identified three classes of unstable modes: the S and

V modes are extensions of the sinuous and varicose in-

stabilities of the unstratified Bickley jet, while the third

mode, denoted “R”, has no counterpart in the unstratified

case.

Stable stratification in the lower half-space (i.e.JL >

0) damps both the S and V modes. For weak stratification

(JL < 0.22), the S mode dominates. At largerJL, the

fastest growing mode is the R mode, whose long wave-

length enables it to couple with free IGW modes and thus

to radiate energy downward away from the jet. This char-

acteristic is strongly suggestive of the wave radiation ob-

served at depth the in equatorial Pacific.

For JL < 0.25, the R mode appears as a superposi-

tion of two oblique disturbances whose wave vectors point

at equal and opposite angles from thex axis. The an-

gle of the fastest growing R mode approaches 90 degrees

at smallJL, decreases asJL increases, and vanishes at

JL = 0.25. Beyond this point, the dominant R mode

is two-dimensional. For0.22 < JL < 0.25, the fastest

growing disturbance is a pair of R modes inclined at up to

20 degrees from thex axis. However, these modes grow

only marginally faster than their two-dimensional coun-

terparts. Therefore, while three-dimensional primary in-

stability may exert some influence on flow evolution, it is

unlikely to be dominant.

The R mode is able to grow despite strong stratification

because its energy is focussed on the upper flank of the

jet, away from the stratification. Linear theory suggests

that, although the R mode resonates with the IGW field

in the lower half plane, its lower critical level provides

a barrier against energy leakage at sufficiently highJL.

In the nonlinear regime, however, the present simulations

reveal no significant change in the downward momentum

flux as a function of stratification.

Nonlinear simulations show that both the S and R

modes generate strong wave-mean flow interactions at the

lower critical layer, leading to overturning of the tem-

perature field that would trigger turbulence in a three-

dimensional flow. In both cases, momentum flux diver-

gences cause the jet to migrate upwards away from the

stratification. (This migration is reversed in the case of

the V mode, but the latter is never dominant.) Migration

is slower for the R mode than for the S mode, but when the

jet does begin to migrate upward, the result is a dramatic

change in the nature of the disturbance. The departure of

the jet from the stratified zone destabilizes a short-wave

instability similar to the S mode, which grows rapidly and

greatly accelerates the breakdown of the jet. It appears

that no amount of stratification in the lower half-space

alone can prevent this breakdown, though weak stratifica-

tion in the upper half space stabilizes the jet considerably.

Both linear and nonlinear analyses support the hypoth-

esis that strong turbulence and wave-mean flow interac-

tions on the lower flank of the jet may result from the

radiation of gravity waves from the upper flank. Waves

are generated by the dynamic instability of the weakly

stratified shear on the upper flank, propagate downward,

and break upon encountering the critical level on the more

strongly stratified lower flank.

With respect to the EUC, the present results lead to an

interesting conclusion: if the EUC were simply an iso-

lated jet with stable stratification below and mixed fluid

above, it would be torn apart by shear instability within

a few hours. In reality, of course, the large-scale struc-

ture of the EUC varies only on timescales of months to

years. We are thus left with the question: what stabilizes

the EUC? A partial answer is provided by the addition
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of stratification above the jet, but the momentum fluxes

remain at least an order of magnitude larger than observa-

tions. In addition, the wavelength of the dominant R mode

is longer by a factor of two than that of waves observed

near the EUC, and its zonal phase speed is too large. Un-

realistically large momentum fluxes can be reduced by in-

creasingJU to values near the stability boundary, but the

discrepancy in wavelength remains.

We now evaluate the potential importance of several

factors that are missing from the present model.

• Three-dimensional motions: The main effect of

three-dimensional turbulence is to smooth gradients

via enhanced molecular mixing. In the present two-

dimensional simulations, the Reynolds number is set

very low (of order102). As a result, the effects of

turbulent mixing are at least crudely represented and

are, in fact, probably exaggerated.

• Forcing: The EUC is sustained by a zonal pressure

gradient. In our model, the forcing needed to sustain

the jet against instability would have to be several or-

ders of magnitude stronger than that observed in the

equatorial oceans. Also, the inclusion of such forc-

ing would increase the momentum fluxes developed

in the model, and those fluxes are already too large

to match the observations.

• The seasonal thermocline:This thin layer of en-

hanced stratification is located near or slightly below

the EUC, and is expected to exert a stabilizing influ-

ence.

• The ocean surface:Boundary proximity is known

to stabilize long modes (e.g. Hazel 1972), and may

therefore suppress the R mode that leads to the de-

struction of the jet in the present simulations. The

wavelength of the R mode is much larger than the

distance from the jet core to the surface, which

means that the boundary proximity effect is likely to

be significant.

• The South Equatorial Current: The presence of

the counterflowing surface current increases the ki-

netic energy available to drive instability and may

thus be expected to destabilize the flow. How-

ever, preliminary results indicate that the reverse is

true; the surface current actually helps to stabilize

the EUC. Also, the presence of the surface current

should give rise to modes with small or negative

zonal phase velocity, in better agreement with obser-

vations.

In summary, it seems likely that better correspondence

with observations will result primarily from refinement of

the background profiles and the upper boundary condition

rather than from the inclusion of forcing or improved tur-

bulence modeling. Future publications will describe ex-

tensions of the model to incorporate these factors, leading

to improved understanding of waves and instability in the

equatorial zonal current system.
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