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Abstract

Direct numerical simulations are used to compare turbu-
lent diffusivities of heat and salt during the growth and
collapse of Kelvin-Helmholtz billows. The ratio of dif-
fusivities is obtained as a function of buoyancy Reynolds
numberReb and of the density ratioRρ (the ratio of the
contributions of heat and salt to the density stratification).
The diffusivity ratio is generally less than unity (heat is
mixed more effectively than salt), but it approaches unity
with increasingReb and also with increasingRρ. Instan-
taneous diffusivity ratios near unity are achieved during
the most turbulent phase of the event even whenReb is
small; much of theReb dependence results from the fact
that, at higherReb, the diffusivity ratio remains close to
unity for a longer time after the turbulence decays. An
explanation for this is proposed in terms of the Batchelor
scaling for scalar fields. Results are interpreted in terms
of the dynamics of turbulent Kelvin-Helmholtz billows,
and are compared in detail with previous studies of differ-
ential diffusion in numerical, laboratory and observational
contexts. The overall picture suggests that the diffusivities
become approximately equal whenReb exceedsO(102).
The effect ofRρ is significant only whenReb is less than
this value.

1. Introduction

The density of seawater is controlled by a pair of scalar
quantities, temperature and salinity, whose molecular dif-
fusivities differ by two orders of magnitude. Despite this
difference, we customarily assume that the turbulent dif-
fusivities of temperature and salinity are the same. This
assumption is grounded in the classical theory of station-
ary turbulence in the limit of infinite Reynolds number
(e.g. Corrsin, 1951). However, much of the ocean inte-
rior is mixed by turbulent events for which the Reynolds
number is decidedly finite (e.g. Moum, 1996b) and the
turbulence is nonstationary. In a mixing event of finite
duration, vertically displaced fluid parcels may return to
an equilibrium configuration after mixing only partially
with the surrounding fluid. The lower the molecular dif-
fusivity, the greater the tendency for incomplete mixing.
The large difference between the molecular diffusivities
of heat and salt therefore suggests that heat and salt could
mix differently in turbulent events of finite duration, i.e.
that turbulent seawater may exhibit differential diffusivity.
In the present study, we assess the potential for differen-
tial diffusivity via direct numerical simulations (DNS) of
turbulent Kelvin-Helmholtz (KH) billows.

Several large-scale modeling studies (e.g. Gargett and
Holloway, 1992; Merryfield et al., 1999) have revealed
that a difference in the assumed diffusivities of heat and
salt can lead to significant differences in computed large
scale circulation, so the issue is potentially important
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for the development of accurate turbulence parameteriza-
tions.

Differential diffusion was first demonstrated in the lab-
oratory experiments of Turner (1968), who measured en-
trainment fluxes in a fluid where turbulence was gener-
ated by an oscillating grid. The working fluid was strat-
ified by either temperature or salinity, but not by both.
A significant difference in turbulent diffusivities was ev-
ident. Altman and Gargett (1990) repeated Turner’s ex-
periments, this time using thermal and saline stratification
simultaneously. Like Turner, they found diffusivity ra-
tios significantly different from unity. Individual entrain-
ment rates were independent of the presence of the other
density component, i.e. no dependence on the density ra-
tio was detected. In the laboratory experiments of Jack-
son and Rehmann (2003), a fluid stratified by both salin-
ity and temperature was stirred by oscillating rods, with
special care taken to insulate the boundaries against heat
loss. A distinct dependence on the buoyancy Reynolds
number (defined below) was identified. Hebert and Rud-
dick (2003) measured differential diffusion of dynami-
cally passive chemical dyes in breaking internal gravity
waves, and again found a dependence on the buoyancy
Reynolds number.

Nash and Moum (2002) have made a similar assess-
ment usingin situmeasurements of ocean microstructure.
Statistical analysis of many turbulent events indicated a
tendency for heat to diffuse more rapidly than salt, but
the ratio of diffusivities was within experimental error of
unity. No dependence upon the buoyancy Reynolds num-
ber was evident.

The resolution of weakly diffusive scalars in a turbu-
lent flow presents an extreme challenge for DNS. The
first study to attempt this was Merryfield et al. (1998), in
which flow was restricted to two dimensions to save mem-
ory. Those simulations were successful in detecting dif-
ferential diffusion and they served as an important prelude
to the first fully three-dimensional numerical realizations
of the phenomenon, those of Gargett et al. (2003; here-
after GMH). To facilitate simulation in three dimensions,
the diffusivity of salt was artificially increased (as it has
been in all subsequent DNS studies including the present
work). The results of GMH have recently been extended
by Merryfield (2004, hereafter M04) to include variation

of the density ratio and the important limit of zero net
stratification. A review of the subject has been provided
by Gargett (2003).

Here, we assess the potential for differential diffusion
in turbulent KH billows. We do so using DNS of shear
flows stratified by both heat and salt. KH billows have
proven to be a useful model for shear-driven overturns ob-
served in the ocean. Direct observations by Woods (1968)
showed billows forming on the crests of larger-scale in-
ternal waves. Vivid images of KH-like billows have been
obtained via echosounder in flow over topography (e.g.
Seim and Gregg, 1994; Farmer and Armi, 1999) and in
large amplitude internal waves (e.g. Moum et al., 2003).
Smyth et al. (2001) have compared turbulence statistics
from DNS of KH billows with measurements of turbulent
events in the thermocline, and found that the two are sta-
tistically indistinguishable (except for the generally lower
Reynolds numbers of the simulated flows, which reflects
the limitations of existing computer technology, not of the
KH model). Given this evidence for the importance of
KH-like dynamics in ocean mixing events, we are moti-
vated to learn whether, and if so under what conditions,
turbulent KH billows exhibit differential diffusion.

Section 2 describes the numerical model used for the
simulations. A general overview of the KH life cycle as
realized in these experiments is given in section 3. In sec-
tion 4, we describe the scalar fields in terms of gradient
spectra, and compare the results with both the ocean ob-
servations of Nash and Moum (2002) and the theoretical
spectrum due to Kraichnan (1968). The main results are
in section 5, where potential energy components, scalar
variances and turbulent diffusivities for the two scalars are
examined. In section 6, results are described in the con-
text of previous work. A summary is given in section 7.

2. Methodology

a. The mathematical model

The mathematical model is based on the field equations
for nonrotating, incompressible flow in the Boussinesq
limit, together with advection-diffusion equations for the
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two scalars,viz.:

∂ui

∂t
= −uj

∂ui

∂xj
− 1

ρ0

∂p

∂xi
− g

ρ− ρ0

ρ0
δi3 + ν∇2ui

∂uj

∂xj
= 0

∂ρT

∂t
= −uj

∂ρT

∂xj
+ κT∇2ρT

∂ρS

∂t
= −uj

∂ρS

∂xj
+ κS∇2ρS

ρ = ρ0 + ρT + ρS .
(1)

The vectorui contains the components of the velocity
field andp andρ represent pressure and density, respec-
tively. The constantρ0 is a reference density from which
deviations are assumed to be small (so that the Boussi-
nesq approximation applies and the equation of state is
linear). Accordingly, the thermal and saline contribu-
tions to the density anomalyρ − ρ0 are represented by
ρT = −αρ0(T − T0) andρS = βρ0(S − S0), whereT0

andS0 refer to the reference state andα andβ are the
(constant) expansion and contraction coefficients for heat
and salt in water. The molecular diffusivities of heat and
salt in water are represented by the constantsκT andκS .
The constantsν andg represent kinematic viscosity and
gravitational acceleration.

The field equations (1) are solved in the computational
box 0 ≤ x ≤ Lx, 0 ≤ y ≤ Ly, 0 ≤ z ≤ Lz. Boundary
conditions are periodic in the horizontal directions, i.e.

f(x + Lx, y, z, t) = f(x, y, z, t) = f(x, y + Ly, z, t),
(2)

wheref represents any field variable. At the upper and
lower boundariesz = 0, Lz, vertical velocity and vertical
fluxes of heat, salt and horizontal momentum are required
to vanish.

b. Numerical methods

The numerical code is an extension of that described by
Winters et al. (2003). It uses Fourier pseudospectral dis-
cretization in all three dimensions. Time stepping is via
the third-order Adams-Bashforth operator, with timestep
determined by a Courant-Friedrichs-Lewy stability con-
dition. Viscous and diffusive terms are integrated exactly.
MPI routines are used for parallelization.

The Winters model has been extended for use in ocean
DNS via the addition of a second active scalar, here rep-
resenting salinity. The second scalar is resolved on a fine
grid with spacing equal to one half the spacing used to
resolve the other fields (as was done by GMH). Interpo-
lations and decimations between grids are accomplished
using Fourier transforms. Aliasing errors are reduced by
applying to both grids at every time step an isotropic fil-
ter having a cosine-bell shape that decreases gradually
from amplitude 1 to 0.6 over the range 0.8 to 1 times the
Nyquist wavenumber. This gradual decrease minimizes
the effect of dealiasing on the resolved fields.

The multiple grid approach described above allows the
efficient resolution of weakly diffusive scalars such as
temperature and salinity in seawater. The memory re-
quirement is about 1/3 of that required if all fields are
resolved on the same grid. It is possible to increase the
difference in resolution between the coarse and fine grids,
but further increases yield only small improvements in ef-
ficiency.

c. Initial conditions and parameter values

For the present experiments, the initial conditions de-
scribe a pair of water masses separated by a horizontal
transition layer:

u

∆u
= − ρT

∆T
= − ρS

∆S
= tanh

(
z − Lz/2

h0

)
. (3)

Here,h0 is the initial half-depth of the transition layer,
and∆u is the half-velocity difference.∆T and∆S are the
absolute values of the half-differences of the density com-
ponentsρT andρS , respectively, so that the absolute half-
difference of density across the layer is∆ρ = ∆T + ∆S .
With these choices, the initial stratification is both stati-
cally and diffusively stable. Dynamic (shear) instability
depends on the relative values ofh0, ∆u, ∆T and∆S as
discussed below.

The horizontal periodicity intervals were determined
according to the fastest-growing modes of linear theory.
The domain lengthLx was generally twice the wave-
length of the fastest-growing KH mode, though a single
wavelength was used for some experiments. For the pro-
files (3) with the parameter values used here, the fastest
growing wavelength is closely approximated byλFGM =
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h0×2π/0.44. The domain widthLy wasλFGM/2, which
is approximately three times the spanwise wavelength of
the fastest-growing three-dimensional instability of KH
billows in air as described by Klaassen and Peltier (1991).
(Note that this wavelength is partly controlled by diffu-
sion, so we expect it to be smaller in seawater.)

In addition to the profiles described above, the ini-
tial conditions included a two-part perturbation designed
to efficiently stimulate both the KH mode and its sec-
ondary instabilities. First, disturbances proportional to the
fastest-growing KH mode and the KH mode with twice
that wavelength were added. The amplitude of the fastest-
growing mode was chosen so that its maximum vertical
displacement was0.2h0. The maximum vertical displace-
ment associated with the subharmonic mode was0.1h0.
These amplitudes are large enough to efficiently stimulate
primary and subharmonic modes, yet small enough to be
well described by linear perturbation theory. The phases
of the primary and subharmonic modes were chosen to
induce pairing at the streamwise boundary of the (peri-
odic) computational domain, so that the inner core would
be easily visible in volume renderings (e.g. figure 1). Sec-
ond, a random velocity field was added in order to excite
three-dimensional motions. At each point in space, the
three components of the velocity increment were chosen
from a list of random numbers whose probability distri-
bution was uniform between the limits±0.1∆u. During
the first time step, the random motions were automatically
made solenoidal by the pressure gradient force.

The computations were done using MKS units. To
represent flow in terrestrial oceans, the gravitation ac-
celeration, characteristic density, molecular viscosity and
thermal diffusivity were set tog = 9.81m/s2, ρ0 =
1027kg/m3, ν = 1.0 × 10−6m2/s, andκT = 1.43 ×
10−7m2/s, respectively. Note that the choices ofν and
κT correspond to a Prandtl numberPr = ν/κT of 7,
a typical value for seawater. Approximate correspon-
dence to a typical turbulent patch in the thermocline was
achieved by setting the initial turnover time for the shear
layerTS = h0/u0 to the value28.28s. With this choice,
KH billows were found to grow and decay over a time
span of 1-3 hours. (Results can be converted to any other
time scale as necessary.)

The remaining parameter values were determined via

choices of four nondimensional parameters:

Sc = ν/κS ; Ri0 =
gh0∆ρ

ρ0∆u2
;

Re0 =
∆uh0

ν
; Rρ =

∆T

∆S
. (4)

The Schmidt number,Sc, for salt in seawater ranges be-
tween 700 and 1000. In order to attain a significant level
of turbulence in the computed flows, we have reduced this
value to 50. Equivalently, one may express saline diffu-
sivity in terms of the inverse Lewis number,τ = κS/κT ,
which is of order10−2 in seawater but is 0.14 in these
simulations. (GMH used a similar value:Sc = 70, or
τ=0.1.) Even with this compromise, “salinity” still dif-
fuses an order of magnitude more slowly than does heat,
so the effects of the different molecular diffusivities ought
to be evident, although those effects are likely to be under-
estimated. For simplicity we will refer to the scalar cor-
responding to the densityρS as “salinity”, even though
it actually represents a fictitious solute that diffuses more
rapidly than sea salt.

The intensity of turbulence attained in the stratified
shear layer (3) is governed mainly by the initial Richard-
son and Reynolds numbers,Ri0 andRe0. The primary
KH mode is inviscidly unstable provided thatRi0 < 1/4
(Miles, 1961; Howard, 1961); for the present simulations,
Ri0 was in the range 0.10-0.12. The initial Reynolds num-
ber controls the range of scales in the resulting flow. A
standard compromise in DNS of geophysical flows, occa-
sioned by limitations of computer technology, is that the
Reynolds number cannot normally be made as large as
one would like. In this case, the slow diffusion of salinity
requires thatRe0 be set to 300 or smaller. Initial Richard-
son and Reynolds numbers in this range lead to turbu-
lent patches whose intensity (as measured by the buoy-
ancy Reynolds number to be defined below) is within, but
near the weak end of, the range observed in thermocline
patches (Smyth et al., 2001).

The relative importance of heat and salt in determining
the initial density stratification is expressed by the den-
sity ratioRρ. There are several conventions in current use
for definingRρ. With the definition given in (4),Rρ is
positive when both thermal and saline components of the
stratification are stable. Turbulent patches in the thermo-
cline typically exhibit values ofRρ between 0.2 and 5.
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Parameter Unit 1 2 3 4 5 6 7 8 9 10

Re0 300 240 240 240 200 240 180 180 180 100
Rρ 1.0 0.2 1.0 5.0 0.2 1.0 0.2 1.0 5.0 1.0
Ri0 0.10 0.10 0.10 0.10 0.10 0.12 0.12 0.12 0.12 0.10
h0 10−3m 92.0 82.4 82.4 82.4 75.0 82.4 71.3 71.3 71.3 53.2
∆u 10−3ms−1 3.32 2.96 2.96 2.96 2.66 2.91 2.52 2.52 2.52 1.88
∆ρ 10−3kg m−3 1.21 1.08 1.08 1.08 0.984 1.29 1.12 1.12 1.12 0.696
Lx m 2.62 1.17 1.17 1.17 2.15 2.34 1.02 1.02 1.02 1.52
Ly m 0.65 0.59 0.59 0.59 0.54 0.59 0.51 0.51 0.51 0.38
Lz m 0.88 0.78 0.78 0.78 0.72 0.78 0.68 0.68 0.68 0.51
Nx 512 192 192 192 384 384 192 192 192 256
Ny 128 96 96 96 96 96 96 96 96 64
Nz 192 128 128 128 128 128 128 128 128 96

Table 1:Parameters for numerical simulations.Re0 andRi0 represent the initial Reynolds and Richardson numbers, andRρ is the

density ratio. The variableh0 is the half-thickness of the initial shear layer. The half-changes in horizontal velocity and net density

are∆u and∆ρ. Lx, Ly andLz are the domain dimensions in the streamwise, cross-stream and vertical directions, respectively,

andNx, Ny andNz are the corresponding array sizes. The dimensions of the fine array are2Nx, 2Ny and2Nz. For all simulations,

Pr = 7 andSc = 50.

Choices for the parameter values are summarized in ta-
ble 1. Most of the analysis will focus on runs 1-4; the
remaining runs are included to provided a more compre-
hensive view of the factors governing differential diffu-
sion.

3. Overview of flow evolution

The growth, breaking and decay of the KH billow in run
1 is illustrated in figure 1 via volume renderings of theρS

field at selected times, and in figure 2 via the evolution of
three energy reservoirs that we now define.

The potential energy is given in nondimensional form
by

P (t) =
g

ρ0∆u2

〈
(z − Lz/2) (ρT + ρS)

〉
V
− P0, (5)

in which angle brackets indicate a volume average over
the computational domainV , andP0 is the potential en-
ergy of the initial profiles (3).P (t) evolves in response
to both reversible and irreversible processes. Irreversible
potential energy changes will be examined in section 5.
The kinetic energy is partitioned into two- and three-

dimensional components:

K2d(t) =
1

ρ0∆u2

〈
~u2d · ~u2d

〉
V

;

K3d(t) =
1

ρ0∆u2

〈
~u3d · ~u3d

〉
V

. (6)

The velocity fields associated with two- and three-
dimensional motions are

~u2d(x, z, t) = 〈~u〉y − 〈~u〉xy;

~u3d(x, y, z, t) = ~u− 〈~u〉y, (7)

where subscripts on the angle brackets indicate spatial
averages over the specified dimensions. The velocity
field ~u2d describes the primary KH billows, and other
large-scale, wavelike motions, while~u3d is associated
with longitudinal secondary instabilities (e.g. Klaassen
and Peltier, 1991) and turbulence.

Figure 1a shows the salinity field from run 1 att = 0.
The transition layer was horizontal except for the small-
amplitude linear eigenfunction and the random noise field
(figure 1a). Subsequently, both the potential and two-
dimensional kinetic energy fields showed rapid growth
(figure 2, solid and dashed curves). Byt = 610s, the
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(c) t=1018s.

(d) t=1425s. (i) t=3834s.
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Figure 1:Evolution of the salinity fieldρS for run 1. Values colored range from -0.4∆S (red) to 0.4∆S (dark blue). Values outside

this range are transparent. Times are as marked; note that the interval between frames is longer in the later part of the life cycle.
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primary KH billows had rolled up and were approaching
their maximum amplitude (figure 1b). In figure 1c, the
braid separating the billows at the center of the computa-
tional domain is visibly longer than that crossing the pe-
riodic streamwise boundary. This corresponds to a merg-
ing of the primary billows across the periodic boundary
due to the subharmonic pairing instability (e.g. Collins
and Maslowe, 1988). The merging process was nearly
complete att = 1425s (figure 1d). Also visible at this
time was the emergence of three-dimensionality in the
cores associated with the secondary instability described
by Klaassen and Peltier (1985a,b, 1991). Four spanwise
wavelengths of the Klaassen-Peltier (hereafter KP) mode
are visible near the right-hand side of figure 1d. This in-
stability was also manifested in rapid growth of the three-
dimensional kinetic energy (figure 2, dotted curve).

Beyond this time,K2d decreased sharply. Most of this
decrease was transferred to the mean flow as the quasi-
elliptical billow core rotated to a more nearly horizon-
tal orientation (figure 1e). The potential energy contin-
ued to grow for a short time after this due to the rollup
of streamwise vortices associated with the KP instability
(figures 1d,e); however, it too exhibited a rapid decrease
aroundt = 2000s that coincided with rapid growth of
three-dimensional structure (figure 1f, dotted curve in fig-
ure 2). This phase is referred to as the “breaking” of the
KH billow.

The breaking billow cores ejected jets of turbulent fluid
horizontally toward the center of the domain (figure 1f),
where they engulfed the intervening braid. Figure 1g
shows a second pair of jets being ejected from the tur-
bulent core. This ejection coincided with a second rapid
decrease in potential energy as the billow rotated again
into the horizontal orientation. The meeting of the second
pair of jets at the domain center (figure 1h) induced an
intense burst of turbulence. Shortly after this, turbulence
began to decay under the influence of viscosity, as shown
by the rapid decrease in both components of the kinetic
energy (figure 2). Due to its low diffusivity, the “salinity”
field retained significant small scale structure even in the
late stages of turbulence decay (figure 1i,j).

Ultimately, the decay process left behind a sheared,
two-layer flow similar to the initial condition, except that
the transition region had thickened due to mixing. As a re-

0 1000 2000 3000 4000 5000 6000
0

0.02

0.04

P

K
2d

K
3d

t [s]

Figure 2:Selected energy reservoirs for run 1: potential energy

(solid), kinetic energy of two-dimensional flow (dashed) and ki-

netic energy of three-dimensional flow (dotted). All energies are

nondimensionalized byρ0∆u2 as described in the text. Poten-

tial energy is shown minus its initial value. Letters above the

figure indicate times shown in figure 1. The numeral 6 indicates

the time shown in figure 6.

sult of this thickening, the minimum Richardson number
had increased to a value greater than 1/4, and the flow was
therefore dynamically stable. This irreversible thickening
of the transition layer is evident in figure 2 as a permanent
increase in potential energy after the disturbance kinetic
energies have decayed.

The flow evolution in runs 2-4 (figure 3) was simpler
due to reduced Reynolds number and the suppression of
pairing. The growth of the KP mode was in general more
rapid because it did not compete for energy with the pair-
ing mode (also see Metcalfe et al., 1987). The growth rate
of the primary KH instability was independent ofRρ, as
is evident from the initial evolution ofP andK3d (figure
3a,b). In contrast, the initial growth rate of the KP mode
was a strong function ofRρ, as shown by the divergence
of the curves in figure 3c neart = 1500s. This variation
with Rρ appears to be related to thePr dependence of the
growth rate of the KP mode described by Klaassen and
Peltier (1985a). WhenRρ < 1 (dashed curve), the den-
sity is dominated by the slowly-diffusing salinity compo-
nents, and the density gradients that drive convection are
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0
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Figure 3: Selected energy reservoirs for runs 3 (dashed),

4 (solid) and 5 (dotted): potential energy (a), kinetic en-

ergy of two-dimensional flow (b) and kinetic energy of three-

dimensional flow (c). All energies are nondimensionalized by

ρ0∆u2 as described in the text.

therefore sharper. In theRρ > 1 case (dotted curve),
the converse was true: density was dominated by the
rapidly-diffusing temperature field. Temperature domi-
nance also caused the damping action of buoyancy on the
primary KH billow to be reduced slightly, as shown by
the increased amplitude and duration of the peaks in po-
tential and two-dimensional kinetic energy (figures 3a,b,
t ∼ 800− 1400s).

As in run 1, the breaking billows transferred much of
their energy to the growing three-dimensional mode. This
transfer occurred in two stages. In the cases withRρ ≥ 1
(solid and dotted curves), the second stage was consid-
erably longer than the first and resulted in considerably
greater growth inK3d. This is because (a) the primary bil-
lows lost less energy to three-dimensional motions during
the first stage of collapse, and (b) the growth and subse-
quent rolling motion of the primary billows was less con-
strained by gravity when density was dominated by the
rapidly-diffusing temperature field. The latter effect is il-
lustrated by the large increase of potential energy between
t = 1500 and2000s (dotted curve on figure3a). That po-
tential energy was released as three-dimensional kinetic
energy betweent = 2000 and 2300s. Therefore, de-
spite the relatively low initial growth rate of the KP mode,

0 1000 2000 3000 4000 5000
1

1.5

2

2.5

time [s]

h/
h 0

1

2

3

4

Figure 4:Evolution of the transition layer depth for simulations

1-4.

three-dimensional motions ultimately became strongest in
the temperature-dominated case.

We conclude this overview of KH breaking and turbu-
lence with an examination of energy dissipation via vis-
cous friction. Since a substantial fraction of our compu-
tational domain was occupied by laminar flow above and
below the mixing layer, higher-order statistics such as the
kinetic energy dissipation rate, when computed using sim-
ple volume averages over the domain, are not representa-
tive of the turbulent region. Instead, we take advantage
of the fact that the turbulent layer coincides roughly with
the transition layer identified previously, and is therefore
delineated effectively by two isosurfaces of the total den-
sity fieldρT + ρS . We choose isosurfaces upon which the
density had the values± tanh (1)(∆ρ). The subvolume
enclosed by these surfaces is denotedVT . At t = 0, the
mean half-thickness ofVT (denotedh(t)) was equal toh0,
the initial half-thickness of the transition layer. Averages
overVT contain very little contribution from the laminar
regions.

As each simulation progressed,h(t) increased mono-
tonically as a result of the irreversible mixing of density
(figure 4). The degree of thickening was greatest in cases
where mixing was most vigorous. It was this thickening
that caused the increase of the bulk Richardson number to
a stable value and hence the ultimate decay of the turbu-
lence.
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Figure 5:Left frame: evolution of the buoyancy Reynolds num-

ber for simulations 1-4. Right frame: probability distribution

function (PDF) for buoyancy Reynolds number from observa-

tions in the main thermocline.

The buoyancy Reynolds number provides a useful de-
scription of the range of scales in stratified turbulence. It
is defined as the ratio of the squared Kolmogorov eddy
turnover rate,ε/ν, to the squared buoyancy frequencyN2:

Reb =
〈ε〉VT

〈νN2〉VT

, (8)

where the subscripts indicate volume averages over the
turbulent subvolumeVT . The turbulent kinetic energy dis-
sipation rateε is defined locally as

ε = 2νs′ijs
′
ij , (9)

in which

s′ij =
1
2

(
∂u′i
∂xj

+
∂u′j
∂xi

)
(10)

is the strain rate. Primes indicate fluctuations about
the horizontally-averaged velocity〈~u〉xy. WhenReb is
large, turbulent eddies are too energetic to be affected by
buoyancy. Run 1 reached a buoyancy Reynolds number
slightly in excess of 40 (figure 5, thick curve). The cor-
responding flow state is illustrated in figure 6. The re-
maining three runs shown in figure 5 were restricted to
lowerReb, in part because the pairing instability was sup-
pressed. Nevertheless, these runs are expected to give an
accurate indication of the influence of the density ratio
on turbulent diffusion. Note the slight difference in the
evolution ofReb between the low and high density ratios
(dashed and dotted curves on figure 5).

(b) ρT0 1 2x

z

0

0.5
z

0

0.5
z

0

0.5
y

(a) ρS

Figure 6:Partial densitiesρS (a)ρT (b) for run 1 att = 2286s.

This flow state is intermediate between those shown in figures

1e and f. Values colored range from -0.4∆ (red) to 0.4∆ (dark

blue). Values outside this range are transparent.

Also shown in figure 5 is a histogram ofReb taken from
observations in the thermocline off Northern California
(Moum, 1996b). A set of 994 profiles extending from
200m to a maximum of 600m depth was binned to yield
144246 1m segments, from which the statistics ofReb

were computed. No attempt was made to isolate overturns
or other regions of elevated turbulence. Values generally
ranged between 1 and103; the median was 29. Thus, the
buoyancy Reynolds numbers attained in the DNS runs re-
ported here appear to be representative of weakly turbu-
lent regions of the ocean thermocline.

9
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4. The scalar gradient spectrum

Power spectra of the scalar gradient fields provide a sen-
sitive test of numerical resolution, as well as insights into
the physics of turbulent mixing. Here, spectra are com-
puted for the high Reynolds number case (run 1) at a time
when turbulence was at its most intense (i.e.Reb was a
maximum), so that the demand placed on spatial resolu-
tion was high. Figure 6 shows the two scalar fields from
run 1 at this time, which is intermediate between the times
shown in figure 1f and g. The right-going and left-going
ends of the collapsing core are just beginning to interact
at the domain center. TheρT field (figure 6b) displays
a structure similar to the salinity, but with markedly less
small scale variability (cf. GMH’s figure 2).

Figure 7 shows spectra of the scalar gradients∂ρθ/∂z

versus the vertical wavenumberk. Spectra were computed
in the vertical direction to facilitate comparison with pro-
filer measurements. The symbolθ is used to denote ei-
ther temperature or salinity. Spectra were computed from
500 vertical profiles sampled randomly within the do-
main. For each profile, the turbulent region was selected,
ρθ was first-differenced, Hanning-windowed, and Fourier
transformed to obtain the power spectral densityΨθz

. A
correction was applied to recover variance lost by first-
differencing. Each spectrum was normalized prior to av-
eraging, using the isotropic variance dissipation rate,

χθ = κθ

∫ ∞

0

Ψθzdk, (11)

and the Batchelor scalekθ
b = (ε/νκ2

θ)
1/4 (Batchelor,

1959). Also shown on figure 7 are spectra computed from
observational data (Nash and Moum, 2002) and the theo-
retical spectral form of Kraichnan (1968).

TheρT spectrum extends further into the small scales
than does theρS spectrum because the former field is
somewhat better resolved with respect to its Batchelor
scale (the ratio of Batchelor scales for the two scalars is√

7 = 2.65; the ratio of grid spacings is 2.0). The spec-
tra of small scale gradients determined from these simu-
lations agree very well with both the observations and the
theory. This indicates that the model is reproducing the
small scale physics accurately, and in particular that the
spatial grid resolution is adequate.

At larger scales, correspondence is not as close. Large-
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Figure 7: Normalized vertical gradient spectra of temperature

(thick dashed curve) and salinity (thick solid curve) for run 1 at

t=2286s. Shown for comparison are gradient spectra of salinity

(triangles) and temperature (circles) from 350 ocean turbulence

patches (Nash and Moum, 2002). The thin solid curve is the

Kraichnan (1968) universal form for the viscous convective and

viscous diffusive subranges. The value 7.3 was used for the con-

stantq (Smyth, 1999).

scale gradients are strongly affected by the evolving fields
associated with gravity waves (GMH) and with the KH in-
stability. In contrast, the theory assumes that the flow is in
statistical equilibrium, and the observations have consid-
erably larger Reynolds numbers, and thus less influence of
the forcing scales in the viscous-convective and viscous-
diffusive subranges, relative to the DNS. The DNS salin-
ity spectrum peaks at a higher value than either the tem-
perature spectrum, the theory or the observations. Both
the salinity spectrum and the observations are systemati-
cally higher than the Kraichnan spectrum in the viscous-
convective (k+1) range.

5. Potential energy, scalar variances
and turbulent diffusivity

Our objective is to compare the turbulent diffusivities of
the thermal and saline density componentsρT andρS in
various parameter regimes. Here, we describe two ap-
proaches to this comparison, focusing first on the evolu-
tion of the horizontally-averaged scalar profiles and later

10
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on an alternative approach that isolates irreversible mix-
ing processes. Additional insight into the physics of dif-
ferential diffusion is gained through examination of scalar
variances, whose dissipation rates are used to estimate tur-
bulent diffusivities in observational studies.

a. Component potential energies

In the context of vertical mixing of a scalarρθ (which
may represent eitherρT or ρS), computation of turbulent
diffusivity requires fitting the evolution of the scalar field
to a one-dimensional diffusion model, e.g.:

∂ρ̄θ

∂t
=

∂

∂z

[
Kθ

∂ρ̄θ

∂z

]
. (12)

In (12), the diffusion model is expressed in terms of the
horizontally-averaged profilēρθ ≡ 〈ρθ〉xy.

There are a number of ways to invert (12) in order to
obtain a single, characteristic value for diffusivity at any
given time. Here, we begin by considering changes in the
specific potential energy associated with the evolution of
each density component:

Pθ(t) =
g

ρ0∆u2

〈
(z − Lz/2) ρθ

〉
V

. (13)

In contrast toε and N2 (cf. section 3),Pθ is a global
property of the flow. Accordingly, we make no attempt
to isolate the turbulent region, but instead compute the
average over the entire computational domain.

Besides providing a route to the computation ofKθ, Pθ

is in itself a useful descriptor of the flow physics. Poten-
tial energy components associated with temperature and
salinity for run 1 are shown by the thick curves on fig-
ure 8. (Thin curves on figure 8 represent background po-
tential energies, to be defined below.) For each scalar,
the potential energy rose to a maximum, then decreased
rapidly as the primary KH billows paired and subse-
quently collapsed. The potential energy then oscillated a
few times before settling down to an approximately steady
state. The oscillations indicate reversible transfers be-
tween the potential and kinetic energy reservoirs, asso-
ciated with interference between leftgoing and rightgo-
ing internal waves generated by the collapsing KH billow
(e.g. figure 1f,g, figure 6).

During the initial growth and pairing of the KH billows,
the total potential energy stored in the temperature and
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Figure 8:Evolution of the scaled potential energy components

for run 1. Thick curves: component potential energy. Thin

curves: background potential energy. Solid curves: temperature

component. Dashed curves: salinity component.

salinity fields increased at nearly equal rates, indicating
that the two scalars were advected together. As the bil-
lows collapsed (the phase of rapid decrease in total poten-
tial energy), the component potential energies diverged.
After turbulence had decayed, the temperature field con-
tained more potential energy than did the salinity field.
This indicates that salinity restratified more completely
than temperature or, equivalently, that temperature mixed
more thoroughly.

It can be shown that, if the mean density evolved ac-
cording to (12) withKθ independent ofz, thenKθ would
be proportional to the time derivative of the component
potential energy,viz.:

Kθ(t) =
Lzρ0∆u2

2g∆θ

d

dt
Pθ. (14)

As a definition ofKθ, (14) has a serious shortcoming: the
resulting diffusivity is negative during times whenPθ is
decreasing. Negative diffusivity implies “unmixing” of a
mixed fluid, an apparent violation of the second law of
thermodynamics. The real problem, of course, is that the
diffusion equation (12) is a poor model for the evolution
of the mean profiles, because that evolution reflects not
only diffusion but also the effects of gravity waves and
other reversible processes. The roll-up and subsequent

11
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breaking of the KH billows is an example: breaking does
not represent a reversal of the diffusion process; in fact, it
is a time of extraordinarily rapid diffusion, as we show in
the next subsection.

b. Background potential energies and turbulent
diffusivities

We now describe an alternative definition for the turbu-
lent diffusivity that filters out reversible effects. We begin
by defining the reordered height coordinatez∗θ (x, y, z, t),
which is the height a fluid parcel would end up at if the
partial density distributionρθ was allowed to relax adi-
abatically to a state where the corresponding component
potential energy was a minimum. (Note that this reorder-
ing is done in three spatial dimensions, not in one di-
mension as in the calculation of the Thorpe scale, (e.g.
Thorpe, 1977).) Changes in this state reflect the effects of
irreversible mixing alone (Winters et al., 1995; Scinocca,
1995; Winters and D’Asaro, 1996). A diffusion model
that describes the evolution of the minimum potential en-
ergy state,ρθ(z∗θ , t), contains only irreversible effects:

∂ρθ

∂t
=

∂

∂z∗θ

[
Kθ

∂ρθ

∂z∗θ

]
. (15)

The definition of the turbulent diffusivity implicit in
(15) has a number of appealing properties.Kθ is positive
definite; in fact its lower bound is the molecular viscos-
ity, achieved when partial density distribution is statically
stable and the fluid is motionless. The ratio of turbulent
to molecular diffusivity on any isosurface ofρθ is equal to
the square of the ratio of the area of that isosurface to its
area in the stable, motionless state (Winters and D’Asaro,
1996). That ratio is also equal to a ratio of gradients
very similar in form to the Cox number which appears via
the standard Osborn-Cox formulation for stratified turbu-
lence:

Kθ

κθ
=

〈|~∇ρθ|2〉z∗θ
(∂ρθ/∂z∗θ )2

. (16)

Note, however, that the right-hand side of (16) differs
from the usual Cox number in that the squared gradient
is averaged not over coordinate planes but over isoscalar
surfaces (sincez∗θ is a function ofρθ only). Also, the ver-
tical gradient in the denominator pertains not to the hori-

zontal mean but to the background state. The significance
of these distinctions will be assessed below.

To invert (15) and thereby obtain a characteristic value
for Kθ describing only irreversible processes, we first de-
fine the contribution to the minimum, or “background”
potential energy,Pbn (Winters et al., 1995), associated
with the density componentρθ, viz:

Pbθ(t) =
g

ρ0∆u2

〈
(z∗θ − Lz/2) ρθ

〉
V ∗ , (17)

where the subscript on the angle brackets indicates a
volume average taken over the background state (or,
equivalently, over isoscalar surfaces instead of coordinate
planes).

To distinguish it fromPbθ, the potential energy compo-
nentPθ defined earlier is referred to as the “total” poten-
tial energy due to the density componentρθ. The differ-
encePθ − Pbθ is called the available potential energy, as
it is available for conversion to kinetic energy. Note that
Pθ is the “total” potential energy only in the sense that
it includes both the background and the available poten-
tial energies; it nevertheless refers only to the contribution
of the density componentρθ. The potential energy con-
tained in the complete density field (discussed in section
3) is given in terms of the component potential energies
by P = PT + PS .

The background potential energy componentsPbT and
PbS (thin curves on figure 8) respond only to irreversible
processes, and they therefore increased monotonically
throughout run 1 (and all other runs). The thermal com-
ponent increased more rapidly than the saline component
right from the beginning of the primary growth phase.
About one half of the eventual divergence ofPbS andPbT

occurred before the transition to turbulence was complete.
For both scalars, the increase in background potential en-
ergy was steepest (i.e. irreversible mixing was most rapid)
during the collapse of the billow betweent = 1700s and
t = 2100s, as indicated by the rapid loss of total poten-
tial energy. Throughout this early period of differential
diffusion, the total potential energies stored in the tem-
perature and salinity fields (thick curves on figure 8) re-
mained nearly equal. This shows that the difference in the
background potential energy increases was compensated
in the available potential energies. Vertically displaced
fluid parcels create background potential energy by mix-

12
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Figure 9: Evolution of the instantaneous turbulent diffusivi-

ties of temperature (a) and salinity (b) for runs 1 (thick solid) 2

(dashed), 3 (thin solid) and 4 (dotted). Horizontal lines indicate

the molecular diffusivities.

ing with their surroundings, but at the same time give up
available potential energy. Only after parcels lose their
available potential energy via restratification does the dif-
ference in the irreversible mixing of heat and salt show up
as a difference between the total potential energies.

As turbulence decayed, the available potential energy
stored in each scalar field due to waves and turbulent
eddies dropped to zero, and hence the total and back-
ground potential energies for each scalar became equal.
The temperature component of the background potential
energy increased more rapidly than the salinity compo-
nent throughout the run. The net amount of temperature
mixing, as indicated by the net change in the associated
background potential energy, was greater than that due to
salinity, signalling differential diffusion.

If the background density evolved according to (15)
with Kθ independent ofz∗θ , thenKθ would be given by

Kθ(t) =
Lzρ0∆u2

2g∆θ

d

dt
Pbn. (18)

We adopt (18) as our definition of theinstantaneoustur-
bulent diffusivity. Figure 9 shows the instantaneous turbu-
lent diffusivities for runs 1-4. Initially, the diffusivities for
the different runs increased together, reflecting the very
similar values of KH growth rate in the four cases. As the
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Figure 10: Ratio of instantaneous turbulent diffusivities for

runs 1 (thick solid), 2 (dashed), 3 (thin solid) and 4 (dotted).

Horizontal lines indicate unity and the molecular diffusivity ra-

tio 0.14.

billows reached large amplitude, however, the results di-
verged. In the three cases where pairing was suppressed
the thermal diffusivity rose to about 25 times its molecu-
lar value neart = 1400s, then decreased. In run 1, ther-
mal diffusivity continued to rise due mainly to additional
mixing resulting from the pairing instability, eventually
peaking at 40 times its molecular value neart = 2200s.

Note that this time coincides with the time of maximum
buoyancy Reynolds number (cf. figures 5 and 6). The
saline diffusivity was generally smaller, though larger in
proportion to its molecular value.

The ratio of instantaneous diffusivities (figure 10) in-
creased initially from its molecular value of 0.14 toward
values near unity. This increase occurred mostly during a
dramatic jump that coincided roughly with the appearance
of the KP instability (figures 2, 3). In run 1, the increase
was spread out, presumably owing to the influence of the
pairing mode. The maximum value ofKS/KT depended
heavily onRρ, exceeding unity for the caseRρ = 5. In all
cases,KS/KT eventually decreased. (Simulations con-
tinued to very long times have confirmed thatKS/KT

eventually returns to its molecular value.)

The high Reynolds number case (run 1) did not achieve
the highest maximumKS/KT ; however, the ratio re-
mained close to unity long after it had begun to decrease

13
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in the other cases. We will see below that this difference
tended to reduce the difference in the cumulative diffusion
rates of heat and salt in the higherReb case. To under-
stand the differences in the decay ofKS/KT in the four
cases shown in figure 10, we must first explore the physics
of scalar mixing in terms of temperature and salinity vari-
ances.

c. Scalar variances

In these simulations, volume-averaged scalar variances
evolve according to

dΘ
dt

= Λθ − χ′θ, (19)

where

Θ = 〈ρ′2θ 〉V /∆2
θ, Λθ = −2〈w′ρ′θ〉V /∆2

θ,

χ′θ = 2κ〈|~∇ρ′θ|2〉V /∆2
θ

represent the variance, production rate and dissipation rate
of the scalarρθ. Primes indicate fluctuations about the
horizontal mean. All quantities are normalized by∆2

θ

to facilitate comparison between temperature and salinity
variance budgets.

In the Osborn-Cox formulation for stratified turbulence
(Osborn and Cox, 1972), turbulent diffusivities are pro-
portional to scalar variance dissipation rates. This rela-
tionship requires that the scalar field be in statistical equi-
librium, so thatΛθ = χ′θ, and that the scalar flux repre-
sented byΛ obey a flux-gradient relationship. This for-
mulation is used to estimate turbulent diffusivities from
ocean microstructure measurements, and the ratio

dχ =
χS

χT
R2

ρ (20)

was used as a surrogate forKS/KT in the observational
analyses of Nash and Moum (2002). A more general for-
mulation by Winters and D’Asaro (1996) resulted in (16),
which relates theirreversiblescalar flux (and henceKθ)
to the dissipation rate averaged on isoscalar surfaces with-
out the need for an equilibrium assumption. The Winters-
D’Asaro formulation is applicable to three-dimensional
solutions but cannot be realized directly from field data, as
the latter is generally one-dimensional. However, results
given below suggest thatdχ is actually a useful estimate
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Figure 11:Terms in the variance equation (19) for temperature

(a) and salinity (b).

of the diffusivity ratio for irreversible mixing processes
regardless of the validity of the Osborn-Cox theory.

The temperature and salinity variances in run 1 evolved
in very similar fashion (figure 11). Early in the run,dΘ/dt

increased rapidly due to strong production. The dissipa-
tion term became important gradually as gradients sharp-
ened. A second peak in the production rate corresponded
to the pairing instability. The two breaking events (rapid
decreases in potential energy in figure 2) were character-
ized by strong negative production as the rolling of the
KH vortex reduced scalar fluctuations about the horizon-
tal mean. The dissipation rate reached a maximum during
this time. The late evolution was dominated by dissipative
decay, with only weak and fluctuating production rates.

In figure 12 we show the scaled ratio of dissipation
rates,dχ, along with the instantaneous diffusivity ratio
and the buoyancy Reynolds number. Here, the dissipa-
tion ratesχS andχT are computed using the full scalar
fields (including mean profiles) to ensure that their ratios
remain well-defined when turbulence is weak. Note first
that dissipation and diffusivity ratios remained very nearly
equal over most of each run, diverging only by∼ 10% as
the flow reached its most turbulent state. This is some-
what surprising, since figure 11 shows that the production-
dissipation balance assumed in the Osborn-Cox formulas
is satisfied only when averaged over the whole event; the
instantaneous production and dissipation rates show no re-
lationship whatsoever. Recall, however, that the relation-
ship between dissipation rates and diffusivities (16) does
not require the fields to be in equilibrium if the latter rep-
resents irreversible processes only, as it does here. The
relationship remains imperfect becauseχ is averaged over
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coordinate planes rather than isoscalar surfaces as in (16),
but that discrepancy is evidently important only during a
brief phase when turbulence is strongest.

Note also that the ratios remain close to their maximum
values for a significant time after turbulence intensity, as
measured byReb, has begun to decrease. As was seen
for the diffusivity ratio in figure 10, there is a marked
difference among runs in the time taken for the ratios
to drift away from their maximum values. In particular,
the scalar fields in run 1 retained the characteristic that
dχ ∼ KS/KT ∼ 1 long after turbulence had decayed.
The fact that the scalar field retains the characteristics of
turbulence for a time after turbulence has decayed is not
surprising since both scalars diffuse less rapidly than does
momentum. However, the origin of the differences be-
tween runs is less obvious.

To understand the fact that the diffusivity ratios remain
high for so long in run 1, consider the following thought
experiment. Suppose that, at some time that we arbitrarily
designate ast = 0, a turbulent flow with energy dissipa-
tion rateε0 carries a passive scalar whose gradient spec-
trum obeys the Batchelor(1959) scaling (cf. figure 7 and

the accompanying discussion):

Ψ0
θz

(k) =
χ0

θ

κθkθ
b

(
q

2

)1/2

f(αθ); αθ = (2q)1/2 k

kθ
b

,

(21)
wheref is an unspecified nondimensional function. The
superscript “0” onε0, Ψ0

θz
(k) and χ0

θ indicates evalua-
tion at t = 0. Now suppose that, att = 0, all motion is
brought instantaneously to a halt, leaving the scalar field
to diffuse with no turbulent straining. Scalar evolution
is now governed by a simple, linear diffusion equation.
Each Fourier mode decays exponentially, and the gradient
spectrum therefore evolves according to

Ψθz (k, t) = Ψ0
θz

(k)e−κθk2t. (22)

We may then calculate the evolution of the dissipation rate
χθ(t) using (11), which under the Batchelor scaling be-
comes

χθ(t) =
χ0

θ

2

∫ ∞

0

f(αθ)e−γeα2
θtdαθ, (23)

where

γe =
1
q

(
ε0

ν

)1/2

(24)

is the effective compressive strain rate of turbulent ed-
dies (e.g. Smyth, 1999) just prior to the arrest of motion
at t = 0. This turbulent strain rate controls the rate of
diffusion by controlling the Batchelor scale(κθ/γe)1/2

: stronger strain generates fluctuations on smaller spatial
scales, which then diffuse more rapidly when the strain is
switched off.

The important observation here is that the integral in
(23) is independent of the molecular diffusivity. There-
fore, if χθ is independent ofκθ at t = 0, it will remain so
as the scalar fluctuations diffuse. More generally, the ra-
tio of the dissipation rates of two scalars having different
molecular diffusivities will not change as the fluctuations
diffuse.

The foregoing argument rests on the assumption that
the scalars in question are passive, i.e. that buoyancy ef-
fects are not important. In the present experiments, buoy-
ancy effects are present and become increasingly domi-
nant as turbulence decays. Buoyancy adds a new time
scale,N−1, to the problem, invalidating the Batchelor
scaling and with it the above analysis. The mean shear
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Figure 13:Evolution of the ratio of cumulative turbulent diffu-

sivities for runs 1 and 2-4. Early times are not shown because

the ratioKSC/KTC is undefined before the onset of turbulent

mixing.

also adds a time scale, but mean shear is nearly propor-
tional toN during the decay phase since the bulk Richard-
son number remains nearly constant (Smyth and Moum,
2000b). The two effects therefore become important at
about the same time.

The ability of buoyancy and shear to influence the dy-
namics depends on the ratio of the decay rateγe to N ,
which is proportional to the square root of the buoyancy
Reynolds number. Therefore, whenReb is small (as in
runs 2-4), we expect thatdχ will drift rapidly away from
the value it had before turbulence began to decay. Con-
versely,dχ should remain close to its turbulent value for
longer when the turbulent phase is characterized by larger
Reb, as in run 1.

The above argument pertains entirely to the dissipation
rates. We know of no corresponding argument to explain
the fact that the ratio of turbulent diffusivities remains
high for longest whenReb is large, other than to note the
evident fact that the two ratios were very similar during
the decay phases of these simulations (figure 12).

d. Cumulative diffusivities

From a parameterization perspective, we care less about
the instantaneous diffusivity than about a net diffusivity

that characterizes the whole mixing event. For this reason,
we define thecumulativediffusivity of ρθ in terms of the
net change in the associated background potential energy,
Pbθ. Because, the “end” of the event is chosen arbitrarily,
we first let the cumulative diffusivity be a function of time:

KθC(t) =
Lzρ0∆u2

2g∆θ

Pbθ(t)− Pbθ(0)− Φθt

t
. (25)

The constantΦθ = 2gκθ∆θ/Lzρ0∆u2 is the rate at
which potential energy would increase if the fluid re-
mained in the stable motionless state. This rate is deter-
mined entirely by the potential energy fluxes at the upper
and lower boundaries (Winters et al., 1995; Winters and
D’Asaro, 1996), and therefore remains steady as long as
the mean densities on the upper and lower boundaries do
not change appreciably, as is the case in the present sim-
ulations. By subtracting out this relatively small increase,
we isolate potential energy changes due to fluid motions.
We next define the ratio of the cumulative turbulent diffu-
sivities:

KSC

KTC
=

∆T

∆S

PbS(t)− PbS(0)− ΦSt

PbT (t)− PbT (0)− ΦT t
. (26)

This ratio (figure 13) was undefined at early times, rose
as mixing proceeded, then approached an asymptote as
turbulence decayed. The asymptotic value ofKSC/KTC

provides a useful metric for differential diffusion:

d = lim
t→∞

KSC(t)
KTC(t)

. (27)

Note that, had we not subtractedΦθt from the potential
energies in (25) and (26), this asymptotic limit would not
exist and the cumulative diffusivity ratio would not be
well defined. (In contrast, we did not subtractκθ when
defining the instantaneous diffusivities in (18). Had we
done so, the instantaneous diffusivities would have ap-
proached zero at early and late times, and their ratiod

would then have been undefined.)
That characteristic diffusivity ratio was about 0.82 for

the high-Re case (figure 13, solid curve). The maximum
ratio was significantly lower for the lower-Re cases, and
varied by 14% over the range ofRρ in runs 2-4 with the
lower values corresponding toRρ < 1. The latter varia-
tion is in agreement with M04. In these experiments, the
dependence onRρ was due mainly to differing time in-
tervals over which instantaneousKS/KT remained large
(cf. figures 10, 12 and the accompanying discussion).
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Figure 14: Ratio of cumulative turbulent diffusivities versus

buoyancy Reynolds number. The four larger symbols represent

runs 1-4 already discussed; smaller symbols represent auxiliary

runs included to give a more comprehensive view of the factors

determiningd. Filled circles:Rρ = 1. Open circles:Rρ = 0.2.

Asterisks:Rρ = 5.0.

The diffusivity ratio shows a close correlation with the
maximum value ofReb, as illustrated in figure 14. This
is in accord with GMH as well as with other studies as
detailed below. Figure 14 includes results from all ten
DNS runs listed in table 1. The runs covered about an
order of magnitude of variation inReb, and exhibitedd
values ranging from 0.51 to 0.82. Evident again is the
tendency ford to increase with increasing density ratio.
Runs 7, 8 and 9 hadRρ = 0.2, 1.0 and5.0, respectively.
The buoyancy Reynolds number reached 7 in each case,
so that the three cases line up vertically at that value on
figure 14. The difference ind among these three cases was
20%. The difference between this result and the results of
runs 2-4 described above indicates that the effect ofRρ is
most marked at low Reynolds number, consistent with the
expectation thatd should approach unity at high Reynolds
number for allRρ.

6. Comparison with previous work

In this section we survey results from previous laboratory,
observational and DNS studies of differential diffusion.
Figure 15 shows values ofd and Reb from the present
work along with representative results from previous stud-
ies.

a. Laboratory experiments

The initial lab experiments of Turner (1968) have been
re-analyzed by Nash and Moum (2002) in order to esti-
mate the buoyancy Reynolds number. Equating the ratio
of entrainment fluxes with the diffusivity ratio, Nash and
Moum obtained the relation shown by the thick curve in
figure 15. The diffusivity ratio increases with increasing
Reb until it reaches a value near unity atReb ≈ 102. The
thickness of the curve represents the uncertainty in the es-
timation ofReb from the original data.

In the laboratory experiments of Jackson and Rehmann
(2003), the work done on the fluid was measured in or-
der to infer the kinetic energy dissipation rate and hence
Reb. Beginning and ending profiles of temperature and
salinity yielded the diffusivity ratio. The results, indicated
by crosses on figure 15, fell into two broad groups based
on buoyancy Reynolds number. In the upper group,Reb

ranged from 500 to about 25000, andKS was generally
larger thanKT by a few percent. In the lower group,Reb

was within a factor of three of102 andKs/KT ranged
between 0.56 and 0.87.

Hebert and Ruddick (2003) measured differential dif-
fusion in internal gravity waves generated by a paddle in
a uniformly stratified fluid. To avoid the effects of heat
losses from the sidewalls, they measured differential dif-
fusion of a pair of chemical dyes having different molec-
ular diffusivities in place of heat and salt. The flows lay in
a very different region of parameter space from the other
results surveyed here (and are therefore not shown on fig-
ure 15), but the general trend of increasingKS/KT with
increasingReb was reproduced.

b. Ocean observations

Nash and Moum (2002) analyzed 350 turbulent patches
measured over the continental shelf off Oregon. Using a
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fast-response conductivity/temperature probe on a slowly-
falling profiler, they obtained the firstin situ estimates
of the salinity dissipation rate. Assuming a production-
dissipation balance in the scalar variance budgets, they
estimated the diffusivity ratio from the ratio of the ther-
mal and saline dissipation rates and hence ofdχ.

Three unique aspects of these field observations are per-
tinent. First, in contrast with laboratory and numerical
experiments, it is very difficult to follow a turbulent event
through its cycle of growth and decay (in fact, this has yet
to be accomplished in the field). Therefore, each observa-
tional estimate ofd is based on the instantaneous charac-
teristics of a turbulent event at some unknown stage in its
evolution. This has been identified as a source of scatter
in observational estimates ofdχ, although the present re-
sults suggest thatdχ may be relatively insensitive to the
stage of the event at which it is measured (at least at high
values ofReb after turbulence has been fully established).

Second, each observation represents a single profile at
a single horizontal location whose relationship to the hor-
izontal extent of the turbulence is unknown. In contrast,
laboratory and numerical estimates ofdχ represent spatial
averages. This is likely to be a major source of scatter in
the observational results.

Third, determination ofKS and KT requires suffi-
ciently strong signal to noise ratio in the raw data to re-
solve dissipation rates. This required that the Nash and
Moum (2002) analyses be restricted to regions where val-
ues ofReb were higher than is common in the main ther-
mocline (Moum, 1996a). For the bulk of the turbulent
patches analyzed in Nash and Moum (2002),Reb was
betweenO(102) andO(104), whereas measurements de-
scribed in section 3 of the present study yield a median
value of 29.

The Nash and Moum (2002) analyses yielded a mean
diffusivity ratio between 0.6 and 1.1. These limits, and
the corresponding range ofReb, are represented on figure
15 by the lightly shaded ellipse. It was not possible to
rigorously differentiate the mean value ofd from unity, or
to detect any trend with respect toReb. This is due both to
scatter and to the fact that the signal to noise requirement
effectively restricted the analysis to a region of parameter
space whered is close to unity and independent ofReb

(according to laboratory and numerical results, e.g. figure

15). The determination ofKS/KT in low Reb regimes is
the object of another field study.

c. Direct numerical simulations

The DNS experiments of GMH were comparable to those
described here, albeit with some significant differences.
As in Merryfield et al. (1998), the initial condition con-
sisted of uniform stratification and no mean shear. Tur-
bulence was driven by the impulsive forcing of a finite-
amplitude random velocity field (as opposed to the small-
amplitude perturbations used here to catalyze the gener-
ation of turbulence via dynamic instability). As in the
present case, turbulence intensity grew and decayed in
time. In contrast to the present case, GMH’s flows were
spatially homogeneous in a triply periodic computational
domain. (Both methods have advantages. GMH’s ap-
proach offers efficient access to higher Reynolds numbers
because the entire computational domain is occupied by
turbulence, whereas the present approach is more realistic
in the sense that turbulence is generated via a physically
realizable flow instability known to be important in the
ocean.)

GMH quantified differential diffusion in various ways
that did not include the ratio of turbulent diffusivities em-
ployed here. They did, however, compute the ratio of the
time-integrated buoyancy fluxes due to heat and salt. Be-
cause the integrated buoyancy flux is equivalent to the po-
tential energy gain,and taking account of GMH’s buoy-
ancy scaling, the ratio of fluxes should be equivalent to
the ratio of diffusivities. For buoyancy Reynolds numbers
ranging from0.4 to approximately103, GMH’s results
give diffusivity ratios between 0.32 and 0.94, as shown
by the shaded circles on figure 15.

GMH found that differential diffusion becomes more
pronounced at lowerReb (shaded circles on figure 15),
as have we in the present study. ForReb less than about
100, both GMH and the present DNS study found levels of
differential diffusion that were generally less pronounced
than the comparable results from the laboratory experi-
ments (shaded band and crosses). This could be due to
the fact that the difference in molecular diffusivities was
artificially reduced in both DNS studies.

M04 has extended the computations of GMH to include
variation ofRρ and the limit of zero stratification. In the
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Figure 15:Results from the present study (black bullets), along

with summary results from selected previous studies: Turner

(1968) (thick curve), Nash and Moum (2002) (ellipse), Jack-

son and Rehmann (2003) (pluses), Gargett et al. (2003) (grey

bullets).

latter limit, M04 has found diffusivity ratios in excess of
unity, and has given a physical explanation for this result.
As in the present study, Merryfield finds thatd increases
with increasingRρ. This work has also revealed a close
correlation between differential diffusion and restratifica-
tion, the latter being quantified in terms of Lagrangian
particle displacements. Unfortunately, we cannot dupli-
cate that calculation with the present data as it does not
include particle trajectories. A similar calculation using
potential energy evolution to quantify restratification re-
vealed no consistent correlation.

7. Summary

We have described a sequence of direct computations of
the growth and decay of turbulence driven by KH instabil-
ity. The flows were stratified by a combination of two ac-
tive scalars representing temperature and salinity. All pa-
rameter values were consistent with weak mixing events
in the thermocline, except that the diffusivity of salt was
increased to facilitate resolution of the smallest fluctua-
tion scales with the available memory. Flow evolution

has been analyzed in terms of scalar gradient spectra, the
buoyancy Reynolds numberReb, scalar variances, and
total and background potential energies associated with
each density component. We have calculated both instan-
taneous and net turbulent diffusivities for each scalar in
order to test the hypothesis that the two scalars would mix
at different rates. This anticipated difference is a conse-
quence of the difference in molecular diffusivities, and
conflicts with the predictions of high Reynolds number
turbulence theory.

The ratiod describing the relative degrees of mixing
of the two scalars (specifically, the ratio of the cumula-
tive turbulent diffusivity of salt to that of temperature) was
tested for dependence onReb and on the density ratioRρ.
For all cases,d was less than unity, but that ratio increased
toward unity with increasingReb and also with increasing
Rρ. The dependence onReb is largely due to differences
in the duration over which instantaneousKS/KT is large.
Even weakly turbulent flows attainKS/KT ∼ 1 at max-
imum Reb, but when the peakReb is larger,KS/KT re-
mains close to unity long after turbulence has subsided.
This finding suggests that the role of nonstationarity in
differential diffusion is more complex than was previously
thought. We have proposed an explanation for the persis-
tence ofKS/KT in terms of the Batchelor (1959) scaling
for scalar gradients.

The results were compared with results from previous
laboratory, observational and numerical studies. Consid-
ering the wide range of flow geometries, parameter values
and experimental techniques, the results summarized in
figure 15 present a remarkably consistent picture. The dif-
fusivity ratio is near unity forReb > 102, and some stud-
ies have suggested that this ratio actually exceeds unity
for high Reb (e.g. M04). For buoyancy Reynolds num-
bers belowO(102), heat diffuses more rapidly than salt.
ForReb < 10, a circumstance that is common in the ther-
mocline (see figure 5), the difference is greater than a fac-
tor of two. The results of the present study are consistent
with this picture, and we may therefore add KH billows to
the list of turbulent flows exhibiting differential diffusion.
As in GMH and M04, the present levels of differential
diffusion represent an underestimate due to the artificially
increased diffusivity of salt.

These findings reinforce the impression thatReb ∼
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102 is a useful estimate of the lower limit of the “high
Reynolds number” regime of stratified turbulence, in
which theoretical results valid in the limit of infinite
Reynolds number remain accurate. Similar results have
been found by Smyth (1999) for theReb dependence of
the Batchelor “constant”q, and by Itsweire et al. (1993)
and Smyth and Moum (2000a) for various statistical rela-
tionships dependent on the assumption of local isotropy.
If generally valid, this observation has important impli-
cations for the interpretation of microstructure measure-
ments, as that science relies heavily on high Reynolds
number theory.

It is possible that the majority of ocean mixing is ac-
complished by high Reynolds number events. At any
given time, however, large volumes of the ocean interior
experience mixing weak enough (figure 5) that preferen-
tial diffusion of heat over salt should be anticipated (fig-
ure 15). The importance of such weak mixing events to
the large scale circulation remains to be quantified. We
are now working to extend the results of Nash and Moum
(2002) via more extensive observations of microstructure
in low Reynolds number mixing events, in combination
with further analyses of the DNS experiments described
here.

We have so far confined our attention to the diffusively
stable case in which both the thermal and saline compo-
nents of density are stably stratified. In much of the ocean,
one or the other of these components is unstably strati-
fied, leading to the possibility of double diffusive insta-
bility and hence vastly more complex flow physics. The
diffusively unstable case is now under investigation.
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