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The density of seawater is controlled by a pair of scalar
Abstract gquantities, temperature and salinity, whose molecular dif-

fusivities differ by two orders of magnitude. Despite this
Direct numerical simulations are used to compare turtdifference, we customarily assume that the turbulent dif-
lent diffusivities of heat and salt during the growth anfilisivities of temperature and salinity are the same. This
collapse of Kelvin-Helmholtz billows. The ratio of dif-assumption is grounded in the classical theory of station-
fusivities is obtained as a function of buoyancy Reynoldsy turbulence in the limit of infinite Reynolds number
numberRe;, and of the density ratid, (the ratio of the (e.g. Corrsin, 1951). However, much of the ocean inte-
contributions of heat and salt to the density stratificatiomjor is mixed by turbulent events for which the Reynolds
The diffusivity ratio is generally less than unity (heat isumber is decidedly finite (e.g. Moum, 1996b) and the
mixed more effectively than salt), but it approaches unityrbulence is nonstationary. In a mixing event of finite
with increasingRe; and also with increasing,. Instan- duration, vertically displaced fluid parcels may return to
taneous diffusivity ratios near unity are achieved duriran equilibrium configuration after mixing only partially
the most turbulent phase of the event even wRep is with the surrounding fluid. The lower the molecular dif-
small; much of theRe;, dependence results from the fadusivity, the greater the tendency for incomplete mixing.
that, at higherRey, the diffusivity ratio remains close toThe large difference between the molecular diffusivities
unity for a longer time after the turbulence decays. Aaf heat and salt therefore suggests that heat and salt could
explanation for this is proposed in terms of the Batchelorix differently in turbulent events of finite duration, i.e.
scaling for scalar fields. Results are interpreted in terithgt turbulent seawater may exhibit differential diffusivity.
of the dynamics of turbulent Kelvin-Helmholtz billows|n the present study, we assess the potential for differen-
and are compared in detail with previous studies of diffefal diffusivity via direct numerical simulations (DNS) of
ential diffusion in numerical, laboratory and observationalrbulent Kelvin-Helmholtz (KH) billows.
contexts. The oyerall picture suggests that the di1’“fusivitiesSeVeral large-scale modeling studies (e.g. Gargett and
become approximately equal whé, exceeds)(107). Holloway, 1992; Merryfield et al., 1999) have revealed
The effect ofR, is significant only wherRe, is less than that a difference in the assumed diffusivities of heat and
this value. salt can lead to significant differences in computed large

scale circulation, so the issue is potentially important
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for the development of accurate turbulence parameteripé-the density ratio and the important limit of zero net
tions. stratification. A review of the subject has been provided

Differential diffusion was first demonstrated in the lag2y Gargett (2003).

oratory experiments of Turner (1968), who measured enHere, we assess the potential for differential diffusion
trainment fluxes in a fluid where turbulence was genen-turbulent KH billows. We do so using DNS of shear
ated by an oscillating grid. The working fluid was straflows stratified by both heat and salt. KH billows have
ified by either temperature or salinity, but not by bothproven to be a useful model for shear-driven overturns ob-
A significant difference in turbulent diffusivities was evserved in the ocean. Direct observations by Woods (1968)
ident. Altman and Gargett (1990) repeated Turner’s eshiowed billows forming on the crests of larger-scale in-
periments, this time using thermal and saline stratificatitgrnal waves. Vivid images of KH-like billows have been
simultaneously. Like Turner, they found diffusivity raobtained via echosounder in flow over topography (e.g.
tios significantly different from unity. Individual entrain-Seim and Gregg, 1994; Farmer and Armi, 1999) and in
ment rates were independent of the presence of the otlhege amplitude internal waves (e.g. Moum et al., 2003).
density component, i.e. no dependence on the density$aiyth et al. (2001) have compared turbulence statistics
tio was detected. In the laboratory experiments of Jadksm DNS of KH billows with measurements of turbulent
son and Rehmann (2003), a fluid stratified by both salievents in the thermocline, and found that the two are sta-
ity and temperature was stirred by oscillating rods, witfstically indistinguishable (except for the generally lower
special care taken to insulate the boundaries against Heaynolds numbers of the simulated flows, which reflects
loss. A distinct dependence on the buoyancy Reynoltie limitations of existing computer technology, not of the
number (defined below) was identified. Hebert and RudH model). Given this evidence for the importance of
dick (2003) measured differential diffusion of dynamiKH-like dynamics in ocean mixing events, we are moti-
cally passive chemical dyes in breaking internal gravitated to learn whether, and if so under what conditions,
waves, and again found a dependence on the buoyatubulent KH billows exhibit differential diffusion.

Reynolds number. Section 2 describes the numerical model used for the
Nash and Moum (2002) have made a similar assesgnulations. A general overview of the KH life cycle as
ment usingn situ measurements of ocean microstructuregalized in these experiments is given in section 3. In sec-
Statistical analysis of many turbulent events indicatedian 4, we describe the scalar fields in terms of gradient
tendency for heat to diffuse more rapidly than salt, bapectra, and compare the results with both the ocean ob-
the ratio of diffusivities was within experimental error oervations of Nash and Moum (2002) and the theoretical
unity. No dependence upon the buoyancy Reynolds nuspectrum due to Kraichnan (1968). The main results are
ber was evident. in section 5, where potential energy components, scalar
u\gariances and turbulent diffusivities for the two scalars are
ﬁ:éamined. In section 6, results are described in the con-

The resolution of weakly diffusive scalars in a turb
lent flow presents an extreme challenge for DNS. T
first study to attempt this was Merryfield et al. (1998), iffXt Of previous work. A summary is given in section 7.
which flow was restricted to two dimensions to save mem-
ory. Those simulations were successful in detecting dif-
ferential diffusion and they served as an important prelugde
to the first fully three-dimensional numerical realization%' MethOdOIOgy
of the phenomenon, those of Gargett et al. (2003; here-
after GMH). To facilitate simulation in three dimensionsa. The mathematical model
the diffusivity of salt was artificially increased (as it has
been in all subsequent DNS studies including the presé&hie mathematical model is based on the field equations
work). The results of GMH have recently been extendéar nonrotating, incompressible flow in the Boussinesq
by Merryfield (2004, hereafter M04) to include variatiofimit, together with advection-diffusion equations for the
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two scalarsypiz.: The Winters model has been extended for use in ocean
DNS via the addition of a second active scalar, here rep-
Ou; Ou; 1 Op P — Po 5 . . . .
= —u; ——— -y 0i3 + vV2u; resenting salinity. The second scalar is resolved on a fine
ot 6xj Po 89[:1- £o ) . N .
O grid with spacing equal to one half the spacing used to
oz; =0 resolve the other fields (as was done by GMH). Interpo-
aopr opr 9 lations and decimations between grids are accomplished
— = ~Uj5— +rrVipr - ; iagi
ot O0x; using Fourier transforms. Aliasing errors are reduced by
aaﬁ = _u]gﬁ + ksV2pg applying to both grids at every time step an isotropic fil-
t €y

ter having a cosine-bell shape that decreases gradually
from amplitude 1 to 0.6 over the range 0.8 to 1 times the

1) . : o
. . Nyquist wavenumber. This gradual decrease minimizes
The vectoru; contains the components of the velocn¥ . .
) . he effect of dealiasing on the resolved fields.
field andp and p represent pressure and density, respec-

tively. The constanp is a reference density from which The multiple grid approach described above allows the

D efficient resolution of weakly diffusive scalars such as
deviations are assumed to be small (so that the BousslI- S
L . . temperature and salinity in seawater. The memory re-
nesq approximation applies and the equation of state Is

. . . . t is about 1/3 of that ired if all field
linear). Accordingly, the thermal and saline Comnbquremen 'S abou ot that required It afl Tields are

. . resolved on the same grid. It is possible to increase the
tions to the density anomaly — po are represented by . . . ' .

difference in resolution between the coarse and fine grids,
pr = —apo(T — To) andps = Bpo(S — So), whereTy

but further increases yield only small improvements in ef-
and S, refer to the reference state andand 5 are the y y P

. . . ficiency.
(constant) expansion and contraction coefficients for heat y

and salt in water. The molecular diffusivities of heatand o

salt in water are represented by the constantandrg. C- Initial conditions and parameter values

The constants andg represent kinematic viscosity ang-qr the present experiments, the initial conditions de-

gravitational acceleration. scribe a pair of water masses separated by a horizontal
The field equations (1) are solved in the computationghnsition layer:

box0 <z < L;,0<y<L,0<z< L, Boundary

conditions are periodic in the horizontal directions, i.e. % _ _PT _ PS5 _ . .y (z - Lz/Q) )

Au o AT o AS B ho

p=po~+pr+ps.

flo+ Layy z,t) = f(z,y,2,1) = f(2,y + Ly, 2:8):  Here, by is the initial half-depth of the transition layer,
@) andAuw is the half-velocity differenceAr andAg are the
where f represents any field variable. At the upper ang) . te values of the half-differences of the density com-
lower boundaries = 0, L., vertical velocity and vertical ponentsyr andps, respectively, so that the absolute half-
fluxes of heat, salt and horizontal momentum are requ"&ﬂerence of density across the layeris = Ay + Ag.
to vanish. With these choices, the initial stratification is both stati-
cally and diffusively stable. Dynamic (shear) instability
b. Numerical methods depends on the relative valuesiof, Au, Ar andAg as
discussed below.
The numerical code is an extension of that described byThe horizontal periodicity intervals were determined
Winters et al. (2003). It uses Fourier pseudospectral digcording to the fastest-growing modes of linear theory.
cretization in all three dimensions. Time stepping is viBhe domain lengthl,, was generally twice the wave-
the third-order Adams-Bashforth operator, with timestdgngth of the fastest-growing KH mode, though a single
determined by a Courant-Friedrichs-Lewy stability convavelength was used for some experiments. For the pro-
dition. Viscous and diffusive terms are integrated exactfles (3) with the parameter values used here, the fastest
MPI routines are used for parallelization. growing wavelength is closely approximated Yyqnr =
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ho x2m/0.44. The domain widthL,, wasArcas/2, which  choices of four nondimensional parameters:
is approximately three times the spanwise wavelength of

the fastest-growing three-dimensional instability of KH Sc=v/kKs; Rig = gh(ﬁ;;

billows in air as described by Klaassen and Peltier (1991). P

(Note that this wavelength is partly controlled by diffu- Reg = A“ho; R, = ﬁ (4)
sion, so we expect it to be smaller in seawater.) v As

. The Schmidt numbeiSe¢, for salt in seawater ranges be-

In addition to the profiles described above, the inj- . o

. . . . . een 700 and 1000. In order to attain a significant level
tial conditions included a two-part perturbation designe : .

. . . of turbulence in the computed flows, we have reduced this
to efficiently stimulate both the KH mode and its secv—alue 1 50. Equivalently. one mav express saline diffu
ondary instabilities. First, disturbances proportional to the q Y. y exp

. . ._slvity in terms of the inverse Lewis number= ,
fastest-growing KH mode and the KH mode with twice v 8= fis/Kr

) which is of order10=2 in water is 0.14 in th
that wavelength were added. The amplitude ofthefastesp-C s of orderl0 seawater but is 0 these

. . . . simulations. (GMH used a similar valuegic = 70, or
growing mode was chosen so that its maximum vertica _ ) R
. . . . 7=0.1.) Even with this compromise, “salinity” still dif-
displacement was.2ho. The maximum vertical dls’place-fuses an order of magnitude more slowly than does heat
ment associated with the subharmonic mode (as,. 9 y '

. - . so the effects of the different molecular diffusivities ought
These amplitudes are large enough to efficiently stimulate . .
. . 0 be evident, although those effects are likely to be under-
primary and subharmonic modes, yet small enough to be’ L .
. . . estimated. For simplicity we will refer to the scalar cor-
well described by linear perturbation theory. The phases

. . r ndin h nsi “salinity”, even though
of the primary and subharmonic modes were chosen g,po ding to the densitys as “salinity”, even thoug

. . . it actually represents a fictitious solute that diffuses more
induce pairing at the streamwise boundary of the (peri- "
. . . . r8p|dly than sea salt.

odic) computational domain, so that the inner core woul . ) , , .
The intensity of turbulence attained in the stratified

be easily visible in volume renderings (e.g. figure 1). Sec-
y o gs ( g g ) hear layer (3) is governed mainly by the initial Richard-
ond, a random velocity field was added in order to excite ) .
. . . L on and Reynolds numberBi, and Reg. The primary
three-dimensional motions. At each point in space, the L . i
o KH mode is inviscidly unstable provided th&t, < 1/4
three components of the velocity increment were chos(en

. .. .. (Miles, 1961; Howard, 1961); for the present simulation
from a list of random numbers whose probability distri- . es, 1961; Howard, 1961); for the present simulations,

bution was uniform between the limits0.1Ax. During Rigwasintherange 0.10-0.12. The initial Reynolds num-

L . . Her controls the range of scales in the resulting flow. A
the first time step, the random motions were automatical o i
. : standard compromise in DNS of geophysical flows, occa-
made solenoidal by the pressure gradient force.

sioned by limitations of computer technology, is that the
The computations were done using MKS units. TReynolds number cannot normally be made as large as
represent flow in terrestrial oceans, the gravitation ggse would like. In this case, the slow diffusion of salinity
celeration, characteristic density, molecular viscosity aﬂé’quires thatze, be set to 300 or smaller. Initial Richard-
thermal diffusivity were set tgy = 9.81m/s% po = gon and Reynolds numbers in this range lead to turbu-
1027kg/m?, v = 1.0 x 107°m?/s, andky = 143 x|y patches whose intensity (as measured by the buoy-
10~"m?/s, respectively. Note that the choicesolnd ancy Reynolds number to be defined below) is within, but

rr correspond to a Prandtl numbétr = v/kr of 7, near the weak end of, the range observed in thermocline
a typical value for seawater. Approximate COITeSPORatches (Smyth et al., 2001).

dence to a typical turbulent patch in the thermocline wastheg relative importance of heat and salt in determining

achieved by setting the initial turnover time for the shegfe jnitial density stratification is expressed by the den-

layerTss = ho/uo to the value28.28s. With this choice, ity ratio R,. There are several conventions in current use

KH billows were found to grow and decay over a timg,, defining R,. With the definition given in (4)R, is

span of 1-3 hours. (Results can be converted to any othgkitive when both thermal and saline components of the

time scale as necessary.) stratification are stable. Turbulent patches in the thermo-
The remaining parameter values were determined elne typically exhibit values oR?,, between 0.2 and 5.

4
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Parameter Unit 1 2 3 4 5 6 7 8 9 10
Reg 300 240 240 240 200 240 180 180 180 100
R, 10 02 10 50 02 10 02 10 50 1.0
Rig 0.10 0.10 0.10 0.10 0.10 0.12 0.2 0.12 0.12 0.10
ho 1073m 920 824 824 824 750 824 713 713 713 5322
Au 1073ms~! | 3.32 296 296 296 266 291 252 252 252 1.88
Ap 103kgm—2 | 1.21 1.08 1.08 1.08 0.984 1.29 1.12 1.12 1.12 0.696
L, m 262 117 1.17 1.17 215 234 1.02 102 102 1.52
L, m 065 059 059 059 054 059 051 051 051 0.38
L, m 0.88 0.78 0.78 0.78 0.72 0.78 0.68 0.68 0.68 0.51
N, 512 192 192 192 384 384 192 192 192 256
N, 128 96 96 96 96 96 96 96 96 64
N, 192 128 128 128 128 128 128 128 128 96

Table 1:Parameters for numerical simulatiorige, and Rio represent the initial Reynolds and Richardson numbersRarid the

density ratio. The variablk, is the half-thickness of the initial shear layer. The half-changes in horizontal velocity and net density
areAu andAp. L, L, and L. are the domain dimensions in the streamwise, cross-stream and vertical directions, respectively,
andN,, N, andN., are the corresponding array sizes. The dimensions of the fine arraivar@ N, and2N.. For all simulations,

Pr =T7andSc = 50.

Choices for the parameter values are summarized indanensional components:

ble 1. Most of the analysis will focus on runs 1-4; the 1

remaining runs are included to provided a more compre- Ksq(t) = W(ﬁzd ~ilad)y ;
hensive view of the factors governing differential diffu-
i 1
sion. _ = o
Kgd(t) == m<u3d . ’U,3d>v . (6)

The velocity fields associated with two- and three-
3. Overview of flow evolution dimensional motions are

!

The growth, breaking and decay of the KH billow in run lizg(z, 2,t) = (U)y — (U)ay;
lisillustrated in figure 1 via volume renderings of ihe . I
field at selected times, and in figure 2 via the evolution of U3a(7,,2,1) =10 = (i)y, )
three energy reservoirs that we now define. where subscripts on the angle brackets indicate spatial
The potential energy is given in nondimensional fori@verages over the specified dimensions. The velocity
by field iy, describes the primary KH billows, and other
large-scale, wavelike motions, whilgs; is associated
((z—=L./2) (pr + ps)),, — Po, (5) with longitudinal secondary instabilities (e.g. Klaassen
and Peltier, 1991) and turbulence.
in which angle brackets indicate a volume average overFigure la shows the salinity field from run 1¢at 0.
the computational domailr, and P, is the potential en- The transition layer was horizontal except for the small-
ergy of the initial profiles (3).P(t) evolves in responseamplitude linear eigenfunction and the random noise field
to both reversible and irreversible processes. Irreversiffigure 1a). Subsequently, both the potential and two-
potential energy changes will be examined in section dimensional kinetic energy fields showed rapid growth
The kinetic energy is partitioned into two- and thredfigure 2, solid and dashed curves). By= 610s, the

9

P(t) = ——=
) = Az
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0 1 X 2 (e)t=1675s. 0 1 X 2 (i) t=54509s.

Figure 1:Evolution of the salinity fielghs for run 1. Values colored range from -@\4 (red) to 0.4\ s (dark blue). Values outside
this range are transparent. Times are as marked; note that the interval between frames is longer in the later part of the life cycle.
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primary KH billows had rolled up and were approachir !
their maximum amplitude (figure 1b). In figure 1c, thyg,| b l.
braid separating the billows at the center of the compu ! !
tional domain is visibly longer than that crossing the p .
riodic streamwise boundary. This corresponds to a me ; |'.
ing of the primary billows across the periodic bounda ! \
due to the subharmonic pairing instability (e.g. Collir ,’I '\ :
and Maslowe, 1988). The merging process was nesaoz* ! "
complete at = 1425s (figure 1d). Also visible at this / N
time was the emergence of three-dimensionality in t ! \
cores associated with the secondary instability descril / N Ko
by Klaassen and Peltier (1985a,b, 1991). Four spanw g e
wavelengths of the Klaassen-Peltier (hereafter KP) mc T 2050 orE—
are visible near the right-hand side of figure 1d. This i.. tsl
stability was also manifested in rapid growth of the threE-i ) , . )
dimensional kinetic energy (figure 2, dotted curve). gf”e 2_.Se_|ected energy resgrv0|r§ for run 1: potential energy
(solid), kinetic energy of two-dimensional flow (dashed) and ki-
Beyond this time K4 decreased sharply. Most of thisietic energy of three-dimensional flow (dotted). All energies are
decrease was transferred to the mean flow as the quasidimensionalized by, Au? as described in the text. Poten-
elliptical billow core rotated to a more nearly horizontial energy is shown minus its initial value. Letters above the
tal orientation (figure 1e). The potential energy contifigure indicate times shown in figure 1. The numeral 6 indicates
ued to grow for a short time after this due to the rollujj€ time shown in figure 6.
of streamwise vortices associated with the KP instability
(figures 1d,e); however, it too exhibited a rapid decrease
aroundt = 2000s that coincided with rapid growth of

ad

sult of this thickening, the minimum Richardson number

three-dimensional structure (figure 1f, dotted curve in ﬁﬂhd increased to a value greater than 1/4, and the flow was

ure 2). This phase is referred to as the “breaking” of tha efore dynamically stable. This irreversible thickening

KH billow. of the transition layer is evident in figure 2 as a permanent
The breaking billow cores ejected jets of turbulent fluithcrease in potential energy after the disturbance kinetic

horizontally toward the center of the domain (figure 1fgnergies have decayed.

where they engulfed the intervening braid. Figure 19The flow evolution in runs 2-4 (figure 3) was simpler

shows a second pair of jets being ejected from the tyfe to reduced Reynolds number and the suppression of
bulent core. This ejection coincided with a second rapﬂ)%iring. The growth of the KP mode was in general more
decrease in potential energy as the billow rotated ag‘?‘é{bid because it did not compete for energy with the pair-
into the horizontal orientation. The meeting of the secorﬂgjg mode (also see Metcalfe et al., 1987). The growth rate
pair of jets at the domain center (figure 1h) induced af ihe primary KH instability was independent &, as
intense burst of turbulence. Shortly after this, turbulengeqyigent from the initial evolution oP and K5, (figure
began to decay under the influence of viscosity, as showb)_ In contrast, the initial growth rate of the KP mode
by the rapid decrease in both components of the kinejigs 5 strong function aR,, as shown by the divergence
energy (figure 2). Due to its low diffusivity, the “salinity” of the curves in figure 3¢ near= 1500s. This variation

field retained significant small scqle stru_c_ture even in then R, appears to be related to tie dependence of the
late stages of turbulence decay (figure 1i)). growth rate of the KP mode described by Klaassen and
Ultimately, the decay process left behind a sheardegltier (1985a). Whe®?, < 1 (dashed curve), the den-
two-layer flow similar to the initial condition, except thasity is dominated by the slowly-diffusing salinity compo-
the transition region had thickened due to mixing. As a reents, and the density gradients that drive convection are
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. Figure 4:Evolution of the transition layer depth for simulations
Figure 3: Selected energy reservoirs for runs 3 (dashe ),g Y P

4 (solid) and 5 (dotted): potential energy (a), kinetic en

ergy of two-dimensional flow (b) and kinetic energy of three-

dimensional flow (c). All energies are nondimensionalized by

poAu? as described in the text. three-dimensional motions ultimately became strongest in
the temperature-dominated case.

We conclude this overview of KH breaking and turbu-
therefore sharper. In th&, > 1 case (dotted curve),lence with an examination of energy dissipation via vis-
the converse was true: density was dominated by trus friction. Since a substantial fraction of our compu-
rapidly-diffusing temperature field. Temperature domfational domain was occupied by laminar flow above and
nance also caused the damping action of buoyancy on laegow the mixing layer, higher-order statistics such as the
primary KH billow to be reduced slightly, as shown b¥inetic energy dissipation rate, when computed using sim-
the increased amplitude and duration of the peaks in e volume averages over the domain, are not representa-
tential and two-dimensional kinetic energy (figures 3aive of the turbulent region. Instead, we take advantage
t ~ 800 — 1400s). of the fact that the turbulent layer coincides roughly with

As in run 1, the breaking billows transferred much ghe transition layer identified previously, and is therefore
their energy to the growing three-dimensional mode. THiglineated effectively by two isosurfaces of the total den-
transfer occurred in two stages. In the cases Wigh> 1 sity field pr + ps. We choose isosurfaces upon which the
(solid and dotted curves), the second stage was consi@nsity had the values tanh (1)(Ap). The subvolume
erably longer than the first and resulted in consideralgipclosed by these surfaces is dendted At ¢t = 0, the
greater growth is,. This is because (a) the primary bilimean half-thickness df; (denoted:(t)) was equal td,
lows lost less energy to three-dimensional motions durititg initial half-thickness of the transition layer. Averages
the first stage of collapse, and (b) the growth and subs&er Vr contain very little contribution from the laminar
quent rolling motion of the primary billows was less corregions.
strained by gravity when density was dominated by theAs each simulation progressehi(t) increased mono-
rapidly-diffusing temperature field. The latter effect is iltonically as a result of the irreversible mixing of density
lustrated by the large increase of potential energy betwdéigure 4). The degree of thickening was greatest in cases
t = 1500 and2000s (dotted curve on figure3a). That powhere mixing was most vigorous. It was this thickening
tential energy was released as three-dimensional kingkiat caused the increase of the bulk Richardson number to
energy betweerr = 2000 and 2300s. Therefore, de- a stable value and hence the ultimate decay of the turbu-
spite the relatively low initial growth rate of the KP moddgnce.
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Figure 5:Left frame: evolution of the buoyancy Reynolds num-
ber for simulations 1-4. Right frame: probability distribution

function (PDF) for buoyancy Reynolds number from observa-
tions in the main thermocline.

The buoyancy Reynolds number provides a useful de-
scription of the range of scales in stratified turbulence. It
is defined as the ratio of the squared Kolmogorov eddy
turnover rates /v, to the squared buoyancy frequenéy:

_ <6> Vr
e = on, ©

h th bscriots indicat | Figure 6:Partial densitieps (a) pr (b) for run 1 att = 2286s.
where Ihe subscripts indicate volume averages over IIl?us flow state is intermediate between those shown in figures

turbulent subvolum&?z. The turbulent kinetic energy dis-1 4 4nd f. values colored range from -D4red) to 0.4\ (dark

sipation rate: is defined locally as blue). Values outside this range are transparent.
€ = 2us};5,;, 9)
in which o
1 [/ ou! u;
/ 7 J
== 10
SZ] 2 <61‘J + 8,@,) ( )

is the strain rate. Primes indicate fluctuations about

the horizontally-averaged velocityii),,,. When Re; is

large, turbulent eddies are too energetic to be affected byAlso shown in figure 5 is a histogram &k, taken from
buoyancy. Run 1 reached a buoyancy Reynolds numbéservations in the thermocline off Northern California
slightly in excess of 40 (figure 5, thick curve). The coMoum, 1996b). A set of 994 profiles extending from
responding flow state is illustrated in figure 6. The r&00m to a maximum of 600m depth was binned to yield
maining three runs shown in figure 5 were restricted 1814246 1m segments, from which the statisticsief,
lower Rey, in part because the pairing instability was supvere computed. No attempt was made to isolate overturns
pressed. Nevertheless, these runs are expected to giverasther regions of elevated turbulence. Values generally
accurate indication of the influence of the density ratranged between 1 arid?; the median was 29. Thus, the
on turbulent diffusion. Note the slight difference in theuoyancy Reynolds numbers attained in the DNS runs re-
evolution of Re;, between the low and high density ratioported here appear to be representative of weakly turbu-
(dashed and dotted curves on figure 5). lent regions of the ocean thermocline.
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4. The scalar gradient spectrum

Power spectra of the scalar gradient fields provide a s S.ﬁ ol
sitive test of numerical resolution, as well as insights in %
the physics of turbulent mixing. Here, spectra are co &
puted for the high Reynolds number case (run 1) at a ti :D_f 102l
when turbulence was at its most intense (iRRe, was a '
maximum), so that the demand placed on spatial resc .gfg
tion was high. Figure 6 shows the two scalar fields fra .
run 1 at this time, which is intermediate between the tim 10 0 1672 1(‘)4 160 o
shown in figure 1f and g. The right-going and left-goin 0
ends of the collapsing core are just beginning to interi .
at the domain center. Ther field (figure 6b) displays

Figure 7:Normalized vertical gradient spectra of temperature

a structure similar to the salinity, but with markedly Ies?h, « dashed d salinity (thick solid ¢ 1t
small scale variability (cf. GMH's figure 2). (thick dashed curve) and salinity (thick solid curve) for run 1

Fi 7 sh ¢ fh | i 9 t=2286s. Shown for comparison are gradient spectra of salinity
igure 7 shows spectra of the scalar gradiéitg/ 9z (triangles) and temperature (circles) from 350 ocean turbulence

versus the vertical wavenumberSpectra were Compme%atches (Nash and Moum, 2002). The thin solid curve is the

in the vertical direction to facilitate comparison with progajchnan (1968) universal form for the viscous convective and

filer measurements. The symhiis used to denote ei-viscous diffusive subranges. The value 7.3 was used for the con-
ther temperature or salinity. Spectra were computed fraantg (Smyth, 1999).

500 vertical profiles sampled randomly within the do-

main. For each profile, the turbulent region was selected,

py Was first-differenced, Hanning-windowed, and Fourier . . .
. ) Scale gradients are strongly affected by the evolving fields
transformed to obtain the power spectral dendity. A

associated with gravity waves (GMH) and with the KH in-

correction was applied to recover variance lost by f'rssffability. In contrast, the theory assumes that the flow is in

differencing. Each spectrum was normalized prior to ay:_,. .. Lo . .
: i . . ) L Statistical equilibrium, and the observations have consid-
eraging, using the isotropic variance dissipation rate,

erably larger Reynolds numbers, and thus less influence of

o0 the forcing scales in the viscous-convective and viscous-
Xo = Ke/ Wy dk, a1y .. . ) )
0 * diffusive subranges, relative to the DNS. The DNS salin-
dth hel B 2\1/4 hel ity spectrum peaks at a higher value than either the tem-
and the Batchelor scalk; = (e/vrg)"" (Batchelor, perature spectrum, the theory or the observations. Both

1959). Also shown on figure 7 are specira computed f“%me salinity spectrum and the observations are systemati-

0b§ervat|onal data (Nash a.md Moum, 2002) and the th%gﬂly higher than the Kraichnan spectrum in the viscous-
retical spectral form of Kraichnan (1968). convective k1) range

The pr spectrum extends further into the small scales
than does thegs spectrum because the former field is
somewhat bgtter resolved with respect to its Batche\gr- Potential energy, scalar variances
scale (the ratio of Batchelor scales for the two scalars’is
V7 = 2.65; the ratio of grid spacings is 2.0). The spec@nd turbulent diffusivity
tra of small scale gradients determined from these simu-
lations agree very well with both the observations and tlir objective is to compare the turbulent diffusivities of
theory. This indicates that the model is reproducing tltee thermal and saline density componemtsand pg in
small scale physics accurately, and in particular that tharious parameter regimes. Here, we describe two ap-
spatial grid resolution is adequate. proaches to this comparison, focusing first on the evolu-

At larger scales, correspondence is not as close. Lartien of the horizontally-averaged scalar profiles and later

10
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on an alternative approach that isolates irreversible mj ...
ing processes. Additional insight into the physics of di
ferential diffusion is gained through examination of scal®®’|
variances, whose dissipation rates are used to estimateg og-

bulent diffusivities in observational studies.
0.05+

a. Component potential energies 0.04

In the context of vertical mixing of a scalag (which %%
may represent either; or pg), computation of turbulent g g,
diffusivity requires fitting the evolution of the scalar fielt

to a one-dimensional diffusion model, e.g.: 001
dpg 0 0Py % 1000 2000 3000 4000 5000 6000
R § L (12) o

In (12), the diffusion model is expressed in terms of tiEigure 8:Evolution of the scaled potential energy components

horizontally-averaged profilgs = (pg)zy- for run 1. Thick curves: component potential energy. Thin
There are a number of ways to invert (12) in order tirves: background potential energy. Solid curves: temperature

obtain a single, characteristic value for diffusivity at an§omponent. Dashed curves: salinity component.

given time. Here, we begin by considering changes in the

specific potential energy associated with the evolution of

each density component: salinity fields increased at nearly equal rates, indicating
g that the two scalars were advected together. As the bil-
Po(t) = poAu2 <(Z —L-/2) P9>V' (13) jows collapsed (the phase of rapid decrease in total poten-

| trast t dN? (cf tion 3) P | lobal tial energy), the component potential energies diverged.
N confrast toe an (cf. section 3),7% is a globa After turbulence had decayed, the temperature field con-

property of the flow. Accordingly, we make no attenm[tained more potential energy than did the salinity field.

to isolate the turbulent region, but instead compute ttf‘ﬁis indicates that salinity restratified more completely

average over the entire computational domain. . .
g o ) than temperature or, equivalently, that temperature mixed
Besides providing a route to the computatiorfaf, Py
more thoroughly.

is in itself a useful descriptor of the flow physics. Poten- It can be shown that, if the mean density evolved ac-

tial energy components associated with temperature %r(])crjding to (12) withK, independent of, thenk, would

salinity for run 1 are shown by the thick curves on fig- ; . L
) ) e proportional to the time derivative of the component
ure 8. (Thin curves on figure 8 represent background po-, .. o
tential energyyiz.:

tential energies, to be defined below.) For each scal%?,
the potential energy rose to a maximum, then decreased Kolt) = L. poAu? d . (14)
rapidly as the primary KH billows paired and subse- 298¢ dt
qguently collapsed. The potential energy then oscillatedda a definition ofKy, (14) has a serious shortcoming: the
few times before settling down to an approximately steadysulting diffusivity is negative during times whdty is
state. The oscillations indicate reversible transfers lkecreasing. Negative diffusivity implies “unmixing” of a
tween the potential and kinetic energy reservoirs, assoixed fluid, an apparent violation of the second law of
ciated with interference between leftgoing and rightgthermodynamics. The real problem, of course, is that the
ing internal waves generated by the collapsing KH billodiffusion equation (12) is a poor model for the evolution
(e.g. figure 1f,qg, figure 6). of the mean profiles, because that evolution reflects not
During the initial growth and pairing of the KH billows,only diffusion but also the effects of gravity waves and
the total potential energy stored in the temperature amither reversible processes. The roll-up and subsequent

11
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breaking of the KH billows is an example: breaking doemntal mean but to the background state. The significance

not represent a reversal of the diffusion process; in factpitthese distinctions will be assessed below.

is a time of extraordinarily rapid diffusion, as we show in To invert (15) and thereby obtain a characteristic value

the next subsection. for Ky describing only irreversible processes, we first de-
fine the contribution to the minimum, or “background”

b. Background potential energies and turbuleRptental enerays, (Winters et al, 1995), associated
. - with the density componem, viz:
diffusivities

9

Py(t) =
bo (t) PVTE

We now describe an alternative definition for the turbu- <(Z9 —L:/2) ’09>V*’ a7

lent diffusivity that filters out reversible effects. We begin

by defining the reordered height coordinajéz, y, z, t), wr:ere the subscrtlpli on the e:;:gleb brsckets(;ndtlc?tes a
which is the height a fluid parcel would end up at if the0/'Me average taken over the background state (or,

. . S, . ivalently, over i lar surf in f rdin
partial density distributiorpy was allowed to relax ad|—equ alently, over isoscalar surfaces instead of coordinate

abatically to a state where the corresponding componglna}nes)'

potential energy was a minimum. (Note that this reorder- 1© distinguish it from?%, the potential energy compo-
ing is done in three spatial dimensions, not in one d?_entpg defined earlier is referred to as the “total” poten-

mension as in the calculation of the Thorpe scale, (et.'g‘;”l.I energy duc?:‘ to the density c_:omponga@t The differ-
ePy — P,y is called the available potential energy, as

Thorpe, 1977).) Changes in this state reflect the ef“l‘ects:_ecr)}C ] ) o
. . L ) e it is available for conversion to kinetic energy. Note that
irreversible mixing alone (Winters et al., 1995; Scinocca

1995; Winters and D’Asaro, 1996). A diffusion modeFe Is the "total” potential energy only in the sense that

that describes the evolution of the minimum potential elrt]_mcludes both the background and the available poten-

. . . . . tial energies; it nevertheless refers only to the contribution
ergy statepq(z;,t), contains only irreversible effects: i ,
of the density component;. The potential energy con-

0 0 B3] tained in the complete density field (discussed in section

Po Po (15)

9az; ’ 3) is given in terms of the component potential energies
by P = Pr + Ps.

The definition of the turbulent diffusivity implicit in The background potential energy componeRss and
(15) has a number of appealing propertiés. is positive - p, . (thin curves on figure 8) respond only to irreversible
definite; in fact its lower bound is the molecular VBCO%’rocesses, and they therefore increased monotonically
ity, achieved when partial density distribution is Statical%roughout run 1 (and all other runs). The thermal com-
stable and the fluid is motionless. The ratio of turbulegh et increased more rapidly than the saline component
to molecular diffusivity on any isosurface pf§ is equal to right from the beginning of the primary growth phase.
the square of the ratio of the area of that isosurface to &Bout one half of the eventual divergencef; and Py
area in the stable, motionless state (Winters and D'AsafQ. ;req before the transition to turbulence was complete.
1996). That ratio is also equal to a ratio of gradienfg, poth scalars, the increase in background potential en-

very similar in form to the Cox number which appears Vi@rgy was steepest (i.e. irreversible mixing was most rapid)
the standard Osborn-Cox formulation for stratified turbld'uring the collapse of the billow between= 1700s and

lence:

ot 0z

t = 2100s, as indicated by the rapid loss of total poten-
) (16) tial energy. Throughout this early period of differential
ko (Ope/0z;) diffusion, the total potential energies stored in the tem-
Note, however, that the right-hand side of (16) diffeqgerature and salinity fields (thick curves on figure 8) re-
from the usual Cox number in that the squared gradianained nearly equal. This shows that the difference in the
is averaged not over coordinate planes but over isoscddackground potential energy increases was compensated
surfaces (since; is a function ofpy only). Also, the ver- in the available potential energies. Vertically displaced
tical gradient in the denominator pertains not to the hofluid parcels create background potential energy by mix-

K (90l
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Figure 9: Evolution of the instantaneous turbulent diffusiviFigure 10: Ratio of instantaneous turbulent diffusivities for

ties of temperature (a) and salinity (b) for runs 1 (thick solid) 2ins 1 (thick solid), 2 (dashed), 3 (thin solid) and 4 (dotted).
(dashed), 3 (thin solid) and 4 (dotted). Horizontal lines indicak¢orizontal lines indicate unity and the molecular diffusivity ra-
the molecular diffusivities. tio 0.14.

ing with their surroundings, but at the same time give ugillows reached large amplitude, however, the results di-
available potential energy. Only after parcels lose theigrged. In the three cases where pairing was suppressed
available potential energy via restratification does the difie thermal diffusivity rose to about 25 times its molecu-
ference in the irreversible mixing of heat and salt show lgr value neat = 1400s, then decreased. In run 1, ther-
as a difference between the total potential energies.  mal diffusivity continued to rise due mainly to additional
As turbulence decayed, the available potential enengyxing resulting from the pairing instability, eventually
stored in each scalar field due to waves and turbulgrgaking at 40 times its molecular value neat 2200s.
eddies dropped to zero, and hence the total and ballote that this time coincides with the time of maximum
ground potential energies for each scalar became eqbabyancy Reynolds number (cf. figures 5 and 6). The
The temperature component of the background potensaline diffusivity was generally smaller, though larger in
energy increased more rapidly than the salinity compgroportion to its molecular value.
nent throughout the run. The net amount of temperatureThe ratio of instantaneous diffusivities (figure 10) in-
mixing, as indicated by the net change in the associatg@gased initially from its molecular value of 0.14 toward
background potential energy, was greater than that due/#éues near unity. This increase occurred mostly during a
salinity, signalling differential diffusion. dramatic jump that coincided roughly with the appearance
If the background density evolved according to (1%f the KP instability (figures 2, 3). In run 1, the increase
with Ky independent of;, thenk, would be given by  was spread out, presumably owing to the influence of the
pairing mode. The maximum value &fs /K depended
- (18) heavily onR,, exceeding unity for the cade, = 5. In all
cases,Kg/Kr eventually decreased. (Simulations con-
We adopt (18) as our definition of thiestantaneousur- tinued to very long times have confirmed thak / K+
bulent diffusivity. Figure 9 shows the instantaneous turbeventually returns to its molecular value.)
lent diffusivities for runs 1-4. Initially, the diffusivities for ~ The high Reynolds number case (run 1) did not achieve
the different runs increased together, reflecting the vehe highest maximunks/Kr; however, the ratio re-
similar values of KH growth rate in the four cases. As thmained close to unity long after it had begun to decrease

L.poAu? d

Ky(t) = —
o(t) 290 dt

13
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in the other cases. We will see below that this differen
tended to reduce the difference in the cumulative diffusi  * A 2
rates of heat and salt in the highBe;, case. To under- -

stand the differences in the decaydf /K in the four

cases shown in figure 10, we must first explore the phys

of scalar mixing in terms of temperature and salinity vai | @) T 0 S

ances- 0 1000 2000 3000 4000 5000 6000 O 1000 2000 3000 4000 5000 6000

t[s] t[s]

Y
—
—

I
|
=

[o*

c. Scalar variances Figure 11:Terms in the variance equation (19) for temperature
(a) and salinity (b).

In these simulations, volume-averaged scalar variances

evolve according to

do

- = Ao — X} (19) of the diffusivity ratio for irreversible mixing processes
t b)

regardless of the validity of the Osborn-Cox theory.

where The temperature and salinity variances in run 1 evolved

i imilar fashion (fi 11). Earlyinth dt
O = (p2)v /A2, Ao = —2(w/ gy /A2, !nvery3|m| ar.as ion (figure 11) ary|r.1 erut(a/' .

increased rapidly due to strong production. The dissipa-
Xo = 2m<\ﬁp’9|2>v/A§ tion term became important gradually as gradients sharp-

: . ... ened. A second peak in the production rate corresponded
represent the variance, production rate and dissipation rat?h L . . .

: o . to the pairing instability. The two breaking events (rapid
of the scalarpy. Primes indicate fluctuations about th

. " , ecreases in potential energy in figure 2) were character-
horizontal mean. All quantities are normalized By . . . .
. . . ized by strong negative production as the rolling of the
to facilitate comparison between temperature and sahn&]\/_| . .
. vortex reduced scalar fluctuations about the horizon-
variance budgets. o . .
. o tal mean. The dissipation rate reached a maximum during
In the Osborn-Cox formulation for stratified turbulence . . . . S
e this time. The late evolution was dominated by dissipative
(Osborn and Cox, 1972), turbulent diffusivities are pro- . . .
) . o . decay, with only weak and fluctuating production rates.
portional to scalar variance dissipation rates. This rela- ~ ) S
tionship requires that the scalar field be in statistical eqw-ln figure 12 we show the scaled ratio of dissipation

librium, so thatAs = x, and that the scalar flux repre-rates'dx’ along with the instantaneous diffusivity ratio

sented byA obey a flux-gradient relationship. This for—and the buoyancy Reynolds number. Here, the dissipa-

mulation is used to estimate turbulent diffusivities fror}on fatesxs _andXT are cqmputed using the full _scaIa}r
ocean microstructure measurements, and the ratio flelds. (mcludmg. mean profiles) to enSL'Jre that their rat'|os
remain well-defined when turbulence is weak. Note first

dy = Xs RIQJ (20) thatdissipation and diffusivity ratios remained very nearly
XT equal over most of each run, diverging only kyl0% as

was used as a surrogate il / K1 in the observational the flow reached its most turbulent state. This is some-
analyses of Nash and Moum (2002). A more general favhat surprising, since figure 11 shows that the production-
mulation by Winters and D’Asaro (1996) resulted in (16¥issipation balance assumed in the Osborn-Cox formulas
which relates thérreversiblescalar flux (and henc&y) is satisfied only when averaged over the whole event; the
to the dissipation rate averaged on isoscalar surfaces wittstantaneous production and dissipation rates show no re-
out the need for an equilibrium assumption. The Winterstionship whatsoever. Recall, however, that the relation-
D’Asaro formulation is applicable to three-dimensionahip between dissipation rates and diffusivities (16) does
solutions but cannot be realized directly from field data, ast require the fields to be in equilibrium if the latter rep-
the latter is generally one-dimensional. However, resufessents irreversible processes only, as it does here. The
given below suggest that, is actually a useful estimaterelationship remains imperfect becauyses averaged over
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the accompanying discussion):

0 Xo (4 12 1/2 k
W00 = 205 (1) flaon a0 20
(21)

where f is an unspecified nondimensional function. The
superscript “0” one’, ¥§ (k) and x§ indicates evalua-
tion att = 0. Now suppose that, at= 0, all motion is
brought instantaneously to a halt, leaving the scalar field
to diffuse with no turbulent straining. Scalar evolution
is now governed by a simple, linear diffusion equation.
Each Fourier mode decays exponentially, and the gradient

% 1000 2000 3000 4000 5000 "0 1000 2000 3000 4000 5060 SpeCtrum therefore evolves according to
t[s] ts]

Uy (k,t) = WY_(k)e okt (22)
Figure 12:Comparison of the scaled dissipation ratio(solid
curve) with the buoyancy Reynolds number (dashed curve) ant may then calculate the evolution of the dissipation rate

the ratio of turbulent diffusivities (dotted curve) for runs 2 (a), %9(1&) using (11), which under the Batchelor scaling be-

(b), 4 (c) and 1 (d). comes
xp [~ 2
w) =% [ e etdas, (23
0
. . . where
coordinate planes rather than isoscalar surfaces as in (16), 1/60\ /2
but that discrepancy is evidently important only during a Te = q<y> (24)

brief phase when turbulence is strongest. is the effective compressive strain rate of turbulent ed-

Note also that the ratios remain close to their maximuf#s (€-g- Smyth, 1999) just prior to the arrest of motion
values for a significant time after turbulence intensity, &¢ = 0- This turbulent strain rate controls the rat2e of
measured byRe;, has begun to decrease. As was seffffusion by controlling the Batchelor scal@g/7e)"/
for the diffusivity ratio in figure 10, there is a marked stronger strain generates fluctuations on smaller spatial
difference among runs in the time taken for the ratigales, which then diffuse more rapidly when the strain is
to drift away from their maximum values. In particuIar?“"”tChe_d off. _ _ _ _
the scalar fields in run 1 retained the characteristic that! "€ important observation here is that the integral in
dy, ~ Kg/Kr ~ 1 long after turbulence had decayed.23) is independent of the molecular diffusivity. There-
The fact that the scalar field retains the characteristics'®fe: If xo iS independent ok, att = 0, it will remain so
turbulence for a time after turbulence has decayed is AStthe scalar fluctuations diffuse. More generally, the ra-

surprising since both scalars diffuse less rapidly than ddisOf the dissipation rates of two scalars having different
momentum. However, the origin of the differences p&rolecular diffusivities will not change as the fluctuations

tween runs is less obvious. diffuse.
The foregoing argument rests on the assumption that

To understand the fact that the diffusivity ratios remathe scalars in question are passive, i.e. that buoyancy ef-
high for so long in run 1, consider the following thoughfiects are not important. In the present experiments, buoy-
experiment. Suppose that, at some time that we arbitra@lycy effects are present and become increasingly domi-
designate as = 0, a turbulent flow with energy dissipa-nant as turbulence decays. Buoyancy adds a new time
tion ratee’ carries a passive scalar whose gradient spacale, N—!, to the problem, invalidating the Batchelor
trum obeys the Batchelor(1959) scaling (cf. figure 7 asgdaling and with it the above analysis. The mean shear
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1 ‘ that characterizes the whole mixing event. For this reason,
0.9¢ 1 we define theeumulativediffusivity of pg in terms of the
net change in the associated background potential energy,
1 Pyy. Because, the “end” of the event is chosen arbitrarily,
we first let the cumulative diffusivity be a function of time:
LZpOAUQ Pyy(t) — Pro(0) — Pyt
29A9 t '
| The constantby = 2grgAg/L.poAu? is the rate at
which potential energy would increase if the fluid re-
mained in the stable motionless state. This rate is deter-
‘ ‘ ‘ ‘ ‘ ‘ mined entirely by the potential energy fluxes at the upper
% 1000 2000 3000 Vi 4000 5000 6000 7000 angd |ower boundaries (Winters et al., 1995; Winters and
D’Asaro, 1996), and therefore remains steady as long as
Figure 13:Evolution of the ratio of cumulative turbulent diffu-the Mean densities on the upper and lower boundaries do
sivities for runs 1 and 2-4. Early times are not shown becau3@t change appreciably, as is the case in the present sim-
the ratio K s /Kre is undefined before the onset of turbuleriélations. By subtracting out this relatively small increase,
mixing. we isolate potential energy changes due to fluid motions.
We next define the ratio of the cumulative turbulent diffu-
sivities:

0.8

0.7r

0.6

0.5+

KSC/KTC

Koo (t) = (25)

0.4r

0.3r

0.2+ b

0.11 i

also adds a time scale, but mean shear is nearly propor- Ksc - Ar Bys(t) — Ps(0) — <I>St'
tional toV during the decay phase since the bulk Richard- Kre  As Pyr(t) = Byr(0) — @1t
son number remains nearly constant (Smyth and Mouhdis ratio (figure 13) was undefined at early times, rose
2000b). The two effects therefore become important@§ Mixing proceeded, then approached an asymptote as
about the same time. turbulence decayed. The asymptotic valud@fc /Krc

The ability of buoyancy and shear to influence the dprovides a useful metric for differential diffusion:
namics depends on the ratio of the decay rateo N, d= lim Ksc(t).
which is proportional to the square root of the buoyancy t—oo Ko (t)
Reynolds number. Therefore, whéte, is small (as in Note that, had we not subtractégt from the potential
runs 2-4), we expect that, will drift rapidly away from energies in (25) and (26), this asymptotic limit would not
the value it had before turbulence began to decay. Cexist and the cumulative diffusivity ratio would not be
versely,d, should remain close to its turbulent value fowell defined. (In contrast, we did not subtragt when
longer when the turbulent phase is characterized by largefining the instantaneous diffusivities in (18). Had we
Rey, asinrun 1. done so, the instantaneous diffusivities would have ap-

The above argument pertains entirely to the dissipatiproached zero at early and late times, and their ratio
rates. We know of no corresponding argument to explaiould then have been undefined.)
the fact that the ratio of turbulent diffusivities remains That characteristic diffusivity ratio was about 0.82 for
high for longest wherRe, is large, other than to note thehe high-Re case (figure 13, solid curve). The maximum
evident fact that the two ratios were very similar duringatio was significantly lower for the lower-Re cases, and
the decay phases of these simulations (figure 12). varied by 14% over the range &, in runs 2-4 with the
lower values corresponding #8, < 1. The latter varia-
tion is in agreement with M04. In these experiments, the
dependence o, was due mainly to differing time in-
From a parameterization perspective, we care less abteunvals over which instantaneoii& / K remained large
the instantaneous diffusivity than about a net diffusivitfcf. figures 10, 12 and the accompanying discussion).

(26)

(27)

d. Cumulative diffusivities
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6. Comparison with previous work

([
0.8¢ In this section we survey results from previous laboratory,
0751 observational and DNS studies of differential diffusion.
5 Figure 15 shows values ef and Re;, from the present
0.71 * work along with representative results from previous stud-
© 0.65} °° ies.
*
0.6 O )
o o a. Laboratory experiments

0.55F
05k o The initial lab experiments of Turner (1968) have been

' re-analyzed by Nash and Moum (2002) in order to esti-
0-4500 161 162 mate the buoyancy Reynolds number. Equating the ratio

Re, of entrainment fluxes with the diffusivity ratio, Nash and

Moum obtained the relation shown by the thick curve in

Figure 14: Ratio of cumulative turbulent diffusivities versudigure 15. The diffusivity ratio increases with increasing

buoyancy Reynolds number. The four larger symbols represétd;, until it reaches a value near unity Be, ~ 102. The

runs 1-4 already discussed; smaller symbols represent auxilighickness of the curve represents the uncertainty in the es-

runs included to give a more comprehensive view of the factqfgation of Re;, from the original data.

determiningd. Filled circles:R, = 1. Open circlesR, = 0.2. In the laboratory experiments of Jackson and Rehmann

Asterisks: = 5.0. (2003), the work done on the fluid was measured in or-
der to infer the kinetic energy dissipation rate and hence
Rep. Beginning and ending profiles of temperature and
salinity yielded the diffusivity ratio. The results, indicated
by crosses on figure 15, fell into two broad groups based
on buoyancy Reynolds number. In the upper grag,
ranged from 500 to about 25000, ahg; was generally
larger thanKr by a few percent. In the lower grouRe,

The diffusivity ratio shows a close correlation with thevas within a factor of three of0? and K,/ K7 ranged

maximum value ofRe;, as illustrated in figure 14. Thisbetween 0.56 and 0.87.

is in accord with GMH as well as with other studies as Hebert and Ruddick (2003) measured differential dif-

detailed below. Figure 14 includes results from all tefasion in internal gravity waves generated by a paddle in

DNS runs listed in table 1. The runs covered about anuniformly stratified fluid. To avoid the effects of heat

order of magnitude of variation iie,, and exhibited! losses from the sidewalls, they measured differential dif-

values ranging from 0.51 to 0.82. Evident again is thasion of a pair of chemical dyes having different molec-

tendency ford to increase with increasing density ratiaular diffusivities in place of heat and salt. The flows lay in

Runs 7, 8 and 9 ha&, = 0.2,1.0 and5.0, respectively. a very different region of parameter space from the other

The buoyancy Reynolds number reached 7 in each cassults surveyed here (and are therefore not shown on fig-

so that the three cases line up vertically at that value ore 15), but the general trend of increasiiig/ K with

figure 14. The difference idamong these three cases waacreasingRe; was reproduced.

20%. The difference between this result and the results of

runs 2-4 described above indicates that the _efferﬂ,p?s b. Ocean observations

most marked at low Reynolds number, consistent with the

expectation thad should approach unity at high Reynolddlash and Moum (2002) analyzed 350 turbulent patches

number for allR,,. measured over the continental shelf off Oregon. Using a
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fast-response conductivity/temperature probe on a slowly). The determination ks / K in low Re, regimes is
falling profiler, they obtained the firdh situ estimates the object of another field study.

of the salinity dissipation rate. Assuming a production-

dissipation balance in the scalar variance budgets, theYDirect numerical simulations

estimated the diffusivity ratio from the ratio of the ther-
mal and saline dissipation rates and hencé,of The DNS experiments of GMH were comparable to those

. i : described here, albeit with some significant differences.
Three unique aspects of these field observations are pet-

. . . . . ﬁs in Merryfield et al. (1998), the initial condition con-
tinent. First, in contrast with laboratory and numerical, ) o

. - e §|sted of uniform stratification and no mean shear. Tur-
experiments, it is very difficult to follow a turbulent even

through its cycle of growth and decay (in fact, this has ygylence was driven by the impulsive forcing of a finite-

to be accomplished in the field). Therefore, each obser\?g—]p"tucje random velocity field (as opposed to the small-

. . . : amplitude perturbations used here to catalyze the gener-
tional estimate ofl is based on the instantaneous charac- i o - ,

. . attlon of turbulence via dynamic instability). As in the
teristics of a turbulent event at some unknown stage in its

evolution. This has been identified as a source of scal%erz(resem case, turbulence intensity grew and decayed in

in observational estimates @f;, although the present re-t'me' In contrast to the present case, GMH's flows were

sults suggest that, may be relatively insensitive to thespatlally homogeneous in a triply periodic computational

stage of the event at which it is measured (at least at h% main. (Both methods have advantages. GMH's ap-

values ofRe,, after turbulence has been fully establisheds).roaCh offers efficient access to higher Reynolds numbers

because the entire computational domain is occupied by

Sgcond, gach observgtlon represent's a S|'ngle IOmf"‘f‘u;flf)ulence, whereas the present approach is more realistic
a single horizontal location whose relationship to the h%- the sense that turbulence is generated via a physically

izontal extent of the ‘T‘rb“'eﬁce is unknown. In Com_ra%alizable flow instability known to be important in the
laboratory and numerical estimatesifrepresent spatial ocean.)

averages. This is likely to be a major source of scatter inGMH quantified differential diffusion in various ways
the observational results. that did not include the ratio of turbulent diffusivities em-
Third, determination ofKs and K requires suffi- ployed here. They did, however, compute the ratio of the
ciently strong signal to noise ratio in the raw data to rgme-integrated buoyancy fluxes due to heat and salt. Be-
solve dissipation rates. This required that the Nash aglise the integrated buoyancy flux is equivalent to the po-
Moum (2002) analyses be restricted to regions where vglntial energy gain,and taking account of GMH's buoy-
ues ofRe;, were higher than is common in the main thegncy scaling, the ratio of fluxes should be equivalent to
mocline (Moum, 1996a). For the bulk of the turbulenthe ratio of diffusivities. For buoyancy Reynolds numbers
patches analyzed in Nash and Moum (2002}, was ranging from0.4 to approximatelyl03, GMH’s results
betweenO(10%) andO(10*), whereas measurements dejive diffusivity ratios between 0.32 and 0.94, as shown
scribed in section 3 of the present study yield a medigp the shaded circles on figure 15.
value of 29. GMH found that differential diffusion becomes more
The Nash and Moum (2002) analyses yielded a meamnounced at loweRe;, (shaded circles on figure 15),
diffusivity ratio between 0.6 and 1.1. These limits, anals have we in the present study. Hew, less than about
the corresponding range &, are represented on figureLl00, both GMH and the present DNS study found levels of
15 by the lightly shaded ellipse. It was not possible tiifferential diffusion that were generally less pronounced
rigorously differentiate the mean valuedfrom unity, or than the comparable results from the laboratory experi-
to detect any trend with respectRe;. This is due both to ments (shaded band and crosses). This could be due to
scatter and to the fact that the signal to noise requireméra fact that the difference in molecular diffusivities was
effectively restricted the analysis to a region of parametatificially reduced in both DNS studies.
space wherel is close to unity and independent &k, MO04 has extended the computations of GMH to include
(according to laboratory and numerical results, e.g. figwariation of R, and the limit of zero stratification. In the
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11l I has been analyzed in terms of scalar gradient spectra, the
. ﬁ/ L \+ + buoyancy Reynolds numbeke;,, scalar variances, and
y o total and background potential energies associated with
0.7 C‘l N | each density component. We have calculated both instan-
0.8f Yy N ' taneous and net turbulent diffusivities for each scalar in
07k o0 order to test the hypothesis that the two scalars would mix
° osl . o - g at different rates. This anticipated difference is a conse-
' o o ¥ guence of the difference in molecular diffusivities, and
0.5¢ y conflicts with the predictions of high Reynolds number
04t turbulence theory.
0.3} © The ratiod describing the relative degrees of mixing
0.2 ‘ ‘ ‘ ‘ . of the two scalars (specifically, the ratio of the cumula-
10" 10° 10* Re 10° 10° 10" tive turbulent diffusivity of salt to that of temperature) was

tested for dependence éie, and on the density ratift,,.

Figure 15:Results from the present study (black bullets), alon'E;Or all cagesd \_Na§ less than unity, but that_ratllo mcregsed
ard unity with increasindee; and also with increasing

with summary results from selected previous studies: Turr*QPN 4 )
(1968) (thick curve), Nash and Moum (2002) (ellipse), Jackio- The dependence afie, is largely due to differences

son and Rehmann (2003) (pluses), Gargett et al. (2003) (ghdyhe duration over which instantanealdg / K r is large.
bullets). Even weakly turbulent flows attaiR’s /K1 ~ 1 at max-

imum Rey, but when the peaRe;, is larger,Ks/Kr re-
mains close to unity long after turbulence has subsided.

latter limit, MO4 has found diffusivity ratios in excess oiIh's finding suggests that the role of nonstationarity in

unity, and has given a physical explanation for this resu‘?rf].ff erehntlal dlfrf]usmn IS moredcomple>|< thar? wafs prﬁwousl)_/
As in the present study, Merryfield finds thatncreases thought. We have proposed an explanation for the persis-

with increasingR,. This work has also revealed a closteence ofis /K in terms of the Batchelor (1959) scaling

correlation between differential diffusion and restratificzfl(-)r scalar gradients.

tion, the latter being quantified in terms of Lagrangian The results were compared with results from previous
particle displacements. Unfortunately, we cannot dupl@boratory, observational and numerical studies. Consid-
cate that calculation with the present data as it does 86119 the wide range of flow geometries, parameter values
include particle trajectories. A similar calculation usingnd experimental techniques, the results summarized in
potential energy evolution to quantify restratification rdigure 15 present a remarkably consistent picture. The dif-
vealed no consistent correlation. fUSiVity ratio is near unity foRey, > 102, and some stud-
ies have suggested that this ratio actually exceeds unity
for high Re;, (e.g. M04). For buoyancy Reynolds num-
7. Summary bers belowO(10?), heat diffuses more rapidly than salt.
For Re, < 10, a circumstance that is common in the ther-

We have described a sequence of direct computationértﬁc"”e (see figure 5), the difference is greater than a fac-
the growth and decay of turbulence driven by KH instabfior of two. The results of the present study are consistent
ity. The flows were stratified by a combination of two acd¥ith this picture, and we may therefore add KH billows to
tive scalars representing temperature and salinity. Al F}Q_e list of turbulent flows exhibiting differential diffusion.
rameter values were consistent with weak mixing evert§ I" GMH and M04, the present levels of differential
in the thermocline, except that the diffusivity of salt wadiffusion represent an underestimate due to the artificially
increased to facilitate resolution of the smallest fluctuificreased diffusivity of salt.

tion scales with the available memory. Flow evolution These findings reinforce the impression thigd, ~
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