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An Introduction to Ocean Turbulence

This textbook provides an introduction to turbulent motion occurring naturally in the
ocean on scales ranging from millimetres to hundreds of kilometres. It describes how
turbulence is created and varies from one part of the ocean to another, what its
properties are (particularly those relating to energy flux and the dispersal of pollutants)
and how it is measured. Examples are given of real data and the instruments that are
commonly used to measure turbulence. Chapters describe turbulence in the mixed
boundary layers at the sea surface and seabed, turbulent motion in the density-stratified
water between, and the energy sources that support and sustain ocean mixing.

Little prior knowledge of physical oceanography is assumed and the book is written
at an introductory level that avoids mathematical complexity. The text is supported by
numerous figures illustrating the methods used to measure and analyse turbulence, and
by more than 50 exercises, which are graded in difficulty, that will allow readers to
expand and monitor their understanding and to develop analytical techniques.
Detailed solutions to the exercises are available to instructors online at
www.cambridge.org/9780521676809. Further reading lists give direction to additional
information on the background and historical development of the subject, while
suggestions for further study encourage readers to probe further into more advanced
aspects.

An Introduction to Ocean Turbulence is intended for undergraduate courses in
physical oceanography, but will also form a useful guide for graduate students and
researchers interested in multidisciplinary aspects of how the ocean works, from the
surface to the seabed and from the shoreline to the deep abyssal plains. It complements
the graduate-level text The Turbulent Ocean, also written by Professor Thorpe
(Cambridge University Press, 2005).

Steve Thorpe was a Senior Scholar at Trinity College, Cambridge, where he
studied mathematics and fluid mechanics, his PhD being awarded in 1966. He then
spent 20 years at the UK Institute of Oceanographic Sciences, before being appointed
Professor of Oceanography at Southampton University in 1986. He has carried out
laboratory experiments on internal waves and turbulent mixing, and has measured and
developed instrumental and analytical methods for studying waves and mixing in
lakes, as well as making seagoing studies of turbulence in the boundary layers of the
deep ocean and shelf seas. Professor Thorpe was awarded the Walter Munk Award by
the US Office of Naval Research and the Oceanography Society, for his work using
underwater acoustics, The Fridtjof Nansen Medal of the European Geophysical
Society, for his fundamental experimental and theoretical contributions to the study of
mixing and internal waves, and the Society’s Golden Badge for introducing a scheme
to assist young scientists. He became a Fellow of the Royal Society in 1991 and is now
an Emeritus Professor at the University of Southampton and an Honorary Professor at
the School of Ocean Sciences, Bangor.
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Preface

My book entitled The Turbulent Ocean (referred to later as TTO) was written in 2003.
It provides an account of much of the knowledge that there was then of the processes
leading to turbulence in the ocean, but it was not written as a course that might be
followed and used to introduce students to turbulent flow. Rather, it is a text useful for
those beginning or already involved in research. It might form the basis of a number of
advanced courses about ocean physics, teachers selecting material according to their
needs or specialities.

I was asked to write a shorter book, an introductory course on turbulence in the
ocean. Although believing that the best undergraduate and postgraduate courses are
based and modelled on a teacher’s own experience and enthusiasms, and that to follow
a ‘set text’ may be less enjoyable for students, I became convinced that a simplified
text, more directly usable in teaching students unfamiliar with fluid motion, might be
of value. Turbulence is a subject of which at least a basic understanding is essential
in engineering and in many of the natural sciences, but particularly for students of
oceanography. Moreover, many students, whose main interests are not in oceanography
and who will not later address their talents to the study of the ocean, find interest in the
sea and are motivated by aspects of their studies that are related or have application to
matters of public and international concern, for example those of pollution and climate
change that are at present being addressed by ocean scientists. A study of turbulent
motion set in an oceanographic context can be attractive, satisfying and stimulating.

The purpose of the present book is consequently to provide a text that might be
used in constructing and teaching an introductory course to students with a variety
of academic abilities but who know little of ocean physics or turbulence. Much of
the content has developed from a second-year course on ocean physics given in the
Department of Oceanography at Southampton University, UK, in some 16 hours of

ix



x Preface

lectures over a period of 4 weeks, supplemented by problems and additional reading
undertaken by the students, a course attended by students whose main interests were
in mathematics, physics, geology, biological oceanography or, generally, in marine
science.

As in The Turbulent Ocean, the intricacy of turbulence theory is omitted. I recall,
when an undergraduate, being totally mystified, if not frightened, by introductory
lectures on turbulent motion that dealt with the subject in a largely statistical and
analytical way, giving little or no insight into the dynamical processes of how it works.
Unless students have a relatively high degree of ability in mathematics, the theoretical
background is better faced after the basic concepts and ideas underlying the processes
relating to turbulent motion have been absorbed and understood, and perhaps even
after students have some understanding of the methods used to observe and measure
turbulence. Neither is the numerical modelling of turbulence discussed here. That is
best introduced to students in a separate and probably more mathematically demanding
course once the processes involved in turbulence are firmly understood.

Unlike the earlier text, the material is almost entirely (but not quite!) restricted
to what is well established and known, but I have also tried to explain the present
limits of knowledge. I have taken the opportunity to include information that has been
published since TTO was written, and to draw attention to errors that have come to
my attention (specifically in footnotes 6 and 13 of Chapter 1, and footnote 13 of
Chapter 6). I should be glad to be informed of any further errors found by readers in
either that or this book.

S. A. Thorpe
‘Bodfryn’, Glanrafon, Llangoed, Anglesey LL58 8PH, UK



Notes on the text

The symbol • denotes important points or summary statements.
There are six chapters with substantial cross-referencing between them. The first

is intended as a general introduction, before means of quantifying and measuring
turbulence are introduced in Chapter 2. Chapter 3 deals with the turbulent boundary
layers near the sea surface and seabed. Chapter 4 describes the relatively weak and
patchy turbulent motion that is found in the density-stratified water between these
two boundary layers. Chapter 5 is about turbulent dispersion, whilst Chapter 6 is a
discussion of the present (and rapidly developing) knowledge of the sources and rates
of supply of turbulence energy required to support mixing in the deep ocean.

The illustrations are a very important supplement to the text. It is through pictures
that information is carried most readily, and often in the most pleasurable form, to
the mind and memory of a reader. ‘Cartoons’ (or sketches) conveying new ideas or
concepts, photographs and data presented in graphical form are often an output of
research, to which they provide a useful introduction or overview. The figure captions
add substantial information that is not always included within the text.

Lists of Suggested further reading are provided at the end of each chapter. These
are of literature that students might be expected to peruse, if not read in detail, in
the course of their study of the contents of the chapter, e.g., to appreciate better the
historical derivation of knowledge. Also listed are reference works that will provide
information about basic fluid dynamics or ocean physics, should it be required.

Papers referred to under Further study are guides to encourage more extensive
in-depth study of the material of the chapter, possibly leading to new research. In
many cases another pathway into such further study is through the sources of figures
referred to in the figure captions.

xi



xii Notes on the text

Problems are listed at the end of each chapter and are denoted at a point in the text
where they might be attempted by [Pm.n], where m is a chapter number and n the
problem number within the chapter. Each problem number in this list is followed by
a letter that denotes the problem’s degree of difficulty: E = easy, M = mild, D =
difficult and F = fiendish. The problems allow students to re-discover for themselves
some of the now-accepted relationships, and provide experience in calculation and
problem solving. These problems are essential elements in developing the ideas intro-
duced in the text, and provide much additional information. They should preferably be
read (if not solved) as students or readers advance through the course. The solutions
to the problems are not given in this book but password-protected solutions to the
problems are available online at www.cambridge.org/9780521859486. Quantitatively
correct solutions are less important than the concepts introduced by the problems.

Lists of abbreviations, useful values etc. are provided on pages xv–xx for easy
reference, and a map showing locations of places to which reference is made in the
text is included on page xxii.

Scientific papers and books mentioned in text are all listed in the References,
together with the numbers of pages on which they are mentioned.

The Index provides an entry to subjects that students may wish to locate or pursue,
including ‘dimensional arguments’.
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Chapter 1

Turbulence, heat and waves

1.1 Introduction

Turbulence is the dominant physical process in the transfer of momentum and heat,
and in dispersing solutes and small organic or inorganic particles, in the lakes, reser-
voirs, seas, oceans and fluid mantles of this and other planets. Oceanic turbulence
has properties that are shared by turbulence in other naturally occurring fluids and in
flows generated in civil, hydraulic and chemical engineering installations and in build-
ings. The study of turbulence consequently has applications well beyond the particular
examples in the ocean1 that are selected for description below.

Figure 1.1 shows the sea surface in a wind of about 26 m s−1. It is covered by
waves, many of them breaking and injecting their momentum and bubbles of air
from the overlying atmosphere into the underlying seawater. Immediately below the
surface, and even at great depths, the water is generally in the state of irregular and
variable motion that is referred to as ‘turbulence’, although there is no simple and
unambiguous definition of the term. Turbulence has, however, characteristics that, as
will be explained, can be quantified and which make it of vital importance. Many of
the figures in this book illustrate the nature of turbulent motion, the processes that
drive turbulence, or the measurements that can be made to determine its effects.
•2 Turbulence is generally accepted to be an energetic, rotational and eddying state of
motion that results in the dispersion of material and the transfer of momentum, heat
and solutes at rates far higher than those of molecular processes alone. It disperses,

1 By the ‘ocean’ is meant, here and later, the sum of the major oceans and their connected seas,
including the continental shelf seas and those seas, such as the Mediterranean, Black Sea and
Baltic, connected by straits to the larger ocean basins.

2 The symbol • is used to draw attention to paragraphs of particularly important information or
summaries of the earlier text.

1



2 Turbulence, heat and waves

Figure 1.1. The sea surface in the Bay of Biscay looking upwind in a wind speed of
about 26 m s−1. Breaking is occurring at the crests of the larger waves, separated by
over 100 m, and there are numerous bands of foam aligned in the downwind direction,
as well as evidence of short waves with a typical wavelength of 0.2 m. (Photograph
taken by Mr J. Bryan from RRS Charles Darwin off northwest Spain and reproduced
with his kind permission.)

stresses and strains clusters (or flocs) of sediment or atmospheric dust particles and
living organisms within the ocean, and it stirs, spreads and dilutes the chemicals that
are dissolved in the seawater or released into the ocean from natural and anthropogenic
sources. Perhaps its most important property, and one that is generally used to char-
acterize it, is that by generating relatively large gradients of velocity at small scales,
typically 1 mm to 1 cm, turbulence promotes conditions in which, relatively rapidly,
viscous dissipation transfers the kinetic energy of turbulent motion into heat, a process
of energy transfer and ‘dissipation’.

Since the natural state of the ocean is one of turbulent motion, knowledge of tur-
bulence and its effects is crucial in understanding how the ocean works and in the
construction of numerical models to predict how, in the future, the ocean will adjust as
the forcing by the atmosphere is altered by changes in the world’s climate. Although
estimates of the rate of dissipation of the energy of the tides through turbulence in shal-
low seas were made as early as 1919, direct measurement of turbulence in the ocean
dates back only to the observations of near-bed turbulent stress made in the 1950s and
to studies of the spectra of small-scale motions in the tidal Discovery Passage off the
west coast of Canada in the early 1960s. In spite of the developments of ingenious



1.2 Reynolds’ experiment 3

techniques to measure turbulent motions, the geographical variation of turbulence in
the ocean is still poorly known, its range of variability is often grossly under-sampled
and, in comparison with the atmosphere, there are few sets of data against which to
test those models of the ocean that include representation of its turbulent nature. Much
is still to be discovered and quantified.

This chapter describes some of the ideas and discoveries that form a basis for
understanding of the part played by turbulence in the ocean. Much of this background
is derived from studies of turbulence and heat transfer in laboratory experiments, some
of which were made well before the first measurements of turbulence in the ocean itself.

1.2 Reynolds’ experiment

The scientific study of turbulence did not begin until late in the nineteenth century.
The first substantial step was the publication in 1883 of a paper by Osborne Reynolds.
He described how a smooth flow of water through long circular tubes with diameters
ranging from about 0.6 to 2.5 cm is disrupted and cannot be sustained when the mean
speed of the flow, U, exceeds a value that is related to the tube diameter, d, and to
the viscosity of water. In his laboratory experiments Reynolds introduced a thin line
of dye into the water entering through one end of a horizontal tube from a large
tank of stationary water, dye that made the flow visible (Fig. 1.2). He described his
observations as follows:

When the velocities were sufficiently low, the streak of colour extended in a
beautiful straight line through the tube

but later

As the velocity was increased by small stages, at some point in the tube, always at
a considerable distance from . . . the intake, the colour band would all at once mix
up with the surrounding water, and fill the tube with a mass of coloured water. On
viewing the tube by light of an electric spark, the mass of colour resolved itself
into a mass of more or less distinct curls, showing eddies.

• Reynolds’ remarkable experiments show that the ‘laminar flow’, the smooth flow
through the tube at low flow speeds, breaks down into a random eddying ‘turbu-
lent’ motion at higher speeds when a non-dimensional parameter, now known as the
Reynolds number,

Re = Ud/ν, (1.1)

exceeds a value of about 1.3 × 104.3 Here ν is the kinematic viscosity, which for water
has a value of about 10−6 m2 s−1.

3 The critical value of Re is now known to depend on the level of the background disturbances to
the flow (sometimes described as ‘noise’), particularly near the entry of flow to the tube, the
critical Re consequently ranging from about 1 × 103 for relatively substantial disturbances to
about 4.5 × 104 in very carefully controlled, low-disturbance, tube flows. (See Further study.)



4 Turbulence, heat and waves

(a)

(b)

(c)

Figure 1.2. Reynolds’ experiment, described in his paper published in 1883. Flow
through the tube is from left to right. The shape of the entry to the tube within a large
tank of still water on the left is to ensure a smooth flow. (a) A band of dye passes down
the tube when the flow is relatively slow, or at a low Reynolds number, Re. (b) When
Re > 1.3 × 104, the flow becomes turbulent. As observed by eye, the band of dye is
dispersed across the width of the tube. (c) An image obtained with a very brief electric
spark, showing that the onset of turbulence, and its later form, is associated with eddies
of size comparable to the tube diameter.

This provides the first example of a relationship pertaining to turbulence that can
be determined on dimensional grounds. A condition for a transition to turbulence can
depend only on the independent dimensional quantities that characterize or determine
the state of the flow in the tube. These are its mean velocity, U (with dimensions LT−1),
its density, ρ (dimensions ML−3), the diameter of the tube, d (dimension L), and the
kinematic viscosity, ν (dimensions L2T−1), where L stands for length, T for time and
M for mass. The velocity varies with distance, r, from the axis of the tube but in a way
determined by d and ν, and the pressure gradient along the tube is directly related to
U, ν and ρ, and so is not a quantity independent of the four chosen. The tube walls
are smooth and so do not introduce a further length scale. If also the tube is ‘very
long’, or of very much greater length than either of the two possible length scales,
d and ν/U , and so does not introduce a further relevant length scale, the only non-
dimensional parameter which can characterize whether the flow may become turbulent
is Ud/ν, the Reynolds number, Re. There is no other parameter possible. Although
the value of Re at which a transition from laminar to turbulent flow occurs cannot
be determined from the dimensional argument, it serves to identify in a logical way
the combination of dimensional quantities that characterize the onset of turbulence.
The power of dimensional arguments in characterizing the nature of turbulent flows
is demonstrated later by other examples. (For easy reference and comparison they are
listed together under ‘dimensional arguments’ in the index.)
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Some of the eddies in the turbulent flow in Reynolds’ experiment are of size compa-
rable to the tube radius, but many are smaller, smaller therefore than the distance (about
the radius of the tube) over which the mean flow itself varies. As well as dispersing
dye, the eddies carry fluid and momentum from the tube walls, where the presence
of the boundaries and associated viscosity effects are important constraints, into the
interior of the tube.

Reynolds’ experiment underpins many of the concepts that we now have of tur-
bulence. It shows that turbulence may occur as a transition from one state of flow
to another: even the way in which the mean (time-averaged) flow speed varies with
radius in the tube is changed at the onset of turbulence. Turbulence involves eddying
motions, some of which are small relative to the characteristic length scale of the flow,
namely the tube diameter, d, in Reynolds’ experiments. It disperses dissolved matter
in an irreversible way – the mixed dye cannot be unmixed [P1.1].
• An irregular state of fluid motion, referred to as turbulence, occurs when a critical
value of the parameter Re, characterizing the flow, is exceeded, replacing the smooth
laminar flow found at lower values of Re.

The precise value of Re at which turbulence sets in depends on the particular geom-
etry of the flow and the nature of disturbances to which it is subjected. Geophysical
flows in which a value of Re characterizing the flow exceeds about 104 are gener-
ally found to be turbulent unless affected by other factors (e.g., density stratification,
described in Section 1.7) that suppress or delay the onset of turbulence until higher
values of Re are reached. In the ocean, the values of the speed U and length d that
appear in Re (1.1) are usually taken to be those characterizing the flow, for example
the mean speed of the local flow and water depth (or, in mid-water, a change in mean
speed over a vertical distance, d). The characteristic Re commonly exceeds 104 in the
ocean [P1.2].

1.3 Joule’s experiment

Heat is a form of energy contained at a molecular level within a fluid, and temperature
is a measure of heat content. Heat is transferred (as a heat flux) by turbulent motion
in the ocean, and turbulent energy is largely dissipated by viscosity into heat. The
density of seawater depends on temperature (and usually to a lesser extent on salin-
ity and pressure – see Section 1.7.1), and the variation of density with depth in the
ocean, normally an increase in density as depth increases, strongly affects or regulates
the processes leading to turbulence, as we shall see later. Heat and temperature4 are
consequently important factors in oceanic turbulence.5

4 The temperature is measured in degrees Kelvin, K, or ◦C. Both units are used, selection being
made on the basis of which appears most appropriate.

5 Although variations in heat content or a flux of heat can, through the production of buoyancy
forces (Section 1.7.2), lead to convective motions and therefore kinetic energy, the heat energy at
molecular level is not available for transfer back to kinetic energy. This is why, although the
geothermal energy flux into the ocean may exceed, for example, the flux of tidal energy, it is not as
effective in producing mixing, as is explained further in Section 6.9.
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• The relation between heat and temperature can be expressed in terms of a change,
	H , in the heat per unit mass (measured in J kg−1) over a period of time and the
corresponding change, 	T , in temperature (in ◦C or K) by

	H = cp 	T, (1.2)

where cp is the specific heat at constant pressure which, for seawater, has a value now
known to be about 3.99 × 103 J kg−1 K−1.6

The unit in which energy is measured is named after J. P. Joule.7 Joule’s most
celebrated experiment, an account of which was published in 1850, is that in which
he found the relation between changes of energy in its most commonly known, well-
described and easily quantified forms (potential or kinetic energy) and the temperature
change resulting from the dissipation of that energy. The experiment contains at its
heart the substantial effects of turbulent motion, in this case turbulence artificially
induced by rotating paddles.

Joule’s apparatus is sketched in Fig. 1.3 and described in the caption. The essence
of the experiment is that the falling weights lose a measured amount of potential
energy in driving paddles, which churn a fluid (Joule used water and mercury) in the
cylinder, leading to its heating. The lost potential energy can be related to gains in two
different forms of energy, that of heat and kinetic energy. In the experiment the weights
descended through a distance of 1.6 m, reaching a speed of about 6.1 cm s−1. They were
repeatedly lifted and, over a period of some 35 min in which the weights descended
20 times, the temperature of the water in the cylinder increased by about 0.31 ◦C. This
temperature change was carefully measured, the accuracy attained being about 3 mK.
(Temperature is now routinely measured at sea to an accuracy of 1 mK and often, with
specially designed equipment, with a resolution of 0.1 mK or better, e.g., in studies
of mixing in boundary layers where the temperature is relatively uniform.) Joule took
great care to minimize heat loss during the period of the experiment by insulating the
cylinder, and a wooden screen was erected to avoid effects of radiant heat from the
observer. Joule calculated the total potential energy lost by the weights in descending,
and, by subtracting their kinetic energy at the end of their descent and accounting for
a small unavoidable heat loss to and from the cylinder during the experiment, was
able to relate the mechanical energy imparted to the fluid per unit volume through the

6 The specific heat varies with temperature, salinity and pressure. For more precise values of cp see
Gill (1982, Section A3.4 and Table A3.7). Note that the heat per unit volume is ρ 	H = ρcp 	T ,
where ρ is the density. Equation (1.2) is given incorrectly (ρ should not be included) in TTO
(Thorpe, 2005).

7 James Prescott Joule (1818–1889) was given private lessons in chemistry in his home city of
Manchester by John Dalton (1766–1844), now best known as the discoverer of the law of partial
pressures of gases. As a young man, Joule observed the aurora borealis and sounded the depth of
Lake Windermere in northwest England with his elder brother, Benjamin. The Joule family owned
and managed a brewery but to what extent James Joule was actively engaged in its running is
unclear; Osborne Reynolds (see Section 1.2), a friend and biographer, asserts that Joule had little
to do with the brewery, although he did do experiments within its premises as part of an extensive
study of the relationship between different forms of energy. Cardwell’s (1989) biography of Joule
provides informative details of his early years and of his contacts with other scientists of the time,
including Michael Faraday, who communicated Joule’s paper describing his experiments to the
Royal Society, which published his results.
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Figure 1.3. A side view of Joule’s experiment, as described in his 1850 paper. The
insulated cylinder (shown also in plan view) is filled with water or mercury and stirred
with paddles driven by falling weights through the linkage pulley system. By
calculating the energy lost by the weights, Joule was able to estimate the energy
dissipated by stirring the fluid within the cylinder. Joule carefully measured the rise of
the temperature of the fluid, and was then able to determine the relationship between
the mechanical energy dissipated and the gain in heat energy of the fluid, proportional
to its temperature rise, the constant of proportionality giving the specific heat.

paddles (equal to its change in heat energy) to its rise in temperature and so, from
(1.2), to calculate cp.

This experiment was later refined to obtain greater accuracy, but, as it is, it con-
tains a major subtlety that involves the motion of the fluid within the cylinder. As
Fig. 1.3 shows, there are baffles fixed to the inside of the cylinder. They are important
for two reasons. The first is that without them a circulatory flow would be set up,
which, containing kinetic energy, would have to be accounted for in the energy bal-
ance. (Alternatively, Joule could have waited until the circulation had died out before
measuring the temperature, but that would have required a means to ensure that there
was no substantial residual motion and would have taken time, during which heat
would have been lost from the cylinder to the air.) The second reason is perhaps more
important. The rotating paddles drive fluid past the stationary fixed baffles, and this
promotes a transfer of kinetic energy from the mean flow to irregular and interacting
small-scale eddies, characteristic of turbulence, that are shed by flow separation from
the edges of the baffles and paddles. These eddies or ‘turbulence’ enhance the shear
within the fluid and greatly increase the rate at which molecular viscosity dissipates
the kinetic energy imparted to the fluid, transferring mechanical energy into heat much
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more rapidly than can a mean circulation gradually spun down through viscous drag
at the cylinder walls. The potential energy of the falling weights that is not transferred
to their kinetic energy consequently passes into turbulent energy that, in dissipating
through viscosity, results in heating.
• The important factor is that turbulence transfers the energy involved in motion – the
kinetic energy – to heat.

The heating caused by turbulent dissipation in the ocean turns out to be generally
insignificant (e.g., see P1.6, P2.4 and P6.2), but the energy lost in turbulent motion is
very important in the budget of the ocean’s energy, and the effect of turbulent motion
in mixing the ocean is a vital element in ocean circulation and in climate change.

1.4 The surf zone: waves and turbulence

The surf zone on a gently shelving beach provides an example of a turbulent region
of the ocean that is familiar to many, and one that has some properties that relate to,
and some that contrast with, those of Reynolds’ experiment. It is also a region of the
ocean in which turbulence is most energetic, and one in which (as in Reynolds’ and
Joule’s experiments) the principal source of turbulent energy – in this case waves –
can be identified. It provides an opportunity to introduce several ideas about energy,
dispersion and structure relating to turbulent motion.

Figure 1.4 shows the water surface within a surf zone, the shallow and gradually
shoaling region at the edge of the sea. It is partly covered by floating bubbles of foam
that have been produced by waves as they approach the beach and break, carrying air
into the water and producing clouds of subsurface bubbles. The bubbles rise buoyantly,
some reaching the surface either to burst, producing tiny droplets in the air, or to
float, contributing to the visible foam layer. A few bubbles may completely dissolve
before reaching the surface, transporting all their component atmospheric gases into the
seawater. The breaking waves also generate motions that disperse both the subsurface
bubble clouds and the floating foam. In a casual viewing, the foam layer appears
random, without any structure, rather like Reynolds’ experiment when viewed without
the advantage of the instantaneous spark image to make eddies visible. On more careful
inspection some larger, repetitive and regular features with coherent structures can,
however, be seen in a foam layer within the surf zone, notably bands or filaments and
near-circular holes. How these are produced is described later.

Several distinct ‘processes’ are associated with the waves. In deep water (before
waves break at the edge of the surf zone) the wave-induced motions are relatively
regular, benign and, except in high winds when wave breaking becomes frequent,
quiescent in comparison with the violent motion within the surf zone. The deep-water
waves cause water particles to move in nearly circular orbits. (It may appear at first
sight that these motions in the water column beneath surface waves in deep water are
like eddies in a turbulent flow, and will result in the overturning and mixing of the
water. This is not the case, as explained in Fig. 1.5(a).)
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Figure 1.4. Plunging breakers, and foam within the surf zone. The plunging
breakers are visible at the outer edge of the surf zone. Nearer shore, these become
bores (or hydraulic jumps, abrupt changes in water level) advancing towards shore and
producing a surface mat of white foam that is broken up by motions within the
underlying water.

The waves also produce a mean movement of water called ‘Stokes drift’ in the
direction of wave propagation. The drift at the sea surface is typically about 2% of the
wind speed and much less than the speed of wave propagation, and it decreases with
depth. It carries surface or near-surface floating particles towards shore. Although
at this stage the waves contribute very little to the spreading or dispersion of such
particles, because of the Stokes drift the particle paths are not exactly circles. This acts
like a mean shear, slowly tilting and stretching fluid columns as shown in Fig. 1.5(b).
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Figure 1.5. A sketch showing motion induced by non-breaking surface gravity
waves. (a) Top – the surface of waves propagating to the right at increasing times, 1–4,
and, below, the corresponding approximately circular motions of particles at two
depths under waves in deep water. For clarity the size of the orbital motions is
exaggerated. The radius of the particle orbits decreases approximately as exp(−kz),
where z is their mean depth below the level of the mean water surface and
k = 2π/wavelength is the wavenumber of the waves. Columns of water joining the
particles in the two orbits at times 1–4 are shown. These do not overturn, but are
periodically slightly stretched, tilted and thinned. In reality, the orbits of particles at the
two levels are not exactly closed circles, however, but drift slowly in the direction of
the waves as sketched in (b). The Stokes drift decreases with depth below the surface.
The stretching of an initially vertical column of water particles (stippled) by the drift is
shown as three successive wave crests pass by. The Stokes drift at depth z is
approximately a2kσ exp(−2kz), provided that the amplitude of the waves, a (half their
height, i.e., half the crest-to-trough distance), is small (so that ak � 1), where their
frequency is σ , equal to 2π/(wave period).
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That deep-water waves impart a mean drift, the Stokes drift, to the water implies
that they carry momentum (or at least a form referred to as pseudo-momentum). The
flux of momentum (sometimes called the wave radiation stress) carried by waves
entering the surf zone leads to a rise in water level at the beach (typically only a few
centimetres in height and hardly noticeable); the resulting pressure force balances the
waves’ momentum flux. When waves enter the surf zone from a direction that is not
normal to the beach, their momentum flux drives along-shore currents that are partly
balanced by frictional drag forces on the seabed. The movement of water into the surf
zone and instability of the along-shore drift currents sometimes leads to localized and
dangerous rip-currents returning water – and carrying swimmers unfortunate enough
to be caught in the currents – from the surf zone into the deeper water beyond.

The waves approaching the beach also carry energy: there is a shoreward flux of
energy maintaining the continual turbulent motion that, like the motion within Joule’s
cylinder, leads to a relatively rapid dissipation of energy. [P1.3] When the waves break
at the outer edge of the surf zone, some of their energy is lost, and the waves change from
having a rather smooth and almost sinusoidal shape outside the surf zone to become
advancing walls of foaming water, or hydraulic jumps. (An example of a steep, but
stationary, hydraulic jump is given in Fig. 6.5(b) later.) Much of the energy lost by the
waves in breaking contributes to the kinetic energy of the dispersive turbulent motions,
but some of their energy provides the potential and surface energy of bubbles within
the bubble clouds and foam.8 The water in the overturning and plunging breakers at the
edge of the surf zone may not be turbulent or generate turbulence until the falling jet of
water from the wave crest impacts with the water ahead of the breaking wave, locally
creating high shear and producing bubbles. The process of trapping air within the
overturn, and of carrying the air into the water, provides an example of entrainment or
engulfment, characteristic of the way in which turbulent motions spread as described
in Section 1.5.2.

As in Reynolds’ experiment, there is a transition from a relatively smooth flow of
water, that outside the surf zone, to one that is turbulent within it. In this case turbulence
at the outer edge of the zone does not begin at a critical value of a characteristic
Reynolds number, Re, but is initiated by wave breaking, a transition that is determined
by parameters of the incident wave field and the slope and nature of the seabed.
Within the surf zone, turbulence is partly sustained by the hydraulic jumps. There is a
decreasing shoreward flux of wave energy (i.e., a divergence of the energy flux towards
shore).
• The important thing of note here is that breaking waves generate turbulence. We
shall find that there are types of waves other than those at the sea surface, which lead
to turbulence in the ocean.

8 In deep water, the efficiency of a plunging breaker, namely the energy lost divided by the original
wave energy, can be as large as 0.25 (i.e., through breaking, a wave may lose 25% of the energy it
carries). Since – as mentioned in P1.3 – wave energy is proportional to the square of the wave
amplitude, the visible effect of breaking on the form of a wave is less readily apparent than is the
production of foam. An efficiency factor of 0.1 is more typical of a spilling breaker. As much as
40% of the energy lost by a wave in breaking may go into the production of bubbles rather than
directly into turbulence.
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As well as being produced by wave breaking, turbulence is generated in the surf
zone by the rapid flows periodically induced by the waves over the underlying beach
sediment,9 a process of generation like that caused by flow past the immobile tube
walls in Reynolds’ experiment. The image of the water surface (Fig. 1.4) provides no
immediate indication of this process or that of the vertical dispersion of subsurface
bubbles. The floating foam does, however, indicate the areas where clouds of bubbles
produced by breakers reach the water surface and how, once at the surface, the floating
bubbles are moved about by the variable currents caused by the breaking waves, by
the water motions induced by the clouds of bubbles themselves in rising to the surface
and by the rapid surging wave-induced flows over the seabed. These flows over the
seabed produce ‘boils’, eddies rising to and visible on the surface, much as they are
seen in rapidly flowing rivers. At a larger scale, boils are found in strong tidal flows in
shallow seas, as illustrated in Fig. 1.6. The floating foam in the surf zone is affected by
these three-dimensional motions, but its dispersion and spread, confined to the water
surface, is (unlike the dye in Reynolds’ experiment) primarily two-dimensional. [P1.4]
• Turbulent dispersion consequently depends on the nature of the dispersant, e.g.,
whether it floats, sinks or is, like a dye, soluble in water. This is discussed further in
Chapter 5.

1.5 The nature of turbulent flow

In this section we describe some of the processes involved in turbulent motion.

1.5.1 Stirring + diffusion = mixing

In the 1940s, Eckart drew attention to two distinct mechanisms by which turbulence
operates in promoting mixing and dispersion. The first is one of stirring. Turbulent
eddies stretch fluid elements to produce narrow ‘streaky’ or ‘filamentary’ distributions
of water properties, like those apparent when cream is stirred in a cup of coffee or the
‘curls’ observed by Reynolds (Fig. 1.1(c)). Welander illustrates the process graphically,
as shown in Fig. 1.7. Particles of fluid, initially close together, become separated or
dispersed by the turbulence; the stirring extends the surfaces of contact between fluid
volumes or, in the case of the figure, the length of the lines between the black and white
areas, increasing the area across which diffusive transfers of fluid properties such as
temperature, or dissolved dye, may occur. (In looking at the figure or at eddies on the
surface of a cup of coffee, remember, however, that small-scale turbulent motions in
the sea are commonly three-dimensional, and the eddies in the body of a fluid should
not be thought of as ‘flat’.)

But the same process of stirring enhances the gradients, filaments becoming nar-
rower and interfaces between marked and unmarked fluid becoming sharper. This

9 The rate of production of turbulence by flows over solid boundaries is discussed further in Sections
2.5.3 and 6.7.
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Figure 1.7. The distortion of a regular checkerboard pattern by an eddying motion.
Successive stages are shown, (a)–(e), and in each the locations of points A–E carried
with the flow are marked to indicate their dispersion by the eddying flow field. The
sketch correctly conveys the notion of a spreading patch, but is slightly incorrect
because area is not conserved: e.g., the black region on the left in (e) has an area
greater than the corresponding area in (a). This is impossible in a flow that is strictly
two-dimensional. (After Welander, 1955.)

eventually leads to the second process that operates in turbulent flows, one that is
effective in transporting solutes or water properties between fluid particles, rather
than simply moving particles as does stirring. In this process, molecular diffusion (or,
for heat, thermal conduction) causes transfers of fluid properties that rapidly reduce
both the gradients and the extremes of temperature or solute concentration. (The most
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intensely coloured dye patches become paler after this mixing process.) The flux of
heat by thermal conduction, for example, in a direction denoted by z (i.e., the flux of
heat per unit area of a surface normal to z, with units W m−2) is given by

F = −ρcpκT dT/dz, (1.3)

where ρ is the density of the seawater (kg m−3) and κT is the molecular conductivity
of heat (about 1.4 × 10−7 m2 s−1 in seawater). The sign is negative because the flux is
in a direction opposite to that in which the temperature increases. The flux increases
in proportion to the temperature gradient, dT/dz; processes that enhance the gradient
also increase the magnitude of the flux.
• The action of turbulence is consequently one of dispersion of material particles
by stirring whilst homogenizing fluid properties by diffusion. Together the processes
lead to mixing. This is irreversible: the dye mixed in the transition from laminar to
turbulent flow in Reynolds’ experiment cannot be unmixed without the operation of
an additional and artificial process, for example a machine that removes the dye from
the water and reintroduces it at the same location in a re-concentrated form.

The terms diffusion and dispersion are commonly interchanged and confused. Dif-
fusion, as used here, involves the transfer of fluid properties at molecular scale and
should not be applied to solid particles that retain their properties as they are moved
by the surrounding turbulent motion. Dispersion involves spreading, the moving apart
of solid particles and particles of fluid – and their contents, which might include heat
or dye – by the turbulent motion.

1.5.2 Entrainment and detrainment

Another important process is the enlargement of a region of turbulence by the entrain-
ment of fluid from beyond the original turbulent region. This process is seen in the
broadening of a plume of smoke as it rises from a chimney in calm weather (Fig. 1.8);
turbulent eddies at its edge engulf the surrounding air. J. S. Turner (to whose work
reference will be made later) describes this ‘entrainment’ as follows: there is ‘a sharp
boundary separating nearly uniform turbulent buoyant fluid from the surroundings.
This boundary is indented by large eddies and the mixing process takes place in two
stages, the engulfment of external fluid by the large eddies, followed by a rapid smaller
scale mixing across the central core’ of the rising plume. There is no formal, com-
monly accepted definition of the term engulfment, but here it involves the movement
of fluid in the plume around the surrounding or ambient fluid, in a manner similar to
the way in which a plunging breaker at the edge of a surf zone (Section 1.4) captures
air and carries it into the water.

A further process by which a region of turbulence may spread is that of ‘detrain-
ment’. In this, pairs of relatively large, coherent vortices escape a turbulent region,
driven by their mutual interaction,10 carrying small-scale turbulent fluid within their

10 As explained, for example, by Batchelor (1967, section 7.3) in his description of the motion of
pairs of vortices through the surrounding fluid.
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Figure 1.8. A plume rising over the nuclear power plant at Gosgen, Switzerland, in
the Swiss Foothills. The plume rises, eddies at its edge entraining surrounding air, until
it meets and spreads on an inversion (a stably stratified layer). (Photograph kindly
provided by Paul E. Oswald.)

circulating cores into the ambient, non-turbulent water. The self-induced motion of
pairs of vortices through their surroundings is illustrated in Fig. 1.9. The boils described
in Fig. 1.6 may be viewed as the consequence of the movement of eddies or vortices
from a turbulent boundary layer close to the seabed upwards to the water surface,
carrying both the fluid – which may contain vigorous (although perhaps decaying)
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(a)

(c)(b)
(i) (ii)

Figure 1.9. The motion of a pair of vortices (or eddies in a turbulent flow) under their
mutual interaction. (a) Flow around a pair of stationary equal point vortices of opposite
sign. If, instead of the vortices being stationary, there is no average flow in the fluid
around them (or, more precisely, if the fluid at infinity is at rest), the vortices will move
vertically, as shown in part b(i), carrying fluid in the stippled volume with them. (In a
confined region the fluid beyond the region of influence of the vortices must, on
average, move slightly downwards to replace the fluid carried upwards by the vortices,
just as air between rising convective plumes forming cumulus clouds descends
between them.) (b) The (dashed) paths of vortices of opposite sign but (i) of equal
vortex strength, as in (a), and (ii) of unequal strength. In three dimensions, a smoke
ring provides an example of self-induced vortex motion and the transport of material
(smoke) through surrounding air. (The legs of the hairpin vortices illustrated in
Fig. 3.15 may interact to drive one another away from the underlying plane boundary,
although in this case the virtual images of the vortices in the boundary – required to
ensure zero flow through the boundary – need also to be taken into account.) (c) The
motion induced by a pair of equal vortices of the same sign. In practice, such vortices
may merge or ‘pair’, leading to a single larger vortex, a process of energy transfer to a
larger scale of motion.



18 Turbulence, heat and waves

small-scale turbulent motions – and sediment with them. This process is described
further in Section 3.4.4.

1.6 Shear, convergence and strain

Both shear and convergence (or divergence) are inherent in the three-dimensional
eddying motion of a turbulent flow. Shear is the spatial gradient of the speed of a
current in a direction normal to the direction in which it flows. Shear is represented
in Fig. 1.10(a) by a ‘vertical shear’, du/dz, where u is the horizontal current and z is
the vertical, which results in an increase of the distance between particles separated
by distances (z) normal to the flow direction (for example, of material fluid elements
at points A and D in Fig. 1.10(a)). If the current, u, is steady, the distance between
A and D increases in proportion to time, t. As well as stretching the area, ABCD,
shear results in a thinning process: the thickness of marked patches of water (i.e., d)
decreases in proportion to t−1 (keeping the area ABCD constant). These effects are
evident in the sketch (Fig. 1.5(b)) of a column of water being stretched by Stokes drift,
and are also present in the eddying motion sketched in Fig. 1.7, where points A and B
get further apart but the width of the marked region becomes less, and points C and D
get (temporarily) closer.

Shear can result in the production of vertical gradients of water properties of increas-
ing magnitude when initially there is only a horizontal gradient. For example, if, in
Fig. 1.10(a), the temperature is less on (and to the left of) the line AD than it is on
(and to the right of) the line BC and if, during the time t, the temperatures remain
unchanged, the effect of the shear is to produce a vertical temperature gradient of
increasing magnitude over a surface, represented by the length of the lines AD and
BC, the area of which also increases with time. The magnitude of the molecular flux
of heat given by (1.3) will therefore increase with time. Moreover, if the parallelogram
ABCD is a region of anomalous properties, for example a patch of plankton that is
passively advected by the flow, the thickness of the patch will decrease with time,
eventually resulting in a ‘thin layer’.

A simple local, perhaps transient, region of convergent and divergent fields of
motion is sometimes referred to as a strain,11 and leads to similar effects of stretching
and thinning. In the steady motion field represented in Fig. 1.10(b) by u = qx and
v = −qy, the x-length of a patch increases as eqt and, to conserve the area of the patch,
the y-scale decreases as e−qt. [P1.5] The overall effect of stretching and thinning is like
that of shear (Fig. 1.10(a)), but the thinning is exponential in t rather than proportional
to t−1, and therefore may develop more rapidly.
• Processes of shear and strain are inherent in turbulent stirring, acting to increase
interfacial areas and enhance the concentration gradients of advected solutes or fluid
properties across them, thereby increasing the rates of molecular transfer.

11 Strain is also used as a measure of the change in density gradient, see (4.15).



1.7 Ocean stratification and buoyancy 19

t = 0 A

D

A B

d

t = t

z

u

t = 0
t = t

y

x

(a)

(b)

D C
C

B

Figure 1.10. The effects of (a) shear and (b) convergence. (a) A vertical shear in
which the speed of the horizontal flow varies with depth. Such shear flows are
commonly encountered in the ocean, although the diagram illustrates an idealization of
what might be a transient, but coherent, shear within a turbulent region. As time, t,
increases, A and D become further apart; the horizontal width of the initially square
patch (the distance A–B) remains unchanged, but the vertical thickness, d, becomes
smaller. If AD and BC are isothermal surfaces (viewed ‘end-on’), the gradient of
temperature between these two surfaces increases with time. (b) The distortion of a
square at time t = 0 by convergent–divergent flow, that reduces its height and
increases its width. Gradients in the y direction are increased by the flow field, whilst
those in the x direction are reduced.

1.7 Ocean stratification and buoyancy

1.7.1 Density

The mean depth of the ocean is 3795 m and there are differences in current speed
typically exceeding 0.1 m s−1 through the ocean depth. The characteristic Reynolds
number, Re, of the ocean consequently appears to be of order 4 × 108, far exceeding
the critical Reynolds number of about 104 defined in Section 1.2. If it is valid to
interpolate from Reynolds’ experiment to the scale of the ocean, the ocean should
therefore be turbulent with large overturning eddies (like those observed by Reynolds
to be of size comparable to the tube radius) mixing through much of the water column.
(See also P1.2.) Whilst the ocean is indeed turbulent, turbulent motions are patchy
or ‘intermittent’ in the body of the ocean and (except in shallow water and in deep
convection) eddies do not overturn on a scale comparable to the water depth, their
maximum vertical scale being typically 1–100 m.
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A factor not included in Reynolds’ experiment has a vital role in determining the
nature of turbulence in much of the ocean. This is the density variation or stratification
resulting largely from atmospheric heating and the distribution of heat by the ocean’s
circulation. The introduction of stratification takes us briefly away from the subject of
turbulence, but is essential because of the profound effects of density and buoyancy
on ocean turbulence.

The mean density of the ocean increases with depth: it is ‘stratified’ in density.12

The density of seawater depends on temperature, salinity and pressure through a rela-
tion known as the equation of state. The majority of liquids expand when heated
and contract when cooled. Their density consequently increases as their temperature
decreases. Freshwater is a well-known exception between its freezing point at 0 ◦C
and a temperature of about 4 ◦C, becoming denser as temperature increases.

This freshwater behaviour is modified by the presence of the salts dissolved in
seawater and quantified as ‘salinity’. The main components contributing to salinity in
the ocean are chlorine (55.0%), sodium (30.6%), sulphate (7.7%), magnesium (3.7%),
calcium (1.2%) and potassium (1.1%). (The proportions, given as percentages, are
nearly constant.) The unit of salinity is the practical salinity unit or psu, approximately
equal to 1000 times the mass of dissolved salts per unit mass of seawater. An increase
in salinity increases density because of the increase in the mass of salts, and may be
a very substantial component of density in some circumstances. The freezing point
of seawater differs from that of freshwater, and decreases as salinity increases. The
density of seawater with salinity greater than about 24.7 psu (and most of the ocean has
a higher salinity, typically about 35 psu) behaves like that of most liquids, increasing
as temperature decreases until freezing occurs (at a temperature of −1.92 ◦C for
seawater with a salinity of 35 psu at atmospheric pressure) as shown in Fig. 1.11.
As a consequence, the dynamical properties of the ocean may differ from those of
freshwater lakes at temperatures near 0 ◦C. (See, for example, P3.8.)

Although density depends in a complex and non-linear way on temperature, salinity
and pressure, for small variations of temperature, T, and salinity, S, from reference
values where the density is ρ0, the equation of state for density, ρ, may be approximated
by

ρ = ρ0(1 − αT + βS). (1.4)

The coefficients, α and β, relate to the expansion of seawater and are specified at the
reference values of T and S, but depend on depth. Seawater near the sea surface with
a salinity of 35 psu has a thermal expansion coefficient, α (the increase in volume per
unit volume per degree Kelvin), of 5.26 × 10−5 K−1 at 0 ◦C, 7.81 × 10−5 K−1 at 2 ◦C,
1.67 × 10−4 at 10 ◦C and 2.97 × 10−4 K−1 at 25 ◦C. The value of α increases with pres-
sure or depth, at 1000 m being equal to 1.84 × 10−4 K−1 in water at 10 ◦C and 35 psu. At

12 Although layers of relatively uniform density do occur, ‘stratification’ here refers to the general
increase of density downwards through the water column (although with relatively very much
weaker horizontal changes) and not necessarily, as in geology, to a layered structure with abrupt
discontinuities of properties.
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Figure 1.11. The variation of density with temperature for various values of the
salinity but at atmospheric pressure. The curve on the left shows the temperature at
which freezing occurs. The density of freshwater (salinity = 0 psu) is greatest at about
4 ◦C, but, in seawater of salinity typically ranging from 32 psu to 38 psu, the maximum
density is reached at the freezing point.

a depth of 4000 m, with a temperature of 2 ◦C and salinity of 35 psu, fairly typical of the
deep ocean bed, α is equal to 1.71 × 10−4 K−1. Near the sea surface, when the salinity
is about 35 psu, the coefficient for the contribution of salinity to density, β (or the expan-
sion coefficient for salinity), is about 7.9 × 10−4 psu−1 at 0 ◦C and 7.6 × 10−4 psu−1 at
10 ◦C.13 An increase in temperature of 	T = 0.1 K in an upper layer of the ocean of
thickness h = 1000 m at a temperature of 10 ◦C would result in expansion causing a
‘steric’ rise in sea level of αh 	T , or about 1.76 × 10−4 × 0.1 × 1000 m = 1.76 cm.14

Changes in sea level are a very important consequence of changing climate.
Temperature, salinity and pressure are measured routinely from research vessels

to the full depth of the ocean basins using lowered conductivity–temperature–depth
(CTD) probes, salinity being derived from the conductivity with a temperature cor-
rection. Rather than the density, ρ, measured in kg m−3, values of a quantity referred
to as sigma-T (σT ) expressed without dimensions and equal to (ρ − 1000) are usually

13 Other values of α and β are tabulated by Gill (1982; see his table A3.1). Values of β given in TTO
(Thorpe, 2005; p. 7) are too high by factors of about 103.

14 An average value of α between the surface and 1000-m values has been used in this estimate.
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quoted.15 The density of seawater in the upper 100 m of the ocean is typically
1.028 × 103 kg m−3 or σT = 28.

1.7.2 Buoyancy, and the buoyancy frequency, N

Archimedes showed that the upthrust on a body submerged in water is equal to the
weight of water it displaces. A body of volume V and density ρ has a weight gρV ,
where g is the downward acceleration due to gravity, about 9.81 m s−2. In water of
density ρ0 the body displaces a mass ρ0V or a weight of water gρ0V . The net (upward)
buoyancy force on the submerged body is g(ρ0 − ρ)V ; therefore, using Newton’s
second law (force equals mass times acceleration), its vertical acceleration from rest
is g(ρ0 − ρ)/ρ. This is often referred to as the reduced acceleration due to gravity.

The body referred to may itself be a volume of water of density ρ surrounded by
seawater of density ρ0.16 The buoyancy of such a volume is defined as the acceleration,
b = g(ρ0 − ρ)/ρ0, which is positive (i.e., upwards) if the density of the volume is less
than that of its surroundings.

If a small volume of water of density ρ is displaced upwards by a small distance, η,
from its initial position in a uniform density gradient dρ/dz, with the z coordinate in the
vertically upward direction, the density difference between it and its new surroundings
is −η dρ/dz. If it is then released, its upward acceleration will be (gη/ρ)dρ/dz. If
dρ/dz > 0 (density increasing upwards), the net force is upwards and the acceleration
is positive, so the volume of water will move away from its initial position.
• The stratification is then ‘unstable’ or in a state of static instability in which (ignoring
effects of viscosity and the conduction of the water properties, e.g., heat and salinity,
that contribute to density) small disturbances grow and convection occurs. If, however,
dρ/dz < 0 (density increasing with depth, as is usual in the ocean), the motion follow-
ing an upward (or downward) displacement of a small volume of fluid is oscillatory
with simple harmonic motion of frequency N = [−(g/ρ)dρ/dz]1/2. The water is then
said to be ‘stable’ or stably stratified (or, more precisely – ignoring processes such as
viscosity that lead to damping – ‘neutrally stable’). The value N characterizes the local
density stratification.

A further dimensional scale, one of length, [(1/ρ)dρ/dz]−1, can be defined to
characterize the density variation. This is known as the ‘scale height’ and is typically
40 times the ocean depth. The scale height is relatively large in the ocean,17 the density

15 The potential temperature, usually denoted by θ (with corresponding potential density, σθ ), is the
temperature fluid would have if moved adiabatically (with no exchange of heat with its
surroundings) to a given (stated) reference level. Figure 4.14, for example, shows
σθ = (potential density (kg m−3) − 1000), referenced to 2000 m and zonally (i.e., east–west)
averaged across the Atlantic.

16 When in motion, a submerged body will experience other forces, including drag, viscosity and lift
forces. A sphere that is small (small enough that a Reynolds number based on its speed and
diameter and on kinematic viscosity is much less than unity) and of density, ρ1, greater than that of
the surrounding water, ρ0, will fall at a uniform speed, [2a2/(9ν)]g(ρ1 − ρ0)/ρ0, when the viscous
drag forces and the upward buoyancy force balance its weight.

17 Relative to its thickness, the scale height of the atmosphere, about 7.4 km, is not large, and there
care needs to be taken in formulating equations of large-scale motions – see Gill (1982).
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varying by only a small amount over the ocean depth relative to the mean density, so
that, to a good approximation, N can be written

N = [−(g/ρ0)dρ/dz]1/2, (1.5)

where ρ0 is a mean or characteristic density.
• The frequency, N, is called the buoyancy frequency and characterizes the highest
frequency of the small-amplitude free oscillations that occur naturally following a dis-
turbance in a stably stratified fluid (i.e., with dρ/dz < 0). The maximum value of N in
a given region provides an upper limit to the frequency of oscillations known as inter-
nal waves and, in principle, provides a means of discriminating between waves and
turbulence: fluctuations observed in a frame of reference following the mean motion
which have a frequency greater than N cannot be internal waves and are usually asso-
ciated with turbulence. (For example, see Fig. 2.6 later. Internal waves are described
in Section 1.8.1.)

1.7.3 The oceanic density profile

The variation with depth of a quantity such as density or buoyancy frequency is com-
monly referred to as a ‘profile’ (see Fig. 1.12). The term ‘velocity profile’, for example,
usually applies to the variation of the mean horizontal water speed with depth.

The region immediately below the sea surface is often of almost uniform density,
typically to a depth of about 50 m, but with diurnal, seasonal and latitudinal variations
in both density and depth (e.g., as illustrated later in Figs. 3.8–3.10). In regions of
sufficiently large water depth, this ‘mixed layer’18 is stirred, and turbulence within it
is generated and sustained, mainly by the processes arising from air–sea interaction
described in Chapter 3. Even though it is actively mixed, small variations in temperature
are usually detectable within the mixed layer. Diurnal changes in heating or cooling at
the sea surface lead to temperature changes that are transmitted by turbulence through
the layer; an eddying turbulent field of temperature with variations of typically 1 mK
is commonly found. Although the temperature variations are small, they may exhibit
coherent patterns that provide information about the structure of the turbulent motion
within the mixed layer. The turbulence processes at the sea surface and within the mixed
layer (a ‘buffer zone’ between the deep ocean and the atmosphere) are of considerable
importance in transferring heat and momentum from the atmosphere into the body of
the ocean. In some parts of the shallow shelf seas, the turbulence caused by the tidal
flow over the seabed may have a substantial effect, mixing the entire water column,
including water near the surface, to a nearly uniform density with no distinguishable
surface mixed layer with properties different from those of the deeper water. (Section
3.4.5).

18 The term ‘mixed layer’ is ambiguous. The layer is mixed by the action of the atmosphere, but it
should not be thought of as being mixed in the sense of being uniform in its properties. There are
almost always variations in temperature within the layer and these, although only amounting to a
few milli-degrees, can be good indicators of the processes active in the layer that are described in
Chapter 3.
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Figure 1.12. The variation of water properties with depth in the North Atlantic at 26◦

29.50
′

N, 75◦ 42.22
′

W in April 2004. From left to right: potential temperature (θ ),
salinity (S), sigma-theta, a measure of density (here referred to the surface, σθ0), and
the buoyancy frequency (N) change with pressure (100 dbar = 1 MPa ≈ 100 m). The
profile of potential temperature exhibits a rapid decrease in temperature in the seasonal
thermocline at about 200 m depth, followed by a further decrease down to about
1200 m in the main thermocline (or main pycnocline). These changes are matched in
the σθ0 profile by a rapid increase of density in the seasonal thermocline and a more
gradual increase in the main pycnocline. Relatively large values of buoyancy
frequency, N, accompany these thermoclines. The small-scale structure in N possibly
indicates the variations in the density gradient caused by internal waves or double
diffusive convection. The near-surface and bottom mixed layers are not resolved in
these profiles but may be seen in Fig. 2.4(a). (Figure kindly supplied by Dr B. A. King,
National Oceanographic Centre, Southampton.)

• The mixed layer, together with the stratified region immediately below it that is
affected by the dynamical processes within the mixed layer, is sometimes called the
‘upper ocean boundary layer’. It is a region through which changes and the effects
of the overlying atmosphere are transmitted to the underlying ocean. Its turbulence
properties are discussed in Chapter 3 and Section 4.5.

Below the surface mixed layer, the density increases with depth in a layer known
as the ‘pycnocline’. The density increase is most commonly related to a decrease in
temperature and, since it varies seasonally (e.g., see Fig. 3.10 later), the pycnocline is
then usually called the seasonal ‘thermocline’. Its maximum buoyancy frequency, N,
is typically about 10−2 s−1, corresponding to a period, 2π/N , of about 5 min. In some
regions, however, particularly near a source of freshwater, as in a river estuary or fjord
or near melting ice, the density increase may be mainly a consequence of increased
salinity (a ‘halocline’). At all depths, the density generally increases monotonically
with depth, but irregularly, exhibiting variable gradients with vertical scales of order
1–50 m, or density ‘fine-structure’.
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Below the seasonal thermocline, the mean temperature decreases further through
the main thermocline or pycnocline at depth 500–1000 m. At greater depth still (the
depth of water overlying the abyssal plains is typically 5000 m), the mean density
continues to increase slowly, N reaching values of about 10−4 s−1 in the deep ocean
below about 4000 m with corresponding periods of 12–20 h.19 Turbulence generated
at the seabed results in another mixed layer with little vertical gradient in temperature,
salinity and density: the benthic (or bottom) boundary layer that extends to heights of
typically 5–60 m above the sea floor.
• The density stratification in the various parts of the water column relates to the local
processes that most commonly lead to turbulence. The stratification effectively divides
the ocean into zones of different turbulence characteristics. This division is used to
discriminate between the topics discussed in Chapter 3, namely turbulence in the upper
ocean and benthic boundary layers, and Chapter 4, namely turbulence in the ocean
interior or at ‘mid-depth’ when water is generally stratified.

1.8 Consequences of stratification

1.8.1 Internal waves and turbulent motion

As shown in Section 1.7.2, denser seawater moved upwards into less dense water in
the stratified ocean is subjected to a net downward force, whereas an upwards force is
experienced by water moved downwards. These forces lead to oscillatory motions or
waves, called ‘internal waves’. An example is shown in Fig. 1.13. Although these waves
may, like surface waves, travel horizontally along density gradients or pycnoclines,
in continuous stratification internal waves can propagate at an angle to the horizontal,
transporting energy in a vertical direction through the stratified ocean and crossing
surfaces of constant density (called isopycnals) in beams or rays, as illustrated in Fig.
1.14 and explained in its caption. They have both horizontal and vertical wavenum-
ber components. Such beams, particularly those of internal waves of tidal period, can
sometimes be detected near topographic sources. Distant from such sources, upward
and downward beams combine to form horizontally propagating internal waves hav-
ing distinct vertical structures or ‘modal’ properties, wave modes rather than wave
rays.

The maximum frequency, 2π/T , of small internal waves of period T, measured
relative to the movement of the mean flow in a density-stratified region is equal to the
buoyancy frequency, N. (By ‘small’ is meant that the waves move surfaces of constant
density, or ‘isopycnal surfaces’, up and down through a distance small relative to
their horizontal wavelength and that the slopes of the isopycnal surfaces are very
much less than 90◦. It also implies that the vertical wavelength of the waves is small

19 There is no formal definition of the ‘abyssal ocean’, but commonly depths below about 1500 m are
implied, below the (ill-defined) base of the main thermocline, beyond the depth to which light
penetrates from the sea surface and below that to which diurnal vertical migrations of zooplankton
extend.
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Figure 1.13. An internal wave on the Oregon continental shelf. The wave, one of a
train of similar waves, is travelling from left to right. Although such waves are most
commonly observed through the variations in temperature caused as they raise and
lower thermally stratified water past fixed sensors on a mooring, this wave was
detected acoustically by a downward-pointing sonar on a moving ship. Reflections
from scatterers of sound such as zooplankton and fish with swim bladders in the
thermocline make the wave ‘visible’. It appears as a depression in the thermocline,
some 20 m deep, advancing through the water at a speed of about 1 m s−1. Within the
wave trough, the internal wave causes currents of about 0.5 m s−1 in the direction of its
propagation. The increased acoustic scattering from in front of the trough at about
+70 m along the ship track, which extends to –400 m, appears to be the result of an
increase in acoustic scattering from centimetre-scale temperature fluctuations caused
by the wave’s breaking. (From Moum et al., 2003.)

Figure 1.14. Internal-wave radiation. (a) A laboratory experiment showing internal
waves generated in brine with a uniform density gradient (N constant) by a cylinder
oscillating horizontally at frequency σ < N , which is seen ‘end-on’. The ratio
σ/N is 0.419 in (i) (where harmonic waves of frequency 2σ can be faintly detected)
and 0.900 in (ii). Waves have radiated from the cylinder, crossing the horizontal
isopycnal surfaces of constant density, along four beams or rays at angles of
β = sin−1(σ/N ) to the horizontal and therefore at a greater angle in (ii) than in (i).
These directions are those in which energy is transmitted by the waves from the
cylinder, and are therefore the directions of the waves’ group velocity, cg (see part (b)).
The black and white bands aligned in these directions correspond to the wave crests
(continued opposite)
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Figure 1.14. (cont.) or troughs, lines of constant phase, made visible using a
Schlieren technique (sensitive to variations in the gradient in the refractive index
within the brine that are caused by the waves). The lengths of the four beams increase
with time after the cylinder has first been set into motion. If it is stopped, the beams
detach from the cylinder and move away along their four directions. A brief period of
cylinder motion results in four ‘packets’ of waves moving with the four directions of
the group velocity, cg. The lines of constant phase move in directions normal to the
group velocity (see part (b)). If the cylinder is oscillated at a frequency greater than N,
an initial disturbance radiates away in all directions and further disturbances are
confined close to the cylinder; no internal waves with the frequency of the cylinder can
be formed or radiated. (From Mowbray and Rarity, 1967.) (b) The group (cg) and
phase (c) velocities of the waves. The latter advance in the direction of the
wavenumber vectors with horizontal and vertical wavenumber components (±k, ±m),
where k = m tan(σ/N ). As the arrows marking the group and phase velocities indicate,
the phase and group velocities are at right angles and downward-propagating energy
(indicated by the beams below the level of the oscillating cylinder) is accompanied by
upward-propagating wave phase. The phase speed of the near-inertial-frequency waves
in the Banda Sea shown in Fig. 4.11 is directed upwards – the dark bands of higher
shear becoming shallower as time increases – indicating their probable generation near
the surface and downward energy propagation.

in comparison with the scale over which N varies.) Care is required in determining
or measuring frequency, however, because of the possible effects of Doppler shifts
induced by mean flows. A wave with a short horizontal wavelength carried rapidly by
flow past a fixed point may appear to have a relatively high frequency fluctuation in
time. If this frequency is greater than N, the motion might therefore be interpreted as
being caused by turbulence rather than by internal waves unless the effects of mean
flow are properly accounted for. Internal waves break in a variety of ways, leading to
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turbulence within the body of the ocean. The nature of the turbulence they produce is
described in Chapter 4.
• The links between waves and turbulence are central to the study of ocean physics.
The properties of propagating waves are constrained by a wave dispersion relation.
The dispersion relation is an equation relating wave frequency and wavenumber. (It
may be expressed, e.g., as in P1.3, as a relation between the speed of advance of
wave crests and the wave period.) No such relation between frequency and wavenum-
ber applies to the fluctuations in turbulence. Turbulent eddies may propagate through
the ocean as a result of their mutual interactions as suggested in Fig. 1.9, and larger
eddies generally last longer than small. Unlike waves, however, other than through
their advection by a mean flow turbulent eddies or turbulent motions do not con-
form to a relation that specifies a connection between their frequency and their size
or scale. Whilst the wave group velocity defines the speed at which waves trans-
port energy, there is no equivalent ‘energy-transfer velocity’ for turbulent motions.
The absence of a dispersion relation and an energy-propagation velocity makes
turbulent motion fundamentally different from wave motion. We return to this in
Section 2.3.6.

A distinction between waves (surface or internal) and turbulence is not, however,
always very clear or well-defined. Waves produce turbulence, for example by breaking,
and turbulence may generate waves, e.g., internal waves may radiate from a turbulent
patch of water, in particular downwards into the pycnocline from the bottom of the near-
surface mixed layer. A breaking wave continues to have regular wavelike characteristics
over much of the fluid space in which it is present, and generally the breaking is confined
to relatively small regions in which, consequently, the motion is highly irregular. For
illustration, a surface wave can break at the sea surface, entraining air and producing
violent turbulent motions near the surface, but the motions induced by the wave well
below the surface may continue to remain periodic and wavelike. Regions of mixing
caused by breaking internal waves can be similarly localized within the larger field of
oscillatory motion induced by the waves.

1.8.2 Isopycnal and diapycnal mixing

Mixing that involves the transfer of fluid across the isopycnal surfaces of constant
density is called diapycnal mixing, whilst mixing involving the transfer of fluid prop-
erties20 parallel to isopycnal surfaces, so involving no density change, is isopycnal
mixing. (Diapycnal dispersion and isopycnal dispersion are similarly across and along
isopycnals, respectively.)

Turbulent eddies in stratified water must raise dense fluid above less dense fluid (and
carry less dense fluid below dense fluid) to ‘overturn’ in a stratified ocean (Fig. 1.15).
This process requires an increase in potential energy [P1.6, 1.7], work being done

20 Properties of, for example, temperature and salinity or some marker such as dye, but – being
isopycnal – not density.
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(a) (b)

(c) (d)

r1

r2 > r1

Figure 1.15. An overturning eddy on an interface. In (b)–(d) water from the less
dense upper layer that is carried below the initial level of the interface shown in (a) is
stippled whilst that of the lower layer carried upwards is shaded. The overall effect of
the eddy is to raise the centre of gravity of the fluid and therefore to increase the
potential energy. The billows in this sketch may be compared with those in, e.g.,
Figs. 2.1 and 4.4.

against buoyancy forces to lift or lower fluid, energy that must be supplied by, and lost
from, the eddies.
• The energetics of mixing in a stratified ocean consequently differ from those in a
homogeneous ocean, and the Reynolds number no longer provides a sufficient criterion
for the onset of turbulence. Parameters that involve a measure of the density stratifi-
cation are now involved in determining the nature of turbulent motion, as described in
Chapter 4.

The mixing of fluid across density surfaces (diapycnal mixing) leads to an unbal-
anced pressure field that results in collapse and spreading of mixed fluid along isopy-
cnals as illustrated in Fig. 1.16, where isopycnal surfaces (of constant density) are
marked by full lines. Initially, at (a), a patch of fluid marked by dots lies between two
isopycnal surfaces within a region in which the density, sketched to the left of (a), has a
uniform gradient. Turbulence illustrated in (b), perhaps caused by a breaking internal
wave, mixes the patch vertically by entrainment and engulfment of surrounding water,
and spreads the markers, resulting in a patch of relatively small density gradient within
the dashed oval in (c).

The density in section A–A through the centre of the patch is now as shown on
the left, and to simplify the following calculation it is assumed that mixing makes
the density of the patch uniform. The density profile outside the mixed patch remains
unchanged, and is as shown in (a). If the pressure at the top of the mixed region at
z = h is p0, a hydrostatic calculation shows that within the mixed region the pressure
is p1 = p0 + ∫ h

z gρ0 dz = p0 + gρ0(h − z), and, because the initial density is ρ =
ρ0(1 − N 2z/g), that in the surrounding ambient water is pA = p0 + ∫ h

z gρ dz = p0 +
gρ0{(h − z) − [N 2/(2g)](h2 − z2)} = p1 − gρ0[N 2/(2g)](h2 − z2), which is less than
p1 at levels –h < z < h. There is therefore a horizontal pressure gradient in (c) that
causes the water in the mixed region to accelerate, and the region and its markers
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Figure 1.16. Collapse of a turbulent patch in stratified water. (a) On the left is shown
the initial density profile with a locally uniform density gradient. Points are marked in
a rectangular region where, in (b), turbulent mixing occurs. The effect of the mixing is
to produce, in (c), a patch of relatively uniform density. The density profile through it
at A–A is shown on the left. (d) The patch collapses under the gravitational pressure
forces and spreads horizontally into the surrounding ambient water, forming an
intrusion and dispersing the marked water particles (dots) horizontally. (e) After a time
of about f −1, the effect of the Earth’s rotation (the Coriolis force) begins to produce a
deflection of the flow, to the right in the northern hemisphere (as shown), resulting in
the formation of counter-rotating vortices.

to spread horizontally,21 as shown in (d), intruding into the surrounding water along
the isopycnal surface that has the same density as the mixed region, and dispersing
the markers horizontally. At the same time the mixed region or intrusion collapses
vertically, thinning to conserve its volume. After a period of time of order f −1 (where
f is the Coriolis frequency, equal to 2� sin φ, where � is the angular frequency of the

21 If the dots in Fig. 1.16(a) represent small neutrally buoyant particles (solid particles having the
same density as the fluid surrounding them) rather than a neutral dissolved tracer, because their
density is therefore between either ρ0(1 − N 2h/g) and ρ0 (the upper ‘step’ in the density profile
through the mixed patch shown to the left of (c)) or ρ0 and ρ0(1 + N 2h/g) (the lower ‘step’ in the
same density profile), they will tend to rise or fall towards, and tend to float on, the boundaries of
the dashed oval rather than dispersing uniformly, as would dye, within the mixed region. This
effect may influence their horizontal dispersion in the collapsing stage, (e). (But see P1.8.)
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Earth’s rotation, 7.292 × 10−5 s−1, and φ is the latitude22), the effect of the Earth’s
rotation will cause the lens-like patch to begin to rotate anticyclonically (clockwise in
the northern hemisphere) as shown in (e). Inward-moving water above and below the
patch will begin to rotate cyclonically. A geostrophic balance in which the pressure
forces driving the horizontal spread of the patch are equal to the Coriolis forces will
be reached when the ratio of the width of the patch to its thickness is about N/ f ,
where N is the buoyancy frequency in the surrounding water. Its swirl velocity is then
of order N H , where H is half the thickness of the patch. Further spreading of a patch
may occur as a result of molecular heat and momentum transfer and through further
breaking events or interactions with neighbouring collapsing mixed regions. [P1.9]
• Diapycnal mixing and ‘diffusion’, followed by the ‘dispersion’ of neutrally buoyant
or fluid particles, their spreading or ‘intrusion’ on isopycnal surfaces, and a subsequent
rotation or ‘spin-up’ described by Fig. 1.16, are features common in oceanic mixing and
dispersion. In this simplified example, the relatively small-scale turbulence involved
in the mixing processes leads to collapse and intrusive motions at relatively larger
scales. In practice, these organized motions may, for example by producing shear
and strain, affect the decay of the turbulent motions on a smaller scale that produced
the diapycnal diffusion. Some of the energy of turbulent eddies may also be lost
through the generation and radiation of internal waves from the patch of turbulent
motion.

The internal Rossby radius, defined as cn/ f , is an important measure of rotation-
affected motions. Here cn is the speed on long internal waves of the nth mode. Each
mode, therefore, has a corresponding Rossby radius. The internal Rossby radius is
commonly defined as LRo = c/ f , where c is the speed of long internal waves of the
first mode – the mode number of the fastest internal waves. In the ocean, c is of
order 1 m s−1, so LRo is typically about 10 km, but varies with the stratification (or
N) and generally, since f = 2� sin φ, decreases with increasing latitude. The effects
of rotation are insignificant in waves of horizontal wavelength much less than the
Rossby radius, their properties being determined by buoyancy forces, whilst rotation
dominates those of horizontal wavelength much greater than the Rossby radius. The
Rossby radius is also known as the ‘Rossby radius of deformation’ or simply as
the ‘deformation radius’. It is a length scale that characterizes the scale to which
a patch, collapsing under gravity, will extend before the pressure gradient becomes
equal to the Coriolis force, resulting in a geostrophic balance. (In the case considered in
Fig. 1.16, the appropriate phase speed, cn , is about N H , where H is the patch height, and
the horizontal scale at which adjustment to geostrophic balance occurs and collapse or
deformation is complete is about l = cn/ f ≈ N H/ f , so l/H ≈ N/ f , as stated above.)
The interactions, dynamics and dispersive properties of a number of such rotating

22 At a latitude of 30◦, f = 2� sin 30◦, so f −1 = 3.81 h. The related period, 2π f −1, is known
as the inertial period and (being half that of a Foucault pendulum) is equal to half a ‘pendulum
day’. The inertial period is approximately 12 h at the Poles and increases as the Equator is
approached.
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patches (or vortical modes – see Section 5.4.3) in stratified water depend on the ratio
of their radii to the internal Rossby radius. Rotating patches may become baroclinically
unstable, with typically two vortices forming around their circumference, if the ratio
of their height to their width is less than about 0.2 f/N .

Huge horizontal eddies called ‘mesoscale eddies’ with horizontal dimensions of
typically 100 km are found in the ocean and affect dispersion, as described in Section
5.3.1. The most energetic mesoscale eddies have a modal structure that generally
corresponds to that of the first internal wave mode and dimensions that appear to scale
with LRo.

Suggested further reading

Fundamental laboratory experiments

Joule’s (1850) and Reynolds’ (1883) extraordinary and now famous studies are briefly
described above, but their multifaceted papers are well worth reading, if only to gain
an understanding of the care required in making laboratory studies and a perspective
on the historical development of the study of heat and energy and turbulent motion.

Diffusion and dispersion

Both Eckart’s (1948) and Welander’s (1955) papers provide further background to
understanding the evolution of ideas about the nature of mixing in natural fluid bodies.

Basics of physical oceanography

Gill (1982) gives a comprehensive and informative account of the processes common
to the ocean and the atmosphere and is a valuable text that includes reference to ideas,
as well as processes, underlying some of the understanding of ocean turbulence.

Further study

Further experimental studies of the Reynolds transition from laminar to turbulent flow
have been made by Durst and Ünsal (2006).

Gill (1981) gives a mathematical treatment of the spread of a mixed patch in strat-
ified surroundings, and Griffiths and Linden (1981) demonstrate through laboratory
experiments how patches become baroclinically unstable. Analysis of the spread and
adjustment to the effects of the Earth’s rotation in a related problem, that of a spreading
body of water in the form of a density or gravity current, is given by Hunt et al. (2005).

There is a growing literature on breaking waves, a subject to which we return in
Chapter 3. The efficiency of a plunging breaking surface wave (the ratio of energy lost
to the original wave energy) is discussed by Rapp and Melville (1990) and acoustic
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studies of wave breaking and energy loss are described by Lamarre and Melville
(1994).

Further information about the processes of ocean mixing is given in Chapter 1 of
TTO. The relation between internal waves and turbulence is complex and an important
aspect of oceanic turbulence and mixing. An introduction to internal waves is given in
Chapter 2 of TTO; their breaking is described in Chapter 5 and related fine-structure
in Chapter 7.

Problems for Chapter 1

(E = easy, M = mild, D = difficult, F = fiendish)
P1.1 (M) Flux of energy. The speed of the laminar flow in the circular tube of radius,

a, in Reynolds’ experiment is u(r ) = 2U (1 − r2/a2) at radius r ≤ a (= d/2), where
U is the radial-average flow. (Check, by integration, that U is equal to the average!)
The flow following the transition to turbulence can be regarded as being composed of a
mean flow, U, which is approximately uniform (i.e., independent of radius, neglecting
very thin viscous boundary layers on the tube walls where the flow is reduced to zero),
and a fluctuating turbulent part with zero mean. How large is the change from the
flux of the kinetic energy in the steady flow upstream of the transition to the flux
of kinetic energy in the mean flow downstream of the transition? How might you
account for the change ignoring any work done (∫pu dz) by the pressure, p? Estimate
the efficiency of the transition from laminar to turbulent flow in producing turbulence.
Hints: the average flow is given by (

∫ a
0 2πru dr )/(πa2) and the kinetic energy flux

is (ρ/2)
∫ a

0 2πru3 dr . The efficiency might be defined as the flux of turbulent energy
divided by the energy flux in the laminar flow.

(The purpose of this problem is to stimulate ideas about mean and fluctuating flows
and about the flux of energy and its conservation, which will be discussed further in
Chapter 6.)

P1.2 (E) The criterion for turbulence. Reynolds’ experiment shows that turbulence
with eddies of size comparable to the tube radius develops when the Reynolds number,
Re, exceeds a critical value. The mean depth of the Irish Sea is about 60 m and the
tidal currents are typically 0.1–1 m s−1. With only this information and assuming that
the critical Reynolds number for oceanic flows is of order 104, should the tidal flow in
the Irish Sea be laminar or should it be turbulent, probably with some eddies of size
comparable to the water depth? • The estimate of Re was made by G. I. Taylor, 1919,
and used to dismiss earlier calculations of the dissipation of tidal energy in the Irish
Sea carried out assuming only molecular viscosity in a laminar flow over the seabed
and in the water column.

P1.3 (D) Wave energy. The flux of energy of a wave on the sea surface per unit
crest length is equal to its local energy or ‘energy density’, E (the sum of the mean
kinetic and potential energies in the wave field per unit surface area), multiplied by
the speed at which this energy is transported, a speed called the wave group velocity,
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cg. Approximately, E = a2ρg/2, where a is the wave amplitude (half the vertical
distance between the wave crest and the trough), ρ is the density of seawater (about
1028 kg m−3) and g (≈9.81 m s−2) is the acceleration due to gravity, and, in deep
water, cg = c/2, where c is the wave phase speed (the speed at which wave crests
advance), given by the dispersion relation c (m s−1) ≈ 1.56T (s), where T is the wave
period. (The greater the wave period, the faster do wave crests advance. The wave
phase speed is equal to the time taken for a wave crest to advance through a distance
of one wavelength.)

(i) If the waves have a period T = 5 s, what is their wavelength?
(ii) Waves with a period of 5 s that are 1 m high approach shore from a direction

normal to the beach, and dissipate all their energy by turbulence within a surf
zone that extends, on average, 40 m from shore with a mean depth of 1 m. At
what average rate per unit mass must energy be dissipated within the surf zone?

(iii) What is the mean rate of increase in the temperature of the zone resulting from
wave breaking? You should suppose that no energy is lost in heating the
sediment, exchanged in the form of heat with the atmosphere, or radiated as
sound in the atmosphere and ocean or in the form of microseisms (waves with
a frequency of typically 1 Hz that travel through the solid Earth). In practice,
these are all ways that some energy is transferred from the surf zone, and the
heat budget of the surf zone is generally very difficult to determine precisely.

P1.4 (E) Turbulence in the swath zone. The swath zone is the region at the shoreward
edge of the surf zone where waves carry water up and down the beach, covering and
then exposing the underlying sediment. If a layer of water that is 2 cm deep runs down
a smooth and gently sloping beach in the swath zone, what speed is required to ensure
that the layer is turbulent? (Assume a critical Reynolds number of 104. In practice,
there may be residual turbulence left and carried upslope after earlier wave breaking
within the surf zone, and flow over and around stones or shells on the beach may cause
eddies that contribute to turbulent motion. From your observations whilst walking
along a sandy beach, is this speed required for turbulent motion rarely or commonly
exceeded?)
P1.5 (D) A spreading patch. Show that the marked patch in the region of convergent
field of motion represented in Fig. 1.10(b) by u = qx and v = −qy, where q is a
constant, has an extent in the x direction that increases as exp(qt).
Suppose that, instead of being two-dimensional as envisaged in Section 1.6, the marked
patch is a vertical cylinder of radius r and height 2z, and that convergence, with vertical
velocity component w = −qz, results in a radial spread of a cylindrical volume in the
horizontal x–y plane. How does the radius of a patch then vary with time, assuming
that the patch spreads as a cylinder still with vertical sides?

P1.6 (D) Energy in a spherical eddy at an interface. Suppose that a spherical eddy of
radius r in solid-body rotation is formed at the interface between two layers of densities
ρ1 (above) and ρ2 (below) with ρ1 < ρ2 and (ρ2 − ρ2)/(ρ1 + ρ2) � 1, rotates the fluid
through 180◦, and then stops (Figs. 1.17(a) and (b)). Calculate the increase in potential
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Figure 1.17. A spherical eddy of radius r overturning as a solid body at the interface
between two uniform layers of densities ρ1 and ρ2. (a) The initial state, but indicating
the subsequent rotation about an axis normal to the plane of the paper. (b) After the
eddy has rotated by 180◦. (c) Convection mixing the eddy to uniform density
(ρ1 + ρ2)/2.

energy. If the water in the eddy is now mixed by turbulent convection (Fig. 1.17(c)) and
finally reaches a uniform mixed state, with no kinetic energy remaining, before there
is a collapse and lateral spread of the mixed region, how much turbulent energy will
have been dissipated, supposing that no energy is lost by viscosity? If this turbulent
energy is all dissipated by viscosity, how much will the temperature of the region
increase, supposing that the heat is dissipated uniformly within it? In comparison with
the difference in densities, ρ2 − ρ1, how great a density decrease results from the rise
in temperature? Provide an answer supposing that r = 10 m and that the coefficient
of thermal expansion α = 2 × 10−4 K−1.
P1.7 (D) Mixing in a cylindrical eddy and breaking internal waves. Suppose that
turbulence completely mixes a horizontal cylinder of stratified water of length l and
radius r that has an initially uniform stratification and buoyancy frequency N, leaving
it in a state of rest and with a final density that is uniform. Ignoring other factors such
as the viscous loss of energy and the tendency of the mixed fluid to spread horizontally
(as in Fig. 1.16(d)), find the minimum initial kinetic energy required in the eddy to
complete the mixing. You should suppose that 20% of the kinetic energy goes into
potential energy, the remainder being dissipated in turbulence.
If, instead of causing mixing, this energy is used to lift the unmixed cylindrical body of
water without change from its initial level, how far will its centre be raised, neglecting
work done against pressure in the translation?

In a linear approximation, the energy density of an internal wave (i.e., the mean
energy per unit volume of seawater in the field of motion created by the wave) trav-
elling in a fluid of uniform buoyancy frequency, N, is a2 N 2ρ0/2, where a is the wave
amplitude and ρ0 is the mean density. Suppose that the wave breaks, completely mix-
ing a cylinder of water of radius qa as described above, where q is a constant. For what
value of q is the mean wave energy within the cylinder of water equal to that required
to bring about complete mixing of the cylinder of water?

Help: ∫1
−1 x2(1 − x2)1/2 dx = π/8.

P1.8 (F) Vertical dispersion of floating particles. Suppose that a layer of uniformly
stratified water with constant buoyancy frequency, N = 10−2 s−1, and containing a
uniform, but diffuse (and therefore non-interacting), distribution of spherical, neutrally
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buoyant particles of radius 1 mm is mixed by turbulence to a uniform density, ρ0, and
that immediately after mixing the particle distribution is uniform within the mixed
layer. Estimate how long it will be before half of the particles (having been neutrally
buoyant in the linear stratification but being no longer neutrally buoyant within the
mixed layer) sink or rise to its lower or upper boundary. You should assume that
the turbulent motion mixing the layer is rapidly dissipated so that the rise or sinking
speeds of the particles are as given in footnote 16 for motion in fluid at rest, and with
no clustering of particles. (The time is found to be large relative to a typical value of
f −1, so the accumulation of such neutrally buoyant particles at the boundaries of the
layer will not be substantial before the lateral spread of the mixed region leads to the
onset of significant anticyclonic rotation.)

P1.9 (M) The energy needed to mix a stratified region. What is the mini-
mum energy required to reduce an initially uniform density gradient with buoy-
ancy frequency N0 to a final state with frequency N < N0, over a depth of 2h?
(An application of this calculation is found in the description by Sundermeyer
et al., 2005, of the horizontal diffusion of dye in the ocean.)



Chapter 2

Measurement of ocean turbulence

Measurement is at the heart of science. The measurement of turbulence in the ocean
has proved difficult, and not all the technical and operational problems have been over-
come. In this chapter we review the characteristics that are used to describe turbulent
motion and its effects, and describe some of the methods of measuring and quantifying
turbulence.

2.1 Characteristics of turbulence

Some of the characteristics of turbulence are described in general terms in Chapter 1.
These can provide ways of quantifying turbulent motion as explained in this, and later,
sections.

2.1.1 Structure

Figure 2.1 is a shadowgraph image of the development of a turbulent shear flow
in a laboratory experiment. It shows large billows formed downstream of a ‘splitter
plate’ dividing two streams of gases with different speeds and densities. As in the
photograph of the surf zone (Fig. 1.4), Fig. 2.1 shows that the flow contains patterns
or structures – the billows – that recur. Each billow extends over a finite region: the
motions within are spatially coherent. Although the billows are transient, they also
persist for times long enough to allow them to be identified: they are coherent for short
periods of time. The structure within billows varies in detail from one to another, and
consists of small-scale turbulent motions that lead to the fine ‘texture’ visible in the
image.

37
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Figure 2.1. Very-small-scale irregular and larger-scale coherent structures coexisting
in a turbulent mixing layer between two layers of different gases, the upper less dense
gas moving to the right more rapidly than the lower. Eddies or billows are growing
downstream of a splitter plate, off the figure to the left, and are made visible using a
shadowgraph. Parallel light is shone horizontally through the gas layers onto a
transparent screen, the gradients in refractive index distorting the light to produce the
dark and light tones of the images of the flow in the photograph of the screen.
Relatively large-scale coherent structures are often found in turbulent flows – provided,
of course, that the means to detect them exist. Billows on fluid interfaces are also
shown in Figs. 4.1, 4.2 and 4.4 later. (From Brown and Roshko, 1974.)

Such patterns of relatively large-scale coherent eddies containing small-scale
motions are commonly found in turbulent flows. The larger eddies often provide clues
to the source of turbulence and, in particular, to its energy supply. Structures similar
to the billows illustrated in Fig. 2.1 are visible at the edges of jets and are found, for
example, in the wind-mixed layer at the ocean surface, suggesting a similar cause,
the presence of shear. The ‘boils’ shown in Fig. 1.6 provide another example of large
turbulent eddies, and in this case the source can be traced to the shear flow over the
seabed.
• A field of motion, although turbulent, commonly contains coherent structure. Whilst
the velocity measured at any point in the ocean may appear to be highly variable or
random, in some average sense motions at points separated in space may be similar,
provided that the distance between them is not too great (e.g., scales less than that of
billows).

Turbulent structure can be quantified, for example by determining from measure-
ments how the cross-correlation (a measure of coherence) of fluid velocity or tem-
perature fluctuations at two points varies as a function of their distance apart or by
measurements from which energy spectra can be derived as described in Section
2.3.6. Such quantities can provide useful measures of turbulence and its dynamical
effects.

Figure 2.1 suggests a further idea, that the small eddies are a consequence of the
motions associated with the larger billows or that there is a cascade of energy from
larger to smaller scales. This important concept is discussed further in Section 2.3.5.
The mean size of the larger eddies, if it can be quantified, may provide information
from which other quantities can be derived. One example is that the size of eddies
overturning in stratified waters is related to the rate of loss of turbulent kinetic energy,



2.2 Transport by eddies 39

as explained in Section 4.4.1. Another example is involved in the use of acoustic
Doppler current profilers to estimate the same dissipation rate (Section 2.5.4).

A clear distinction needs to be recognized (particularly in interpreting ‘images of
turbulence’) between the coherent structures such as eddies that, at any moment, are
found in a field of turbulent motion, and the patterns, such as filaments (Section 5.2.2),
that result from the past action of turbulence in spreading patches of dye, particles or
tracers embedded within a turbulent fluid of motion. Both have structure, but the latter
represent the relative displacements or dispersion caused by the velocity field of the
former.

2.1.2 Stress and flux

Measures of the effect of turbulence can be determined from the rates of transfer
of momentum and heat (or other fluid properties) by turbulent motion. Momentum
transfer is equivalent to the application of a stress. The transfer of heat (or another
property) involves a flux. These are discussed in Section 2.2. Stress is particularly
important as a measure of the effect of turbulent water motion on a sedimentary (e.g.,
sandy) seabed, and its magnitude determines whether and how sediment is moved by
the flow of water.
• Turbulence can lead to stress and heat flux, or to the transfer and spread of other
water properties such as salinity and other constituent dissolved chemicals at rates that
generally greatly exceed those of molecular transport.

2.1.3 Dissipation

It was explained in Section 1.3 that turbulence is a form of motion containing kinetic
energy that is dissipated and transferred into heat much more rapidly than in a laminar
flow with the same mean velocity. This is of vital importance because it represents an
irreversible loss of kinetic energy from the ocean.
• The measure of this dissipation is usually expressed as the rate of dissipation of
turbulent kinetic energy per unit mass, commonly denoted by ε with units of W kg−1

or equally m2 s−3. (The latter usefully reveals that the dimensions of ε are L2T−3,
where L is length and T is time, but W kg−1 are the more usual units.)

The energetics of turbulent motion are discussed in Section 2.3.

2.2 Transport by eddies

2.2.1 Reynolds stress

In a paper published in 1895, Reynolds1 recognized that a fundamental property
of turbulence is that its irregular motions transfer momentum, and equally (but not

1 This is again Osborne Reynolds (see Section 1.2). In addition to his elegant and basic studies of the
onset and the nature of turbulent motion in homogeneous (and stratified) fluids, Reynolds
contributed to the understanding of ocean turbulence, for example by proposing a model of vortex
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Figure 2.2. A sketch of turbulent motion, illustrating the Reynolds stress. A particle
of fluid, P, with density ρ and horizontal velocity u, has a horizontal momentum per
unit volume of ρu. On moving upwards across the surface A–A at speed w, horizontal
momentum is transported upwards into the overlying fluid at a rate ρuw. Some
particles on the surface move (and carry their horizontal momentum) downwards, and
some have negative horizontal speeds, u, but the average of ρuw over the surface A–A
(or in time if u and w are the horizontal and vertical components of velocity measured
at a fixed point) is equal to the mean vertical transport of momentum per unit area from
below the level A–A to the region above, or, equal τ = −〈ρuw〉, the ‘Reynolds stress’
of the fluid above A–A on the region below. In flows commonly encountered in the
ocean, ρ varies very little from the mean density, ρ0, in comparison with the relative
variations in velocity about the mean, so τ ≈ −ρ0〈uw〉. The two components of flow
may be written as u = 〈u〉 + u′ and w = 〈w〉 + w′, representing a steady mean flow
(〈u〉, 〈w〉) and the fluctuations (u′, w′) induced by the turbulence (and by waves, if they
are present). If the mean flow is horizontal (e.g., in a fluid bounded by the rigid
horizontal plane B–B), there will be no mean vertical velocity, so 〈w〉 = 0, and, by
virtue of the definition of the mean, 〈u′〉 = 0 and 〈w′〉 = 0. The product, 〈uw〉, or
〈(〈u〉 + u′)(〈w〉 + w′)〉, is then equal to 〈u′w′〉, so the Reynolds stress
τ ≈ −ρ0〈u′, w′〉. (There are some misleading aspects of the sketch. For example, it
does not represent the three-dimensional field of turbulent motion. The lines and
arrows suggest steady streamlines of motion, perhaps continued over a period of time,
rather than instantaneous particle motion at the time at which the average over the
surface A–A is determined.)

necessarily at directly corresponding rates) heat and salinity, across surfaces, usually
conceived of as planes fixed in space at positions where properties are to be quantified,
but having no physical substance – they are not solid surfaces. The rates of transfer
are given by the temporal averages of the product of the transferred properties and the
component of the turbulence velocity normal to the surface.

Taking as an example the horizontal momentum of fluid particles as the transferred
property (as illustrated in Fig. 2.2), the mean downward vertical rate of transfer of
horizontal momentum in the x direction, ρu, by the upward vertical component of
their velocity, w, across a horizontal plane surface at the level marked A–A in Fig. 2.2
is τ , given by

τ = −〈ρuw〉. (2.1)

The symbols with angular brackets, such as 〈Q〉, imply that an average is taken of the
quantity Q, usually over time at a fixed point rather than in, say, one or more coordinate

formation by raindrops impacting on the sea surface and creating motions that might act to reduce
the intensity of wave breaking – the ‘knocking down of the sea’, a long-known, but little studied,
calming effect of heavy rainfall (Reynolds, 1900).
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directions at a fixed time, for observational convenience. The average will normally
be a function of the position of the point, e.g., its height above the seabed. Often,
and particularly in flows in oceanic boundary layers described in Chapter 3, the stress
is assumed to be independent of horizontal position, (x, y), and to depend only on
the vertical coordinate, z, of the surface of measurement.2 The symbol τ represents a
stress or force per unit area with dimensions ML−1T−2. It is now called the ‘Reynolds
stress’, the turbulence stress imposed by the fluid above the horizontal plane on that
below, hence the negative sign in (2.1). Since the density varies far less than do the
velocity components, the stress is approximately equal to −ρ0〈uw〉, where ρ0 is a
constant average or reference density. A zero correlation between u and w leads to a
zero Reynolds stress (e.g., when the two are 90◦ out of phase as they are in some wave
motions). [P2.1]
• The Reynolds stress is equal to the mean rate of transfer of momentum across a
surface by turbulent motion.

The stress should strictly be written as a matrix quantifying transfers of three
(ρu, ρv, ρw) components of momentum across the three orthogonal (x, y, z) plane
surfaces, i.e., a matrix of averaged products of the three (u, v, w) components of veloc-
ity. Often, however, because of observational difficulties, only a single component is
estimated from measurements. It is sometimes important, particularly in ocean mod-
els representing the effects of the large mesoscale eddies referred to later (in Section
5.3.1), to account for the horizontal component of Reynolds stress, −ρ0〈uv〉.

The transfer of momentum is usually represented through a parameterization that
relates the x–z Reynolds stress to the mean velocity gradient dU/dz (or, using the
〈. . .〉 notation, d〈u〉/dz) through a coefficient known as the ‘eddy viscosity’, Kν , with
dimensions L2T−1:

τ/ρ0 ≈ −〈uw〉 = Kν dU/dz. (2.2)

Strictly, like Reynolds stress, the eddy viscosity should be represented by a matrix,
derived from the mean products of pairs of velocity components in all three directions
and, as defined, Kν is the vertical component of the eddy viscosity. The value of Kν

can be determined by measurements of the mean shear, dU/dz, and both the u and the
w velocity components in the benthic boundary layer as explained later.
• ‘Eddy coefficients’ are commonly used in parameterizing turbulent fluxes, with an
eddy coefficient multiplied by the gradient of the transferred quantity being set equal
to the turbulent flux of the quantity. The coefficient relating to momentum transfer
is known as the eddy viscosity because, when turbulence is parameterized by such a
term, it plays a role in the equations of motion similar to that of kinematic viscosity
in laminar flow.

2 The Reynolds stress may be uniform, unchanging with z, in steady turbulent boundary layers as,
for example, is explained in Section 3.3.
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2.2.2 Heat and buoyancy flux

Just as momentum is transferred from one level in a fluid to another by eddies, so can
heat (or salinity and other properties) be transferred. The vertical flux of heat depends
on the ability of eddies to carry water of a higher temperature upwards or water of a
lower temperature downwards, which is often inhibited by buoyancy forces derived
from stratification.

Suppose that T ′ represents the difference between the temperature of water mea-
sured at a fixed point at time t and a reference temperature, commonly taken as the mean
temperature at the level of the point. If the convention that upward fluxes are positive
is adopted, the vertical upward heat flux per unit horizontal area at the point can be
expressed as the average of the product ρcp multiplied by the temperature variations
T ′ (the product, ρcpT ′, is the heat fluctuation per unit volume of fluid corresponding
to the temperature change, T ′) and also by the speed, w, at which the temperature
fluctuations are carried upwards:

F = 〈ρcpwT ′〉. (2.3)

The vertical flux of heat carried by turbulent motion is often expressed as

〈ρcpwT ′〉 = −ρcp KT dT/dz, (2.4)

using the analogy with the rate at which heat is carried by molecular conduction, or
approximately as

〈wT ′〉 = −KT dT/dz, (2.5)

where dT/dz is the mean vertical temperature gradient.
• Equation (2.5) defines the parameter KT, the vertical eddy diffusion coefficient of
heat or the eddy diffusivity of heat, with dimensions L2T−1.

Eddy diffusivities of other properties of seawater, such as density (or mass), Kρ ,
and salinity, KS, are defined in a similar fashion, e.g., 〈wρ ′〉 = −Kρ dρ/dz, where ρ ′ is
a density fluctuation from the mean and dρ/dz is the mean density gradient. The eddy
diffusion coefficients of heat, KT, and of density, Kρ , are equal when density variations
are dominated by those of temperature, as in a freshwater lake, and may also be equal
if there is a monotonic relationship between density and temperature.3 Estimates of KT

can be obtained from measurements of ocean microstructure as described in Section
4.4.2. [P2.2]

In a fluid that has no salinity variations, (1.4) gives ρ = ρ0(1 − αT ′) and so the
density variation, ρ ′, from the ambient, ρ − ρ0, is equal to −ρ0αT ′. From its defini-
tion, (2.3), the heat flux can therefore be written as F = −cp〈wρ ′〉/α. But the turbu-
lent flux of the buoyancy, b = g(ρ0 − ρ)/ρ0 = −gρ ′/ρ0 (defined in Section 1.7.2), is

3 Care is needed! In conditions under which molecular transports are important (e.g., where double
diffusive convection is possible as described in Section 4.8), the coefficients KT , KS and Kρ differ
from one another.
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defined as

B = 〈wb〉, (2.6)

so

B = −g〈wρ ′〉/ρ0. (2.7)

This implies that B has dimensions L2T−3.

• When salinity variations can be neglected, the turbulent buoyancy flux, B, is therefore
related to the turbulent heat flux, F, by

B = gαF/(ρ0cp). (2.8)

The importance of this relation will be apparent when we come to discussing the
consequences of heating in the boundary layers of the ocean in Chapter 3.

2.3 Energetics

2.3.1 Turbulent dissipation, ε, and isotropy

The surf zone is briefly described in Section 1.4. Much of the energy lost by the
breaking waves and hydraulic jumps is transferred into turbulence. But where does the
turbulent energy go? Some of the energy may be dissipated in eroding sediment and in
repeatedly lifting sediment from the seabed, so raising its potential energy. Some may
be advected in rip-currents and carried out of the surf zone into deep water. However, as
in Joule’s experiment, much of the dissipation occurs locally in the surf zone through
viscosity, and for this to be effective in the relatively short times between re-supply of
energy in successive waves, high shears are required, as explained below.

The rate of loss of the kinetic energy of the turbulent motion per unit mass through
viscosity to heat is usually denoted by ε. This can be expressed in general as

ε = (ν/2)〈si j si j 〉, (2.9)

where the velocity is written as (u1, u2, u3) in three orthogonal directions x = x1, y =
x2 and z = x3, and ν is the kinematic viscosity. The tensor sij is given by

si j = (∂ui/∂x j + ∂u j/∂xi ), (2.10)

and products are taken in (2.9) over repeated suffices i, j = 1 to 3.4 The complexity
of the expression for ε implies that its precise measurement is generally extremely
difficult! The presence of spatial gradients of velocity components in (2.10) means
that the rate of loss of energy in turbulent motion results from shear and is enhanced

4 The term si j si j in (2.9) is equal to the sum of all the products, s11s11 + s12s12 + s13s13+
s21s21 + s22s22 + · · · + s33s33, where s11 = ∂u1/∂x1 + ∂u1/∂x1 = 2 ∂u/∂x, s12 =
∂u1/∂x2 + ∂u2/∂x2 = ∂u/∂y + ∂v/∂x , etc.
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Figure 2.3. Particle image velocimetry (PIV) measurements of currents made in the
sea. Here two dimensions, those in the plane of the mean flow, are shown to illustrate
the complexity of motions and dissipation rates found in a small area of the flow field
at a height of 0.4–0.7 m above the seabed. A mean horizontal current of 11.3 cm s−1 to
the right and an upwards vertical motion of −0.2 cm s−1 have been subtracted from the
speeds shown in (a). Thin shear layers and eddies of diameter 5–10 cm are visible. Part
(b) shows the corresponding dissipation rates estimated assuming isotropy. The contour
levels shown are (0.1, 0.3162, 1.0 and 3.162) × 10−5 W kg−1. Three-dimensional
images at frequencies of 25 Hz or more are now attainable and, in principle, will allow
not only direct estimates of ε to be made using (2.9), but also study of isotropy and
turbulent structure. See P3.6 for further discussion. (From Nimmo Smith et al., 2005.)

by high rates of shear. These are generated by the interacting field of small-scale
eddying motion characteristic of the turbulence observed, for example, in Reynolds’
experiment and illustrated in Fig. 2.1. [P2.3]

Making the measurements of all the velocity gradients required to determine ε from
(2.9) is, technically, highly demanding and rarely achieved. Methods of measuring
velocity based on particle image velocimetry (PIV) have recently become possible
in the ocean and have provided valuable information about eddy structure as well as
dissipation; an example is given in Fig. 2.3. Considerable simplification to (2.9) is
possible, however, for conditions under which the properties of the turbulent motion,
including its velocity gradients, are the same in all directions, when turbulence is
said to be ‘isotropic’. (The ideas underlying the assumption of isotropy are discussed
further in Section 2.3.5.)
• In isotropic motion the mean square gradients of quantities such as
∂u/∂y, ∂v/∂z, ∂w/∂x , and their mean products, are equal and (2.9) reduces to the
much simpler equation

ε = (15/2)ν〈(∂u/∂z)2〉, (2.11)

where the average value of any spatial derivative in a direction normal to its direction
may be taken. (The derivative, ∂u/∂z, of the horizontal component of current, u, in the
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vertical direction is chosen in (2.11) because of its relevance to measurement by
sensors or ‘probes’ described later that are mounted on free-fall instrument pack-
ages.) The assumption of isotropy, which is commonly made (although often with-
out justification!), reduces the measurement requirement substantially, since only one
component of the shear needs be found in order to estimate ε.

2.3.2 The range and observed variation of ε

The oceanic values of ε have a vast range, extending over nine orders of magnitude,
from about 10−10 W kg−1 in the abyssal ocean to 10−1 W kg−1 in the most actively
turbulent regions, such as the surf zone and in fast tidal currents through straits. Rather
than expressing values of ε in units with SI prefixes (see page xviii; e.g., its range as
10−1 nW kg−1, or 100 pW kg−1, to 1 dW kg−1), it is customary to express ε with
powers of 10 given explicitly, and we adopt this convention here. [P2.4]

Figure 2.4 shows examples of ε profiles, together with the potential density, σθ , and
east and north components of current, u and v, respectively, from three different ocean
regions. Figure 2.4(a) is from the Straits of Florida, running almost due north between
the coast of Florida and the Bahama Banks, where data were obtained using a freely
falling (or free-fall) instrument called the Multi-Scale Profiler (MSP). The σθ profile
shows the near-surface mixed layer, the thermocline from about 50 m to 200 m, and
a homogeneous near-bed benthic boundary layer below 530 m. The major flow in the
Florida Current is northwards, its magnitude reaching about 2.3 m s−1 near the surface
where dissipation is relatively high, with values exceeding 10−6 W kg−1. Dissipation
rates of similar magnitude are found near the seabed. Generally, however, values of ε

in mid-water are patchy and smaller, of order 10−9–10−8 W kg−1: the Florida Current
is not a location of extremely intense turbulence.

Figure 2.4(b) shows data from the Camarinal Sill in the Strait of Gibraltar obtained
using the Advanced Microstructure Profiler (AMP; see Fig. 2.13(a) later). The orien-
tation of the Strait is roughly east–west. The σθ profile shows a number of regions of
small thickness in which the density decreases with depth, indicating static instability.
(The low value at about 0.58 MPa, a depth of about 58 m, appears to be erroneous.)
The upper layer has a velocity, u, of about 0.6 m s−1 and is composed of Atlantic water
moving eastwards through the Strait into the Mediterranean Sea. The lower, westward-
moving layer is composed of Mediterranean water. Although Mediterranean water is
warmer than the overlying Atlantic water, it is much saltier (a consequence of the
dominance of evaporation over precipitation in the Mediterranean and adjoining seas)
and, as a result, denser. At the time these profiles were obtained, the rate of turbulent
dissipation, ε, reached about 10−6 W kg−1 in the sheared interface between the two
water masses. Dissipation rates as large as 10−4 W kg−1 are found in mid-water at
other phases of the tidal flow through the Strait, and thicker regions of static insta-
bility are observed when the shear leads to the mixing illustrated in Fig. 4.13. (The
Mediterranean water subsequently flows into the Gulf of Cadiz, mixing with the water
of the Atlantic as it does so, and spreads westwards as a tongue with relatively high
salinity at depths between 600 m and 1500 m as shown in Fig. 5.1 later.)
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Figure 2.4. Profiles of current, density and dissipation rate. Measured profiles of
eastward velocity, u, northward velocity, v, the potential density, σθ , and the rate of
dissipation of turbulent kinetic energy, ε, (a) in the Florida Strait; θ is the potential
temperature and S is the salinity in psu (from Winkel et al., 2002); (b) in the Strait of
Gibraltar (from Wesson and Gregg, 1994); and (c) at the Equator; W is the fall speed
of the probe (from Moum et al., 1995).
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Figure 2.4. (cont.)

The third region is on the Equator in the Pacific Ocean at 140◦ W. Figure 2.4(c)
shows a profile of ε, again obtained with the AMP. The northward v component of
the current is not shown, but the eastward u component shows the presence of the
Equatorial Undercurrent, with maximum eastward speed at 1.2 MPa (depth about
120 m), contrary to the westward flow near the surface. The fall speed of the AMP,
W , is displayed; it decreases from a peak of about 0.7 m s−1 near the surface to
0.45 m s−1 at 2 MPa (depth about 200 m). Values of ε range from about 10−5 W kg−1,
near the surface, to 10−10 W kg−1, which is found below the depth of the maximum
speed in the eastward-going Equatorial Undercurrent.

2.3.3 The rate of loss of temperature variance, χT

Velocity or velocity shear is often much more difficult to measure in the ocean than is
temperature. Temperature is measured not only because its variability is of importance
in its own right through its effect on density and relation to heat energy, but also because
its spatial variation can provide important information about the presence and action
of turbulent motion. Measurements are commonly made from microstructure profilers
recording at frequencies of tens of hertz, or over sub-centimetre distances.
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• A measurable parameter describing the effect of turbulence on the fluid temperature
field, the smoothing out of the temperature variations by the molecular conduction of
heat, is the rate of loss of temperature variance,

χT = 2κT 〈(∂T ′/∂x)2 + (∂T ′/∂y)2 + (∂T ′/∂z)2〉, (2.12)

which, in isotropic turbulence when the mean square gradients of temperature (and
other properties) are the same in all directions, becomes

χT = 6κT 〈(∂T ′/∂z)2〉. (2.13)

As in (2.11) – and for the same reason – we have selected an expression in terms of z:
vertical gradients in temperature may be measured by a vertically falling instrument.
Values of χT in the ocean range from 7 × 10−10 K2 s−1 to about 10−4 K2 s−1, with the
higher values generally in regions of strongly stratified water and energetic turbulence.
(The temperature variance is related to KT via the Cox number defined by (4.7): see
P4.5.)

The rate of loss of salinity variance, χS , is defined similarly, but is harder to deter-
mine accurately because of problems in measuring salinity changes over small dis-
tances.5

2.3.4 The Kolmogorov length scale, lK

On dimensional grounds, the length scale of the turbulent motions at which viscous
dissipation becomes important must depend on factors that provide measures of the
turbulent motion and of its viscous dissipation, that is on ε, characterizing the turbulent
motion, and ν, characterizing viscous effects; generally, no other dimensional and
relevant quantities are available that might affect the scales at which energy is lost
or that might characterize the length scale. It must, therefore, to have the correct
dimensions – that of a length – be proportional to (ν3/ε)1/4 (ε has dimensions L2T−3

and ν has dimensions L2T−1, where L is length and T is time). The coefficient of
proportionality is about unity.
• The scale is known as the Kolmogorov6 length scale, lK = (ν3/ε)1/4.

The oceanic values of ε mentioned in Section 2.3.2 lead to a range of lK from about
6 × 10−5 m in very turbulent regions to 0.01 m in the abyssal ocean. Measurement
of velocity gradients at the smaller of these scales is generally impossible, and conse-
quently it appears that estimates of ε cannot be obtained directly using (2.11), at least

5 As mentioned in Section 1.7.1, salinity is generally inferred from conductivity with a temperature
correction, and consequently from two sensors, one measuring conductivity and the other
temperature, that are slightly separated in space, with the consequent introduction of uncertainty in
the estimated values.

6 A. N. Kolmogorov (1903–1987) was an outstanding Russian mathematician who contributed
immensely to the theoretical understanding of turbulent flow. His work in fluid mechanics, and
particularly his important study of the form of the spectrum of turbulence published in the early
1940s (Section 2.3.6), is described by one of his students, A. M. Yaglom (1994). Several other
Russians made significant advances in the knowledge of turbulence during the period 1940–1980,
among them A. S. Monin, A. M. Obukov and R. V. Ozmidov.
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not without some further information about the size of the length scales of the mean
square shears leading to the dissipation or some necessary correction to the shears that
can be resolved by measurement. The coherent structures identified in Section 2.1.1
have sizes and durations that are, however, usually much larger than lK and velocity
gradients can usually be measured over some, but not all, of the range of length scales
over which motion is turbulent and relatively unimpeded by viscosity.

2.3.5 The turbulence cascade and the structure
of turbulence

The idea of a cascade in energy from larger to smaller scales goes back to the second
decade of the twentieth century.

It is supposed that energy is supplied, introduced or produced in the fluid at a rela-
tively large scale (e.g., that of the mean dimension of eddying motions, sometimes –
as in Fig. 2.1 – recognizable as coherent eddies), and is successively passed by inter-
actions between eddies or their instability through a spectrum of smaller and smaller
eddies within which inertial forces,7 rather than viscosity forces, are dominant, finally
being conveyed to eddies of size comparable to lK, where viscosity is effective in trans-
ferring their kinetic energy into heat. The scale at which turbulent energy is introduced
is often equal to or a little larger than that which contains most of the kinetic energy,
and eddies of this size are consequently referred to as the ‘energy-containing eddies’.

The concept was given vivid imagery by Richardson,8 who, in 1922, perhaps fol-
lowing Jonathan Swift’s poem referring to fleas rather than to eddies or ‘whirls’, coined
the ditty

Big whirls have little whirls that feed on their velocity,
And little whirls have lesser whirls and so on to viscosity
– in the molecular sense.

A closely related concept is that, although motion may be very anisotropic at the scale
at which energy is provided, any directional asymmetry is diminished as eddies interact
with one another, passing energy to successively smaller scales, until eventually the
motion field becomes independent of direction and therefore isotropic at some scale
sufficiently small in comparison with that at which energy is put into the turbulent
motion. (It is of note that, if the Reynolds stress is non-zero in one direction but zero
in the other two, an overall directionality is implied and so, strictly, the fluid motion
cannot be isotropic, at least at the length scales of motion that contribute most to

7 The inertial forces are those represented by the terms ρu·∇u in the Navier–Stokes equation of
Eulerian motion.

8 L. F. Richardson (1881–1953) is another scientist who contributed some profound ideas about
turbulent motion. He and H. Stommel were the first to obtain measurements of turbulent dispersion
in the sea (Section 5.3.1) and his name is given to parameters that describe turbulence and its onset
in stably stratified fluids (Sections 4.2, 4.4.2 and 4.5). He is also known for his ideas about the
numerical forecasting of weather, long before computers made this feasible. A description of his
life and achievements is given by Ashford (1985). Ashford suggests that Richardson’s ditty may be
based on lines written by a nineteenth-century mathematician, Augustus De Morgan.
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the transport of momentum, which are found to be large in comparison with lK. This
applies, in particular, to flows in turbulent boundary layers.)

In practice, it is found that, in the stratified regions of the ocean, isotropic motions
do exist over some range of scales bounded at their lower end by lK, provided that the
non-dimensional isotropy parameter,

• I = ε/νN 2, (2.14)

exceeds about 200, where ε and N are the local mean values of the dissipation rate and
buoyancy frequency, respectively.9 It is commonly the case that I > 200 in much of the
weakly stratified or small-N, near-surface, mixed layer, where turbulence is therefore
isotropic over some range of scales >lK. The fraction of water in which I > 200 is
often <50% in the pycnocline, and smaller still at greater depths. There the fraction
of water within which turbulent motion is isotropic is very small.

The concept of an energy cascade carrying energy towards dissipation at small
scales, however, requires particular qualification in stratified and rotating systems, of
which the ocean is one. A description is given in Section 1.8.2 of the development of
a relatively large eddy from the collapse of a region mixed by small-scale turbulent
motions as illustrated in Fig. 1.16, a transfer from small to larger scales of motion
counter to the energy transfer of the cascade described above. A further example of
the transfer of energy from small to larger scales, the pairing of neighbouring eddies
(or billows) with vorticity of the same sign, is given in Fig. 1.9(c) and in Section
4.2. Unlike the three-dimensional eddies in isotropic turbulence, anisotropic two-
dimensional eddies (and the mesoscale eddies described in Sections 5.3.1 and 6.5) can
interact to carry energy to larger scales.

There is also some doubt about whether the structure of turbulence at small scales
is always, or for some purposes, best described as eddy-like or more nearly resem-
bles interacting vortex filaments, localized jets, or sheets of high vorticity; and about
whether – when unsteady and not homogeneous – it has a universal form or may differ
according to the circumstances of its generation. Such matters are of importance in
the ocean, where turbulence is generated in many different ways, is often patchy and
transient and, beyond the mixed layer, is often anisotropic even at small scales. The
structure of the variable flow can affect the rates of sinking and collision of small par-
ticles (which are often of a size smaller than lK) and their amalgamation into flocs. In
severe turbulence, the survival of small planktonic organisms can be at risk. High shear
in turbulent motions inflicts physical damage to flagella, and turbulence enhances the
rates of encounter of plankton with its predators. The relative locations of groups of
organisms (moved around by turbulence) and regions of dynamic hazard depend on
the structure of the turbulent motion. (See also footnote 6 of Chapter 5.)

9 It is shown in Section 4.4.1 that, if I is large, the size of the largest overturning eddies is
significantly greater than lK.
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2.3.6 The Taylor hypothesis and the spectrum
of turbulent energy

At a fixed point of measurement past which turbulent eddies are being carried (or
advected) at a mean speed U, the small eddies, passing in relatively short times,
will cause fluctuations in the measured characteristic of turbulence (e.g., a velocity
component or temperature fluctuation) of higher frequency than those caused by large
eddies. The time taken for eddies of size l to pass a fixed point is T = l/U , and the
corresponding measured frequency, σ = 2π/T , is related to the eddy wavenumber,
k = 2π/ l, by σ = kU . It is possible to translate temporal measurements described in
terms of frequency into spatial measurements of wavenumbers, provided that, as they
are carried past the measurement point, eddies do not change or evolve significantly,
i.e., when the turbulent structure is ‘frozen’ and passive as it is advected past the
measurement sensor. (In contrast, waves propagate through the water. The relation
between their frequency, σ , and wavenumber, k, is the wave dispersion relation as
explained in Section 1.8.1.)
• The hypothesis that this is so is known as the Taylor hypothesis.10 When it is valid,
the measured frequency (σ ) spectra derived from time (t) series measurements can
be converted into wavenumber (k) spectra with distance, x, being set equal to Ut
and wavenumbers, k, given by σ/U . A necessary condition for the validity of the
hypothesis is that the gradient, dU/dx , of the mean relative speed is such that the
smallest wavenumbers are much greater than (2π dU/dx)/U .

If the fluctuations measured at a point are caused by the advection of turbulent eddies
(rather than, for example, waves), the measured characteristics of the motion will be
composed of a combination of fluctuations derived from the range of wavenumbers
that correspond to the sizes of the turbulent eddies. An energy frequency spectrum
derived from analysis of the amplitude of the time variation of velocity at the fixed
point can be converted to a wavenumber spectrum using Taylor’s hypothesis. This
spectum shows how the contribution of the energy of the turbulent eddies to the overall
kinetic energy of the variable flow is distributed in wavenumber (or in eddy size). The
wavenumber spectrum is in fact proportional to Fourier transforms of spatial cross-
correlation coefficients11 of fluctuations, a relationship established by Taylor in 1938.

10 The Cambridge scientist G. I. Taylor (1886–1975) made numerous contributions to science, many
in fluid dynamics, including several very important discoveries about turbulent motion,
particularly about turbulent dispersion – see Chapter 5. His approach was one based on reducing
problems to their essentials and of testing his theoretical results by often very elegant laboratory
experiments. Taylor’s life, his achievements and the legacy of scientific method he left are
described by G. K. Batchelor (1996), who was himself an expert and important contributor to the
theory of turbulence. The apparent frequency, σ = kU , of a frozen field should be compared with
the frequency shift of propagating waves, the Doppler shift, referred to in Section 1.8.1.

11 Cross-correlation coefficients. Suppose, for example, that the fluctuation of the x-directed velocity
components about the mean, U, is u, so that the x-velocity component is U + u, with 〈u〉 = 0. The
cross-correlation function, Ru (x), of speeds u, measured as time series at two points at locations x1

and x2 separated by a distance x = x1 − x2, is given by Ru (x) = 〈u(x1, t)u(x2, t)〉/〈(u(x1, t))2〉,
where the average values, 〈. . .〉, are obtained from the time series over times, t = T , sufficiently
long to ensure that Ru (x) is independent of T. In the equation for Ru (x), u(x1, t) is simply the
x-velocity component at the position x1 and at time t, and Ru (x) is a function just of the separation
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It was, however, Kolmogorov who first predicted how the energy in homogeneous and
isotropic turbulent motion is distributed as a function of the wavenumber of eddies, and
therefore obtained a quantitative description of the effects of the conjectured cascade
of energy described in the previous section.

For observational convenience, or simply because simultaneous measurements in
three dimensions are often impracticable, the variations of velocity (or of other tur-
bulence quantities in oceanic flows) are usually measured in a single direction, either
as a sensor attached to a recording instrument is towed horizontally, lowered or falls
through the water, or as turbulence is carried by a mean flow past a stationary probe
at a fixed point on a mooring or bottom-mounted rig. If the characteristic Reynolds
number, Re, is very large (of order 107 or more) and turbulence is homogeneous and
isotropic, Kolmogorov showed – and it is generally observed – that the kinetic energy
per unit mass per unit wavenumber bandwidth, the ‘spectral kinetic energy density’
associated with a single component of the velocity fluctuations, is given by

�(k) = qε2/3k−5/3, (2.15)

within a ‘subrange’ of wavenumbers, k = 2π /(eddy diameter), a range where inertial
forces dominate over viscous. This range lies between the wavenumbers of the energy-
containing eddies in the turbulent field and the Kolmogorov dissipation scale, 2π/ lK,
although, as we show below, (2.15) is not valid across the whole of this wavenumber
range. The inertial subrange of wavenumbers within which (2.15) applies increases
with Re. The factor q in (2.15) is a non-dimensional constant.
• This is the famous Kolmogorov minus five-thirds power law of the inertial subrange
of the energy spectrum of homogeneous turbulence. If it is supposed that viscosity
plays an insignificant part in processes at scales much greater than lK, then, except
for the size of q, (2.15) can be deduced on dimensional grounds. [P2.5] It is found
empirically that the constant, q, is approximately equal to 0.5.

Figure 2.5 is an example of spectra of the velocity component transverse to the
vertical direction of fall of a free-fall instrument (the Advanced Microstructure Profiler
or AMP) and expressed as a function of the vertical wavenumber, k3. The spectra
derived from measurements are fitted to spectra compiled by Nasmyth, the Nasmyth
universal spectra that are shown by the thin lines, to obtain estimates of ε (effectively
using relations like (2.15) fitted to the observed spectra to derive ε).

The two measured spectra in Fig. 2.5 correspond to rates of dissipation ε equal
to 1.0 × 10−8 W kg−1 for the lower spectrum and 5.4 × 10−5 W kg−1 for the upper.
The corresponding Kolmogorov wavenumbers, (ε/ν3)1/4, are about 316 cyc m−1 for
the lower spectrum and 2710 cyc m−1 for the upper. (Units of cyc m−1 are used in

distance, x. (It is supposed that the mean conditions are steady and that 〈(u(x1, t))2〉 =
〈(u(x2, t))2〉.) Ru (0) = 1, and the value of x at which Ru (x) first equals zero as x increases
provides a measure of the distance at which the x-fluctuations of velocity become decorrelated or
incoherent. In a steady mean flow, U, the spatial cross-correlation coefficient, Ru (x), in the
direction of the mean flow may be calculated from a time series at a single point (a time-lagged
autocorrelation function), by putting u(x2, t) = u(x1, t − x/U ) using the Taylor hypothesis.
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Figure 2.5. Two energy spectra showing the Kolmogorov −5/3 law relationship in
their lower wavenumber range. The spectra are derived from data collected using the
free-fall AMP in the Strait of Gibraltar. The figure shows the variation of energy of the
transverse component of velocity with vertical wavenumber, k3. The dissipation rate, ε,
is equal to 1.0 × 10−8 W kg−1 for the lower spectrum and 5.4 × 10−5 W kg−1 for the
upper. The spectra have been averaged over successive 0.5-m intervals in layers 20 m
thick (i.e., the averages are of 40 spectra, each determined from measurements made
over 0.5 m), within which there is relatively uniform dissipation. The shading indicates
the size of the variations of the estimated values (95% confidence limits). Thin lines
marked ‘Nasmyth’ are fitted curves from which ε is estimated as explained in Section
2.5.2. (From Wesson and Gregg, 1994.)

Fig. 2.5, rather than rad m−1.) The slopes of the spectra at low wavenumbers, namely
wavenumbers less than about 6 cyc m−1 for the lower spectrum and 50 cyc m−1 for
the upper, are close to Kolmogorov’s −5/3, but the slopes become more negative at
larger wavenumbers, exceeding those of the −5/3 range. Deviation from the −5/3
law generally occurs at wavenumbers that are, as here, less than the Kolmogorov
wavenumber by a factor of about 16π . The lower spectrum has a sharp peak at about
55 cyc m−1 that is caused by vibration of the instrument. (It corresponds to the first
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bending mode of the AMP free-fall instrument.) The effect of this vibration in the
upper spectrum is masked within the more intense turbulent motion.

It is important to recognize that, as shown in Fig. 2.4, turbulence is highly variable
in the ocean and that, as in Fig. 2.5, spectra have to be derived from data obtained
over relatively large distances or periods of time, averaging being done by putting data
together in collections or ‘ensembles’ of data, usually repeated samples, each taken
over distances that are large relative to that of the energy-containing eddies. Careful
statistical averaging is implicit and necessary in this process, particularly because
single sets of data, each collected over a relatively short period of time or over a
short distance, may differ considerably. It is, for example, found that the histogram or
probability distribution function (pdf) of ε in the near-surface mixed layer is commonly
log-normal (see Fig. 2.15 later). This means that the pdf of log ε is normal or ‘Gaussian’,
with zero skewness (the normalized third moment of the distribution about the mean)
and a kurtosis (the normalized fourth moment) of 3, but that the pdf of ε is positively
skewed; high values of ε are relatively rare, and will not be adequately sampled if data
sets are too short. The existence of a broad band of energy within a spectrum obtained
by such ensemble averaging does not therefore imply that over some relatively short
period of time or in some small volume of water the motion field will be broad band
in frequency or wavenumber, or will simultaneously contain all the range of temporal
or spatial motions of an ensemble spectral description derived over longer times or
greater spatial extent.

In practice in the stratified ocean, both turbulence and internal waves may affect the
energy spectrum. Although, as hinted in Section 1.8.1, it is sometimes possible to use
frequency to distinguish between internal waves with frequencies <N and turbulence at
higher frequencies (as in the example, Fig. 2.6), both the waves and the turbulence are
transient and may change their nature in time. The internal wave field, for example,
may at times be dominated by the passage of groups of waves generated near the sea
surface that pass through the sampling region, breaking and periodically generating or
intensifying turbulence. [P2.6]

2.4 The terms in the energy balance equation

Turbulence in the ocean derives its energy from a variety of sources, some of which
are described in later chapters. The turbulent energy equation expresses the rate of
increase of the kinetic energy of turbulent motion as a result of the energy generated
by these sources, the rate of transfer of energy from kinetic to potential energy and the
rate at which kinetic energy is lost through molecular viscosity. Three terms usually
dominate the various contributions to the rate of change of the mean kinetic energy of
the turbulent flow per unit volume,12 and their balance or inequality leads to turbulence
being sustained or to its growth or decay.

12 Other terms in the energy equation are the rate of working of pressure fluctuations on the turbulent
motion and the diffusion of turbulent kinetic energy by viscosity but, except for example very near
rigid boundaries, where viscous effects may be large, these are usually smaller than at least two of
the three described in (2.16). Not specifically included in (2.16), however, is the contribution of
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Figure 2.6. Lagrangian frequency spectra of waves and turbulence. The data from
which the spectra are derived are obtained by tracking the motion of neutrally buoyant
floats designed by D’Asaro (2001), and hence deriving the water motion in a
Lagrangian frame of reference (i.e., measurements of speed following the path of fluid
particles, in contrast to the more conventional Eulerian measurements of velocity as
fluid passes the fixed locations of current meters on moorings). The spectra of the two
horizontal components (u and v) and of the vertical velocity, w, shown here derive
from measurements in a region of energetic mixing in stratified water over the sill of
Knight Inlet, British Columbia. The spectra have units of velocity squared, m2 s−2, per
frequency increment in s−1, or m2 s−1, and are non-dimensionalized by dividing by
εN−2, where ε is the dissipation rate (m2 s−3) and N is the buoyancy frequency (s−1).
The frequency, σ , is non-dimensionalized by dividing by N. (The scales are
logarithmic, so that the slope of straight lines would reveal power-law relationships
between the quantities plotted.) At frequencies less than N, the spectra of u (full line)
and v (dotted) are approximately equal (to within the 95% confidence limits of their
estimates), and exceed that of w. The latter is consistent with the spectra Wiw (shown
by the thin line) estimated by assuming that the horizontal spectra are entirely due to
internal gravity waves. At frequencies above N where the propagation of internal
waves is precluded, the spectra of u, v, and w are equal, indicating isotropy within a
frequency range of turbulent motion. (After D’Asaro and Lien, 2000.)

• The terms that are usually dominant in the turbulent energy equation can be
expressed as

DE/Dt = rate of production by the mean flow + buoyancy flux

− rate of dissipation (2.16)

turbulent energy that may come from breaking waves at the sea surface and, as mentioned in
Section 3.3, care is needed in applying the conclusions of Section 2.4 very close to the sea surface.
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where DE/Dt represents the mean rate of change of the kinetic energy of turbulence
per unit volume as it is carried by the mean flow.

The terms in (2.16) represent averages over some large volume or period of time,
not local instantaneous values. The terms on the right-hand side (rhs) of (2.16) are
discussed in the following sections. In a steady state the turbulent kinetic energy does
not change, so DE/Dt = 0 and the terms on the rhs sum to zero.

2.4.1 The rate of production of turbulent kinetic energy
by the mean flow

The first term on the rhs of (2.16) is the rate at which turbulent kinetic energy is
produced by the mean flow, by which is meant the flow, perhaps varying relatively
slowly in time, which contains the turbulent motion. A mean flow can provide a source
of turbulence, as do transient flows over the seabed in the surf zone, as described in
Section 1.4.13

• The term is expressed as the product of the Reynolds stress and the mean shear. In
oceanic boundary layers, for example the near-surface mixed layer and the benthic
boundary layer, this can be written as τ dU/dz or −ρ0〈uw〉dU/dz, the rate of produc-
tion of turbulent kinetic energy by the mean shear flow. It can be interpreted as the rate
of working of the stress, τ , defined by (2.1), that is exerted by the turbulent motion on
a mean shear flow, dU/dz.

The mean flow (in contrast to the turbulent motion) will lose energy at this rate,
and will consequently be unsteady and will decelerate if not sustained and continually
supplied with energy in some way, for example through a pressure gradient.

2.4.2 The turbulent potential energy

The second term in (2.16) is equal to (minus) the rate at which the turbulent motions
increase the potential energy of the fluid or (plus) the rate at which turbulent motions
are provided with energy as a result of a loss of potential energy. (The idea that turbulent
mixing increases the potential energy in the stratified ocean, and therefore provides a
supply of potential energy, is introduced in P1.6.)

Potential energy is a quantity measured relative to some initial or final state. It is
usually the potential energy which is ‘available’ to do work and change the kinetic
energy that is of relevance to the dynamics; it is, for example, the potential energy lost
as the weights in Joule’s experiment descend from their highest to their lowest position
that drives turbulent mixing and its eventual dissipation to produce heat within the
insulated cylinder in Fig. 1.3. The potential energy of the turbulent motion can be
represented as a sum over fluid particles (or small volumes of fluid) of terms gρ ′η,

13 A distinction is being drawn here between laminar flows that lead to a transition to turbulence and
those mean flows that help sustain or diminish turbulence once it has been generated. Here, and
often in the ocean, we are concerned with the latter. In Reynolds’ experiment the laminar mean
flow is unstable, leading to a transition to turbulence. Downstream of the transition, the velocity
profile of the mean flow is changed (see P1.1) and the flow past the inner boundary of the tube may
now act to help sustain turbulence.
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Figure 2.7. Displacements caused by an overturning eddy in stratified water. (a) The
initial profile of density with density increasing with depth. (b) The distortion of
isopycnals by the eddy and the path (dashed) of a free-fall instrument through the
eddy. (c) The density profile measured from a sensor on the free-fall profiler. (d) The
vertical displacements of density, η, resulting from the eddy. In practice, the initial
density profile is unknown. Statically stable density profiles may be reconstructed from
several observed profiles by reordering those measured into ones in which density
increases with depth, supposing that no change in density has been brought about by
molecular diffusion during the time over which the eddies develop, and then by finding
the average depth of a set of selected values of the density in the several reconstructed
profiles. (The latter procedure removes the smearing of wave-disturbed density
interfaces that would be obtained by averaging densities at a set of fixed depths.
Consider, for example, how to find the mean density profile across the wave-disturbed
sea surface: averaging densities measured at fixed levels will smear the profile across a
thickness equal to the wave height and lose the sharp change that, in reality, occurs at
the sea surface.) The rms vertical displacements required in such a reordering provide
measures of the vertical scale of eddies and of their potential energy.

where η is a vertical displacement of a fluid particle with measured density fluctuation
ρ ′ from some prescribed level: ρ ′ = ρ − ρ0, as in Section 2.2.2. For example, η may
be the height to which a fluid particle with a measured density difference from its
surroundings of ρ ′ is carried by turbulent motion from its equilibrium position in a
stable stratification in which density increases downwards.

An estimate of the stable stratification from which fluid is disturbed by turbulent
eddies may in practice be found from a measured vertical density profile by reordering
the sequence of values of density measured at known depths into a new sequence
in which the density increases everywhere with depth (Fig. 2.7). The rms vertical
distance through which the original density values are moved in this rearrangement, or
reordering, is then a measure of the turbulent displacement of fluid particles, η. Unless
it is breaking, an internal wave will simply raise fluid up and down, perhaps distorting
the density gradient but, like the surface waves shown in Fig. 1.5, not overturning or
producing any statically unstable regions and displacements in a reordered sequence.14

14 That is, no reordering is needed and η = 0 in a non-turbulent, non-breaking internal wave field. As
defined, the displacements are different from those characterized by ζ = ρ′/(dρ/dz) representing
a fluctuation in density, ρ′, at a point as a vertical density gradient, dρ/dz, is moved vertically past
it, e.g., by a non-breaking internal wave.
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Figure 2.8. Profiles of temperature and displacements. Two examples of (left)
temperature profiles and reordered profiles with temperature increasing with depth,
(centre) the vertical gradient of temperature, and (right) the calculated displacements.
Temperatures were obtained using a glass rod thermistor of diameter 0.5 mm carried
by a free-fall microstructure profiler in the central Pacific Ocean. (a) shows a single
overturn at an interface at a depth of about 919 m, whilst (b) shows three regions of
mixing separated by dotted lines and defined by positive displacements at the top and
negative displacements at the bottom. The lower of the three is about 3 m thick. (From
Gregg, 1980.)
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An example of displacements and a reordered profile, using temperature as an indicator
of fluid density, is shown in Fig. 2.8.
• The rms displacement determined from the measured η values, LT = [〈η2〉]1/2, with
the average taken over some vertical distance and usually over several density profiles,
provides a measure of turbulent mixing that is used in Section 4.4.1 to derive an
estimate of ε.

The mean rate of change of the potential energy of a fluid particle of density
fluctuation ρ ′ at a measurement level z is determined by calculating the mean of the
product of gρ ′ with the rate at which the vertical position of the fluid particle is
changing, ∂η/∂t , i.e. its vertical velocity, w. The rate of change of the potential energy
of the density field resulting from turbulence is therefore g〈wρ ′〉 or, from (2.7), −ρ0 B.
The rate at which turbulent kinetic energy is lost through transfer to potential energy
is therefore −ρ0 B, and the term appearing on the rhs of (2.16), contributing to a rate
of increase of turbulent kinetic energy, is therefore +ρ0 B.
• The buoyancy flux, B, is related to the rate of change of the potential energy of the
turbulent flow: the mean rate of change of the turbulent potential energy per unit mass
is equal to –B. It is evident from (2.8) that a heat flux, F, is also directly related to a
rate of change of potential energy.

2.4.3 The rate of dissipation

The final term, the rate of loss of turbulent kinetic energy per unit volume, is approx-
imately ρ0ε, the rate of loss of turbulent kinetic energy per unit volume, through the
effect of viscosity. (Energy per unit volume is approximately ρ0 times energy per unit
mass.)

The buoyancy flux may sometimes be negligible in the almost unstratified conditions
that are found in the mixed boundary layers at the sea surface and seabed. In steady
conditions (DE/Dt = 0), ε may then be determined from the balance of the first and
third terms on the rhs of (2.16), provided that the turbulence stress and the mean shear,
and hence the rate of production of the turbulent kinetic energy, can be measured. This
is discussed further in Sections 2.5.4 and 3.3. Similarly, in steady conditions under
which the Reynolds stress is very small, the balance of the second and third terms on
the rhs of (2.16) may provide another means of estimating ε, as described in Section
3.2. [P2.7]

2.5 Measurement techniques and instruments

The preceding sections have suggested some measures that may characterize and quan-
tify turbulent motion, including the rate at which turbulence dissipates kinetic energy,
ε, the Reynolds stress or eddy viscosity and the spectrum of velocity fluctuations.
Figures 2.4, 2.5 and 2.8 show examples of measured values. How are these measure-
ments of turbulence made?
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2.5.1 The first measurements of turbulence: spectra

Making simultaneous measurements at points separated in space to find the spatial
gradients required to estimate ε using (2.11) or to calculate wavenumber spectra has
generally in the past been impractical (but is now becoming possible – see Fig. 2.3).
Instead estimates of spatial gradients in turbulent flows are usually made indirectly,
by measuring temporal variations, either at a fixed point past which turbulent fluid is
advected at a measured mean speed U or by using a sensor that is translated rapidly at
a known mean speed U measured relative to the water. Spatial gradients are then found
by dividing the time derivatives of the measured variables by U, making the Taylor
hypothesis.

Measurement of small-scale turbulent motion remote from the sea floor began with
the studies made by Grant, Stewart and Moilliet in the early 1960s in experiments
designed to test Kolmogorov’s minus five-thirds power law, (2.15), and to estimate the
unknown constant, q. Observations were made in the unstratified and tidal Discovery
Passage off the west coast of Canada, where the Reynolds number is of order 108, a
value far higher than those then obtainable in the laboratory. Hot-film anemometers
were mounted on the bow of a research vessel and on a streamlined towed body
(Fig. 2.9) to measure the fluctuations in flow speed.15 The turbulence was so intense
that the ship was moved by the larger turbulent eddies! Wavenumber spectra at scales
down to wavelengths of about 5 mm were derived from the time series data of the
anemometers. The k−5/3 dependence of the one-dimensional energy spectrum was
confirmed over a range of several decades with a value of the constant q in (2.15)
equal to 0.47 ± 0.02.

2.5.2 The air-foil probe: the measurement of ε

• Not until the mid 1970s did it become possible to make measurements of the low
levels of dissipation in the weak stratification at depths below the seasonal thermocline.
The sensor that was designed, constructed and tested by Osborn, the ‘air-foil’ probe
shown Fig. 2.10, is still in common use and provides the principal means of measuring
turbulence at small scales in the stratified ocean.

The probe incorporates a piezoelectric crystal, similar to those once used in gramo-
phone pick-ups, protected from direct contact with seawater by a moulded rubber
sheath with a diameter of about 6 mm. The crystal provides electrical signals propor-
tional to the changes in one component of the lateral force. The probes are mounted
on an instrument package (e.g., as in Figs. 2.11–2.13), and fall or are carried through
the water at a known speed, typically 0.5–2 m s−1. The force to which the probe

15 The conducting film on each anemometer is a few millimetres in width. It is slightly heated by an
electrical current passed through it but cooled on exposure to flowing water at a rate proportional
to its speed. The cooling causes the electrical resistance of the film to diminish and the current to
vary if it is not controlled. The variations in electrical current (or control) provide a measure of
flow speed. This method of measuring turbulent velocity fluctuations provides reliable measures of
turbulence only in very energetic flows with large gradients in turbulent velocity components and
is not suited to measuring turbulence in stratified conditions.
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Figure 2.9. The towed paravane carrying the hot- and cold-film thermistors, visible at
the top on the left, used to obtain the first records of small-scale turbulence and to
determine its spectrum. (From Grant et al., 1962.)

responds is that caused by the relative lateral water speed produced by the turbulent
eddies in the water through which the probe is traversing. The probes are calibrated to
convert the rate of change of the force into the rate of change of the component of the
relative lateral speed of the water in the direction of the measured force component,
or the shear. Measurements are made at frequencies greater than 200 Hz, correspond-
ing to horizontal distances of about 2.5–10 mm. A probe moving horizontally in the
x direction at speed U, perhaps mounted on a submarine (Fig. 2.11) or autonomous
underwater vehicle (AUV: the mounting of probes on one such AUV, ‘Autosub’, is
illustrated in Fig. 2.12), may measure fluctuations in dw/dt from which spatial deriva-
tives dw/dx = (1/U )dw/dt are found.16 In conditions of isotropic turbulence, it is
then possible, in principle, to use (2.11) to determine ε with a single air-foil probe.

16 The mean horizontal speed through the water, U, is measured by more conventional instruments,
e.g., the ADCP described in Section 2.5.4. For vertically falling profilers, the speed through the
water is generally given to a good approximation by the rate of change of depth, which is obtained
from the pressure measured by sensors on the profilers.
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Figure 2.10. The piezoelectric air-foil shear probe designed by Osborn (1974). It has
a diameter of 6.4 mm. Lateral forces caused by turbulence motion as the probe moves
steadily through the water are converted into electrical signals that are calibrated to
determine the relative turbulent velocity normal to the probe as a function of time.
Together with measurements of movement through the water (e.g., depth for free-fall
instruments or relative mean flow speed for probes mounted on moorings or carried
horizontally by an AUV), these are used to determine the spatial derivative of the
relative lateral velocity (e.g., ∂v/∂x and ∂w/∂x in Fig. 2.14). (From Gregg, 1999.)

Figure 2.11. The air-foil probe mounted on a tripod on a submarine. The turbulence
package supporting the probe is visible on its mount at the top of the tripod needed to
provide a stable non-vibrating mounting and to carry the probe above the water
disturbed by the presence and forward motion of the submarine’s hull. (With kind
permission of Dr T. R. Osborn.)
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(a)

(b)

Figure 2.12. Air-foil and temperature probes, (a) being mounted on an AUV,
‘Autosub’. During deployment, (b), the probes are protected by a cowl that retracts
once the AUV is subsurface. The self-propelled and internally recording AUV can be
preset to run legs between selected waypoints at about 1.25 m s−1 and at constant depth
below the surface. It operates unattended for periods of about 100 h. (Photographs
kindly provided by Mr Alan Hall.)
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Figure 2.13. Free-fall instruments. (a) A schematic diagram of the Advanced
Microstructure Profiler (AMP). It is generally tethered to the research vessel by a
2.7-mm-diameter line with strong Kevlar fibres to aid recovery and with an optical
fibre for data transmission. The design is unique, but illustrates the typical arrangement
of such semi-free-fall instruments. Sensors are mounted at the base of the AMP to
sense motions and temperatures in water undisturbed by the falling instrument, and fall
speeds are generally about 1 m s−1. (From Moum et al., 1995.) (b) Another profiler,
the High Resolution Profiler (HRP), being assembled on deck prior to launch. The
delicate sensors are visible on the bottom of the instrument. The projecting vanes at the
other end (the top) of the instrument are to reduce its speed of fall through the water.
(Photograph kindly provided by Dr Ray Schmitt of the Woods Hole Oceanographic
Institution, USA.)

Streamlined free-fall microstructure instruments, such as the University of Wash-
ington’s Advanced Microstructure Profiler (AMP) shown in Fig. 2.13(a) or the Woods
Hole Oceanographic Institution’s High Resolution Profiler (HRP), Fig. 2.13(b), have
been designed to fall smoothly and freely thorough the water, being recovered by a
loose tether to a ship or on returning to the sea surface after having released a weight.
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(b)

Figure 2.13. (cont.)

In these cases the air-foil probes mounted on struts below the falling instrument, as
shown in Fig. 2.13(b), provide a measure of the shear, ∂u/∂z.
• Temperature and conductivity (from which salinity and hence density may be found)
are also commonly measured alongside shear at the scales of ‘ocean microstructure’
of 1 cm or less.

The size of the air-foil probe is generally too large to resolve fluctuations down to the
Kolmogorov scale, lK, and it is often difficult to resolve spatial variation to scales much
smaller than those of about 10lK at which the spectrum of ε is known to reach its maxi-
mum value. (Much of the energy in the wavenumber spectrum of the dissipation lies in
the range (0.08−0.8)(ε/ν3)1/4, or at eddy scales of 2πlK(0.08−0.8)−1 ≈ (7.8−78)lK.)
Equation (2.11) cannot therefore be used directly to determine ε because the small-
scale velocity gradients are not fully resolved. Spectral estimates of spatial gradients
are therefore fitted to a known universal spectrum, the ‘Nasmyth universal spectrum’,
as in Fig. 2.5, and the fitted and interpolated spectrum is then used to find ε, as explained
in Section 2.3.6, or integrated to obtain an estimate of 〈(∂w/∂x)2〉 or 〈(∂u/∂z)2〉.17

17 The accuracy of the estimates of ε depends on whether the turbulence is really isotropic, the
success in fitting the universal spectrum to data and the ability of the supporting package to move
through the water without itself causing disturbance or vibrating. Processes are available to remove
the effects of vibrations from the signal, provided that their frequency band is relatively narrow.
Accelerometers are also commonly incorporated into measuring instruments to differentiate real
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Figure 2.14. Records obtained using air-foil probes and temperature sensors. A 5-min
record of shear, dissipation, temperature and temperature gradient obtained using the
AUV, ‘Autosub’, moving along a horizontal track directed (in the x direction) into a
wind of 12.4 m s−1 at a speed of 1.25 m s−1 and a mean depth below the sea surface of
2.23 m. From top to bottom: the vertical shear, ∂w/∂x (s−1); the horizontal shear,
∂v/∂x (s−1); 1-s average values of ε (W kg−1); temperature, T (◦C); and temperature
gradient, ∂T/∂x (◦C m−1). The two shears are almost indistinguishable, suggesting
isotropy. High dissipation, ε, corresponds to high shear. Although there are times at
which shear, dissipation and temperature gradient are all high (e.g., 15.5–15.8 min),
there are others when the temperature gradient is high but shear and dissipation are low
(e.g., 17.1–17.4 min) and when shear and dissipation are high but the temperature
gradient is relatively small (e.g., 14.0–14.2 min), suggesting the occurrence of
different processes of turbulence generation or that shear and temperature variations
decay at different rates. (The data and processing methods are described in more detail
in Thorpe et al., 2003. Figure kindly provided by Professor T. R. Osborn.)

Figure 2.14 is an example of a short time series of shear, ε, temperature and temper-
ature gradient obtained from an AUV moving along a straight track about 2.23 m below
the surface in deep water. The occasional, but variable and irregular, correlation of shear
and temperature gradient suggests that several different processes may contribute to

from body-induced fluctuations, and to make appropriate corrections. The resulting estimates of ε,
usually averaged over intervals of about 1 s or 1 m, commonly have an uncertainty of about 50%.
This may appear large but, since ε generally ranges over several decades in any set of
measurements, the uncertainty is often less important than it at first appears, an exception being
when an objective is to assess the relative importance of measured sizes of terms in (2.16).
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the generation of turbulence. Figure 2.15 shows the probability distribution function
(pdf) of log ε calculated from such data close to the surface where breaking waves
contribute to the generation of turbulence. The pdf is approximately log-normal both
for the whole record and for those parts where bubble clouds, marking the probable
presence of turbulence caused by breaking waves, are observed.18

2.5.3 First measurements of Reynolds stress, and
the related dissipation per unit area

The first measurements of Reynolds stress in the sea were made in the 1950s by Bowden
and Fairbairn in Red Wharf Bay in the Irish Sea using electromagnetic current meters
mounted on a frame lowered onto the sandy seabed in depths of 12–22 m (Fig. 2.16(a)).
Electromagnetic current meters19 are able to provide simultaneous measurements of
the fluctuations in two components of velocity, usually a horizontal component, u, and
the vertical component, w, on small, O(0.1 m), length scales, from which the Reynolds
stress, τ = −ρ0〈uw〉, can be estimated.

Figure 2.17 shows an example of the two components of currents and the derived
product uw, where u is the deviation of the current from a mean current of 0.49 m s−1

measured at a height of 1.5 m above the seabed. The stress is dominated by bursts of
higher or lower current lasting only a few seconds, marked S or E for ‘sweeps’ and
‘ejections’ as explained in the figure caption.
• The scale of the eddies responsible for transporting momentum is relatively large,
typically, in a boundary layer, of the order of the distance of the measurement point
from the boundary and much larger than the Kolmogorov length scale. It is for this
reason that measurements of stress can be made by sensors that are large in comparison
with, say, the air-foil probes used to measure turbulent dissipation.

18 The bubbles, typically of radius 10–100 µm, of which the bubble clouds are composed may be
regarded as a tracer of water that has been involved in the process of wave breaking (albeit a
non-conservative tracer, because the bubbles dissolve and rise to the surface). The depth of
observation in Fig. 2.15 is about twice the significant wave height, Hs, the mean crest-to-trough
distance of the highest one-third of the waves. (The height, Hs, increases with wind speed.) At this
depth below the surface the higher-than-average dissipation in the bubble clouds is related to
turbulence generated by the breaking waves that produced the bubbles, rather than to turbulence
generated by the rising bubbles themselves.

19 The electromagnetic current meters used by Bowden and Fairbairn are 10 cm in diameter in the
form of oblate spheroids or discuses with minor axes of 3.8 cm. A circular solenoid is contained
within the discus, lying in its plane, and this produces a magnetic field. The flow of the conducting
seawater parallel to the faces of the discus passing through this magnetic field generates a potential
difference (pd) as a result of the Faraday effect, and this is sensed by two orthogonal pairs of
electrodes exposed to the water on the face of the discus. The component of flow normal to the line
joining a pair of electrodes is proportional to the measured pd. When the discus lies in a vertical
plane, the measured pds derived from the two electrode pairs allow the horizontal and vertical flow
components to be measured simultaneously. The volume of water sampled is of extent comparable
to the solenoid diameter. In later instruments, the solenoid is contained in a circular insulated
moulding, and the instrument looks like a flattened ring doughnut, its open centre reducing the
flow obstruction caused by the earlier discus form. They are typically 15 cm in diameter. The
absence of moving parts avoids frictional problems found in mechanical current meters in low
flows, but it has not been found possible to reduce the size of electromagnetic current meters so
that they can resolve currents at the centimetre scales typical of turbulent motion. Measurements of
the stress on the seabed have been made both in shallow tidal seas and in the benthic boundary
layer at abyssal depths.
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Figure 2.15. Turbulent dissipation rates near the sea surface. Top: the probability
distribution function (pdf) of log(104ε) (ε measured in W kg−1) at a mean depth of
2.22 m in a wind speed of about 11 m s−1 and a fetch of about 21 km measured using
the AUV shown in Fig. 2.12(b). In black are shown the measurements made in the
presence of bubble clouds produced by breaking wind waves. Both pdfs are close to
being normal or Gaussian, i.e., with forms
{1/[σ (2π )1/2]}{exp{−[log(ε) − µ]2}/(2σ 2)}, where µ is the mean value of log ε and σ

is the standard deviation of log ε. Below: the ratio of the values of the pdf of log(104ε)
in bubble clouds to those in the total sample. The mean level of dissipation is higher
than average within the bubble clouds, and most of the higher values of ε are found
within bubble clouds. The breaking waves that produce the bubbles make a substantial
contribution to turbulence near the sea surface. (From Thorpe et al., 2003.)

Electromagnetic current meters have now been replaced by smaller and less intrusive
acoustic instruments, e.g., those on the rig in Fig. 2.16(b).
• One purpose of making stress measurements is that they allow estimation of the drag
coefficient, CD, a parameter relating the stress of the turbulent water on the seabed and
the mean current, U, at a specified height, commonly 1 m, above the boundary using
an equation of the form
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(a)

Figure 2.16. Instruments used to measure Reynolds stress. (a) The rig carrying two
electromagnetic current meters used by Bowden and Fairbairn to measure the turbulent
stress on the seabed, about to be lowered to the bed. The rig has an attached ‘sail’ to
orientate it into the mean flow, typically about 0.25–0.5 m s−1. The views are (i) from
the side showing the 0.1-m-diameter current meters; and (ii) from the front, looking in
the direction of the flow. From this direction the current meters can be seen to be
supported on horizontal struts. Observations were made at heights from 0.75 to 1.75 m
off the bed. Recording was made using photographic recorders and the records were
digitized by hand at 1-s intervals. (From Bowden and Fairbairn, 1956.) (b) A more
modern rig, STABLE (Sediment Transport And Boundary Layer Equipment). Stress
measurements are made using three two-component acoustic current meters, visible on
the left and having short ‘horizontal Y-shaped’ struts. Data are recorded at 25 Hz
within the relatively massive recording and power-supply package above. STABLE
also carries an acoustic backscattering system operating at 1, 2 and 4 MHz to detect
sediment particles. (Photograph kindly provided by Dr A. Souza of the UK Proudman
Laboratory.)

τ = ρ0CDU 2, (2.17)

from which the stress may be derived from knowledge only of the current, U. The
value of CD is found to be about (2.5 ± 0.5) × 10−3.

The Reynolds stress on the seabed is particularly important because sediment begins
to be eroded and brought into suspension when the stress exceeds a value that depends
on sediment type but is typically about 0.16 N m−2. With knowledge of CD, maps of
the bottom stress can be derived using (2.17) from charts of tidal streams and therefore,
since sediment erosion depends on the magnitude of the stress, the regions of stable
(or immobile) and unstable sediment can be predicted.

The stress in the water column is also important because of its relation to the
production of turbulent kinetic energy as explained in Section 2.4.1.
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(b)

Figure 2.16. (cont.)

The Reynolds stress is a factor that determines the nature of the dynamics of
the oceanic boundary layers. Dissipation is proportional to U 3, being the product of
the bottom stress (proportional to U 2) with the current, U. The term ρ0CDU 2|U | (the
stress multiplied by flow speed, averaged over time and integrated over unit area of
the seabed) is equal to the rate at which tidal energy is dissipated by turbulent motion
per unit area of the seabed or, equivalently, the rate at which turbulent kinetic energy
is produced per unit area. This is one of the two methods used by G. I. Taylor in 1919
to estimate tidal dissipation in the Irish Sea and provided the first calculation of ε

in the ocean. [P2.8] (It was more for the convenience of a local site than because
of its possible relevance to Taylor’s calculation that Bowden and Fairbairn – from
the nearby UK Liverpool University – made their observations in the same body of
water.)
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Figure 2.17. Turbulence near the seabed. A typical record of the horizontal, u, and
vertical, w, components of current fluctuations and of their product, uw, from which
the Reynolds stress is determined in the near-bottom boundary layer. This is at a height
of 1.5 m from the seabed and the mean current of 0.49 m s−1 has been subtracted from
the horizontal component. Higher than average values of u associated with negative w

(downward moving sweeps of faster moving water, ‘S’) and lower than average u and
positive w (ejections of slower moving water, ‘E’, from near the seabed) are indicated.
These are suggestive of the active and coherent stress-transferring processes described
in Section 3.4.4. (From Heathershaw, 1979.)

2.5.4 Estimates of Reynolds stress and ε using an ADCP

Figure 2.18 shows a conventional acoustic Doppler current profiler (ADCP) with four
transducers. They emit short (typically of duration 0.5 ms or, with a typical speed of
sound in seawater of 1500 m s−1, about 0.75 m long) pulses of high-frequency (usually
10 kHz or more) sound directed to travel along four narrow beams, each inclined at the
same angle to the vertical. The sound is partially reflected from particles being carried
through the beams by the flowing water. The reflections of a sound pulse in a particular
beam are received back by the transducer that emitted the sound pulse. The reflected
sounds of each beam are recorded and analysed separately. Because the reflecting
particles are moving, the sound reflected in a beam has a frequency different from
that emitted, and the difference in frequency, the Doppler shift, provides a measure of
the component of the speed of particles in the beam direction. Knowing the speed of
sound in the seawater, the range along a beam from which sound is reflected can be
determined from the time between the transmission and return of sound pulses.

Two of the four ADCP beams are shown in Fig. 2.19, beam 1 being aligned in the
direction of the mean flow and beam 2 in the opposite direction. The speeds measured
by the ADCP at a height z (or range r = z/ sin φ, where φ is the inclination of the beam
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Figure 2.18. An acoustic Doppler current profiler (ADCP). This instrument,
photographed on the seabed, has four circular transducers. The aluminium plate on
which the ADCP is mounted is 0.3 m across and the diameter of the transducers is
about 0.07 m. Each transducer is tilted at 20◦ from the vertical. This particular model is
the RDI workhorse Zedhead operating at 1200 kHz. (Photograph taken by and
reproduced with kind permission of Jens Larsen, NERI, Denmark.)

Figure 2.19. ADCP beams. Only two of the four beams are shown, beam 1 aligned in
the mean direction of the flow, U, and beam 2 in the opposite direction. Analysis of the
Doppler returns from the individual beams allows the terms 〈uw〉 and dU/dz to be
estimated, their product providing a measure of the rate of production of turbulent
kinetic energy.

to the horizontal) are the two components of speed, Vi, along the beam directions. If
the vertical component of velocity is w and the horizontal is U + u, where U is the
mean flow at height z, then V1 = (U + u)cos φ + w sin φ, whilst V2 = w sin φ − (U +
u)cos φ. If the mean fluctuation in horizontal speed 〈u〉 = 0 (so that 〈U + u〉 = U )
and the mean vertical speed 〈w〉 = 0 (provided that the bottom is horizontal, the water
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surface is not rising and the particles move with the water), it is then found that
〈V 2

1 − V 2
2 〉 = 2〈uw〉 sin(2φ), and (apart from the density term, which is reasonably

well known) the Reynolds stress can be estimated from the measured values of V1

and V2. This assumes, however, that the turbulent eddies that contribute most of the
stress are large relative to the separation between the beams at height z so that the
vertical and horizontal components of the velocity fluctuations produced by these
eddies in the two beams are equal. The mean current, U, at height z can be found
from 〈V1 − V2〉 = 2Ucos φ, and its gradient, dU/dz, can be found from differencing
measurements taken at different ranges.
• The rate of production of turbulent kinetic energy, the product τ dU/dz (Section
2.4.1), can therefore be estimated from measurements using an ADCP.

If the measurements are made in a layer of seawater that is well mixed and of
uniform density, as will often be found in the coastal zone, where tidal or other flows
are strong, and if conditions are steady, then the first and final terms in the turbulent
energy equation will be equal, so that ε = (τ/ρ0)dU/dz. This provides a means to
estimate the dissipation rate, ε, from the ADCP-determined estimates of turbulent
energy production rate.

A second acoustic method of estimating ε that has been used in surface mixed
layers derives from the reasoning by G. I. Taylor that the presence of the large energy-
containing eddies with characteristic velocity u and dimension l will lead to a dissipa-
tion rate

ε ∝ u3/ l. (2.18)

Measurements of the eddy scale l with estimates of the rms vertical velocity w obtained
from a single, vertically pointing, ADCP beam have been compared with estimates
of ε from air-foil probes and, to a good approximation (and in accord with Taylor’s
reasoning),

ε = cw3/ l, (2.19)

where c is a constant roughly equal to unity. The value of l may be obtained by
estimating the mean distance between the locations at which w crosses zero in profiles
of vertical velocity obtained using the single vertical ADCP beam.

Suggested further reading

First measures of turbulence

The paper in which G. I. Taylor (1919) calculated the rate of dissipation of tidal energy
in the Irish Sea is a classic. Two different methods are used in the calculation, one as
described in Section 2.5.3 and the second based on estimates of the flux of tidal energy
into and from the Irish Sea. Remarkably (in view of the approximations involved) the
two methods lead to similar values. (See also Section 6.3.1.)

Bowden and Fairbairn (1956) describe the first measurements of Reynolds stress
near the seabed.
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Grant et al. (1962) succeeded in making microscale measurements of turbulence
in mid-water from a towed body. Subsequent measurements were later made from a
more stable body, a submarine (Grant et al., 1968).

Spectra and the nature of turbulent flow

There are several textbooks that provide very useful explanations of the basics of
turbulence, including Hinze (1959) and Tennekes and Lumley (1982). The latter is
frequently used in courses on turbulence.

Free-fall instruments, turbulence sensors and
data processing

Oakey (2001) gives a general introduction to microstructure sensors and techniques
used to derive ε.

Further study

This chapter provides a very incomplete introduction to the present understanding of
the nature of turbulent flow and to its measurement. There is much more to be known
about data processing and the production and interpretation of spectra, some of which
may be found in Oakey (1982) and Moum et al. (1995). Several types of microstructure
profilers are now available, although reliable operation requires ‘back-up expertise’
and few are ready to use ‘off-the-shelf’. Further methods of determining measures of
turbulence are described in the following chapters. Methods involving ADCPs, now
commonly being used in coastal waters to determine mean currents and turbulence
stress, and to estimate turbulent dissipation, are described by Gargett (1999) and Lu
and Lueck (1999).

Detection of coherent structures

Both shadowgraph (see caption to Fig. 2.1) and Schlieren (caption to Fig. 1.14(a))
optical methods have been developed to observe the structure of the density variations
resulting from turbulence on scales of a few centimetres or less in the ocean, for
example by Williams (1975), Kunze et al. (1987) and Karpen et al. (2004), but neither
is in common use.

Free-fall instruments, turbulence sensors
and data processing

Moum et al. (1995) describe the free-fall AMP and the versatile towed instrument
CAMELION, so named because its sensing package can easily be changed and is
therefore, like the lizard (chameleon in its English spelling), adaptable to its operational
environment. Winkel et al. (1996) provide a description of the MSP.

Technical problems involved in deriving ε and χT are described by Gregg (1999).
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Isotropy

Gargett et al. (1984) made measurements from a manned submersible, ‘Pisces’, in a
stratified and turbulent flow within Knight Inlet, British Columbia, and give a detailed
and illuminating account of the analysis of data to examine the conditions under which
turbulence is isotropic.

Smyth and Moum (2000) describe an interesting numerical model study of the
isotropy of flow resulting from the instability of a stratified shear flow (see Fig. 4.5
later).

The measurement of ocean turbulence is the subject of Chapter 6 in TTO.

Problems for Chapter 2

(E = easy, M = mild, D = difficult, F = fiendish)
P2.1 (E) Reynolds stress in surface waves. The horizontal and vertical veloc-

ity components in the water beneath an irrotational surface wave of small ampli-
tude, a, wavenumber, k, and frequency, σ , are u = aσ exp(kz) sin(kx − σ t) and
w = −aσ exp(kz) cos(kx − σ t), respectively, where z is measured upwards from the
mean level of the water surface. Show that the Reynolds stress, −ρ0〈uw〉, is zero. (The
wave velocity components are 90◦ out of phase.)

P2.2 (E) Reynolds stress in internal inertial gravity waves. The velocity com-
ponents of a plane internal wave of amplitude a, wavenumber vector (k, 0, m)
and frequency σ , travelling in the x–z plane through a fluid at rest in a rotat-
ing system of Coriolis frequency f, in a region of constant buoyancy frequency
N, are u = (amσ/k) cos(kx + mz − σ t), v = (a f m/k) sin(kx + mz − σ t) and w =
−aσ cos(kx + mz − σ t). Show that the y-component of the Reynolds stress,−ρ0〈vw〉,
averaged over a horizontal plane, is zero, but that the z-component, −ρ0〈uw〉, is non-
zero, but independent of z.

(Since the momentum transferred to the mean flow in a horizontal layer depends on
differences in stress on its two sides – i.e., the divergence, ∂/∂z, of the stress – internal
waves do not generally drive an Eulerian mean flow unless they break, although, like
surface waves, they may have an associated Stokes drift.)

Internal waves induce density variations at fixed points. If the density depends solely
on temperature rather than salinity, then the temperature variation corresponding to the
wave-induced velocity fluctuations is T ′ = −[N 2a/(gα)] sin(kx + mz − σ t), where
α is the thermal expansion coefficient. Show that the mean vertical heat flux, and
consequently the eddy diffusion coefficient of heat, resulting from the motion produced
by internal waves is zero. (N is the buoyancy frequency given by N 2 = gα dT/dz,
where T(z) is the mean temperature at level z.)
• Internal waves do not produce a vertical transfer of heat, unless they break and drive
a turbulent heat flux.

P2.3 (M) Energy dissipation in shear and convergent flow. In the shear flow illus-
trated in Fig. 1.10(a), du/dz 
= 0 and u does not vary in x or y, but the other two
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velocity components, v and w, are both zero. In the convergent flow of Fig. 1.10(b),
u = qx (independently of y and z) and v = −qy (independently of x and z), where q
is a constant rate, whilst w = 0. In each case find the terms sij and use (2.9) to derive
ε if, in the shear flow, du/dz = 4 s−1, and, in the convergent flow, q = 3 s−1. You
should suppose that ν ≈ 1 × 10−6 m2 s−1. The assumed rates, du/dz and q, are quite
high, involving, say, speed differences of 2 and 1.5 cm s−1, respectively, over 5 mm.
The rates are also steady, and you should find that they are independent of position,
whereas the equation for ε in (2.9) is expressed as an average (〈. . .〉) in time or space
of the product of spatial derivatives of the variable and turbulent flow. The divergence
of the vector flow speed u is equal to ∂u/∂x + ∂v/∂y + ∂w/∂z, and is zero in both
the shear and convergent flows, as must be the case in an incompressible fluid.

P2.4 (M) Root mean square shear and heating by turbulent dissipation. (a) Given the
observed range of ε and supposing that turbulence is isotropic, what range of values
of the root mean square shear, [〈(du/dz)2〉]1/2, is found in the ocean? (b) What is the
corresponding range of the rate of change of temperature resulting from the dissipation
of turbulent kinetic energy? (c) Show that, even if ε = 10−4 W kg−1, an extremely high
value for the stratified ocean, the rate of increase in temperature resulting from the
viscous dissipation of turbulent energy is less than 0.1 mK h−1. • Since such high
rates of dissipation are both rare and short-lived, their effect in heating the ocean or in
changing its density is negligible.

P2.5 (M) The minus five-thirds spectrum. Derive (2.15) using a dimensional argu-
ment. P2.6 (D) The Lagrangian spectrum. If the frequency spectrum of the vertical
component of velocity, �w(σ ), measured in a Lagrangian frame of reference in strat-
ified turbulent flow depends, in an inertial range, only on the frequency, σ , and the
rate of dissipation of turbulent kinetic energy, but – in the range dominated by inertial
rather than buoyancy forces – is independent of buoyancy frequency, N, find how �w

varies with σ . Use Fig. 2.6 to determine any unknown constant. P2.7 (M) Turbulent
energy balance. Show that the three terms on the rhs of (2.16) and defined in Sections
2.4.1–2.4.3 all have the same dimensions, equal to those of the term on the lhs of
(2.16). Estimate the rate of dissipation of turbulent kinetic energy per unit mass in
an unstratified turbulent shear flow through a channel where the (constant) shear is
dU/dz = 0.2 s−1 and the Reynolds stress is 12 N m−2, supposing that the flow and
the total turbulent kinetic energy are steady (i.e., unchanging in time) and the density
of seawater is 1028 kg m−3. P2.8 (M) Dissipation by bottom friction in a shallow sea.
Estimate the mean rate of dissipation of tidal energy per unit mass in an unstratified
well-mixed shallow tidal sea where the tidal currents measured at a point are sinu-
soidal, given by U = U0 sin (σ t), where U0 = 0.8 m s−1 and σ is the frequency of the
M2 tide, about 2π/(12.43 h), and in which the mean depth is 75 m.



Chapter 3

Turbulence in oceanic boundary layers

3.1 Introduction: processes, and types of boundary layers

This chapter is about turbulence in the two, very extensive, boundary layers of the
ocean, the upper ocean boundary layer or region near the sea surface that is directly
affected by the presence of the overlying atmosphere, and the benthic or bottom bound-
ary layer (bbl) that lies above the underlying solid, but possibly rough and (in strong
flows) mobile, seabed. Two fluxes imposed at the bounding surfaces have direct effects,
those of buoyancy and momentum. The former is often dominated by a flux of heat,
related by (2.8) to a flux of buoyancy. This is sometimes supplemented at the sea
surface by the entry of buoyant freshwater in the form of rain or snow.1 The flux of
momentum can be equated to the stress, as explained in Section 2.2.1. This stress, or
horizontal force per unit area, may be exerted by the wind on the sea surface or, for
example, by the frictional forces of an immobile sedimentary layer composed of sand
or gravel on a current passing over the ocean floor.

It is useful here, as in preceding chapters, to refer to processes. By a ‘process’ is
meant a physical mechanism, one that can be described in terms of its effects and its
associated spatial and temporal structure, that generally involves the transfer of energy
from one scale to another or from one part of the ocean to another. Although energy
transfers from small to relatively large scales do occur, the transfer of energy of most
interest here is usually from some larger-scale motion to one of smaller scale that may

1 The loss of water through the sea surface in the form of spray and aerosol generation may also
contribute to buoyancy flux, although care is required to account properly for the effect of salinity.
Heat is transferred at the sea surface by radiation, by evaporation, requiring energy in the form of
latent heat, and through conduction in the form of molecular transfer known as ‘sensible heat flux’.
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Figure 3.1. Eddies forming on the top of cumulus clouds on a warm summer day.

be described (generically) as ‘turbulence’. A process may involve motions that are
themselves best described as turbulence.2

The structure associated with a process will commonly have a stochastic nature.
The structure may in practice be that of the large eddies supplying energy at the low-
wavenumber end of a turbulence spectrum and fuelling a cascade of energy towards
dissipation scales. A vivid example is that of convection in the atmospheric boundary
layer on a warm summer day, with thermals forming over extensive and relatively
uniform countryside, leading to and made visible by the appearance of cumulus clouds.
The process is one of convection. The associated structure is that of the growing
thermals drawing energy from the unstable stratification in the atmospheric boundary
layer over the relatively warm land. As can be seen from the structure of the tops and
sides of the cumulus clouds, the process leads to turbulent motions of much smaller
scale that entrain surrounding air. Figure 3.1, for example, shows eddies entraining air
into the tops of cumulus clouds in wind shear.

It is sometimes helpful, as an aid to identifying the sources of energy leading to
mixing, to classify processes that produce turbulence according to whether they are
driven from within or outside the oceanic region under consideration, i.e., whether the
processes involve an internal or external supply of energy (Fig. 3.2). The distinction
between internal and external forcing is not absolute; the concept is useful in stimu-
lating ideas about energy flux and the effect of processes, rather than in providing a
definitive analytical tool or classification. The sources of energy that drive the ocean
are external to it, consisting of the winds, solar and geothermal heating, and the lunar

2 Langmuir circulation, a process of mixing in the upper ocean boundary layer described in Section
3.4.3, provides an example of motions that involve a degree of variability. It is now regarded as
part of the near-surface turbulence even though it has a clearly recognizable structure or
‘signature’ with which there are strongly associated temporal and spatial variations in ε.
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and solar tidal forces. More is said of these in Chapter 6. Although the tides produce
body forces driving motions throughout the ocean depth, many of the processes that
result in turbulence and mixing are found to act at, or near, the ocean boundaries,
receiving energy directly from the external sources. Other processes occur far from
the boundaries and deep within the ocean, receiving energy from the forcing at the sea
surface only after it has already been transferred through the action of a chain of other
processes.

Much of the turbulence induced in the surface and benthic boundary layers is driven
by processes resulting from the fluxes of buoyancy and momentum through the nearby
boundary, and these can be identified as external processes. The wind-driven breaking
waves and convection produced by air–sea buoyancy flux may be regarded as external
processes, driven by forcing from the overlying atmosphere. The stress exerted by
a seabed on a passing flow of water (for example a tidally driven current), and the
geothermal heat flux, similarly drive turbulence-generating ‘external processes’; they
are driven by sources of energy outside the benthic boundary layer itself. The stress
and the buoyancy flux also provide measures that determine the processes as well as
the nature and intensity of much of the turbulence within the boundary layers.

Internal processes leading to turbulence and mixing, for example shear across a
density interface, breaking internal waves and double diffusive convection, are topics
addressed in Chapter 4.
• Buoyancy and momentum fluxes lead to three main types of boundary layers adjoin-
ing horizontal boundaries, those in which

(a) the stress is negligible (for example at the sea surface when there is no wind) and
in which turbulent motion is derived from unstable stratification and convection;

(b) there is no flux of buoyancy and where the turbulent motion is driven by the stress
on the boundary (for example in a tidal flow over the seabed, through which there
is no geothermal heat flux emanating from the Earth’s core or from decomposing
matter buried in the sediment); or

(c) there is both a stress and a buoyancy flux.

These three types3 are considered separately in the following sections. The order of (a)
and (b) is not significant, except that it may be easier to visualize convective motions
than those in shear, and therefore to consider convection first. The ocean is rarely, if
ever, exactly in either of the states represented by types (a) and (b), and for this reason
many of the examples of turbulence in the boundary layers are not described until type
(c) has been considered in Section 3.4.1.

Before describing the nature of the types of boundary layers, it is important to
recognize that, whilst boundaries may lead to processes that produce turbulence, the
physical presence of the boundaries also modifies the turbulence in their vicinity. Near
the almost static or immobile seabed, viscous forces tend to reduce the components
of velocity parallel to the boundary, but this does not apply near the ‘free’ sea surface.

3 A further type of boundary layer is that which occurs in stratified waters on the sloping sides of
the ocean and around seamounts and islands (see Further study).
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Figure 3.2. Classification of mixing processes according to their immediate source of
energy. Parts (a)–(d) are examples of mixing caused by processes with an external
supply of energy. (a) Turbulence produced by tidal or wave-induced flow over a solid
boundary. (b) Convection resulting from cooling at the sea surface. (The small-scale
eddies entraining water into the plumes might, however, be regarded as deriving
energy from the kinetic energy of the convective motion – an internal source – rather
than directly from the surface buoyancy flux.). The same applies in (c), mixing in
a hydrothermal plume issuing from a vent, its buoyancy derived from geothermal
heating; and (d), turbulence in a wind-generated near-surface shear flow. (Recall,
however, that the flow may be a result of a loss in the momentum of waves through
their breaking.) Parts (e)–(h) are examples of mixing resulting from an internal energy
source. (e) Mixing in a shear flow, perhaps at the foot of the near-surface mixed layer.
(f) Mixing resulting from breaking internal waves. (g) Mixing in an internal
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There turbulence leads to surface flows that are approximately two-dimensional, lying
in the plane of the sea surface: the patterns of foam visible in Figs. 1.1 and 1.4 are
largely a consequence of these turbulent two-dimensional flows. The presence of a
boundary constrains and modifies the form and scale of turbulence within an adjoining
boundary layer by suppressing the normal components of water velocity in its vicinity.
At the sea surface this constraint is, however, lost in breaking waves or other processes
that cause fluid to be carried through the surface, or from the bounding surface into
the underlying water column; processes of ‘flow separation’ or ‘subduction’ result
in motions that are no longer confined to the two dimensions of the mobile surface.
Viscous forces very close to the seabed cause the tangential components of velocity
to fall to zero at a rigid boundary and almost to zero when the bed material is mobile.
Flow separation may, however, occur there as it does at the sea surface, for example
as water moves over the crests of ripples on a mobile sandy bed, sometimes forming
lee eddies and carrying mobile sand particles from the bed into suspension.

3.2 Convection in the absence of shear

3.2.1 Convection below a cooled surface or over
a heated seabed

In 1900 Bénard showed that regular and steady cellular motions occur at the onset
of convective motion when the lower surface of a thin horizontal layer of fluid in
a laboratory container is raised to a temperature sufficiently exceeding that of its
upper surface. The heat increases the fluid’s temperature, so reducing its density and
resulting in the buoyancy forces that drive convection.4 Similar steady convective cells

←
Figure 3.2. (cont.) hydraulic jump caused, perhaps, by flow over a sill in an abyssal
channel connecting deep ocean basins (Section 6.8). (h) Mixing caused by double
diffusive salt-finger convection with the formation of a step-like structure of
temperature (T) and salinity (S) (Section 4.8). Part (i) illustrates the complexity and
linkage of mixing processes that can occur in the ocean, mixing in (I) being caused
externally by shear stress on the seabed as in case (a), that in (II) being internal mixing
resulting from shear (as in (e)) and the impact of turbulent eddies with a stratified layer
overlying the bottom boundary layer; and (III) indicates the internal mixing caused by
breaking internal waves (as in (f)) radiating energy upwards from the interface into an
overlying stratified layer.

4 The condition from the onset of convection is that the Rayleigh number, Ra = gα 	T d3/(νκT )
(where d is the thickness of the fluid layer of kinematic viscosity ν and molecular conductivity of
heat κT , α > 0 is the thermal expansion coefficient and 	T is the positive temperature difference
between the bottom and the top of the layer), exceeds a value that depends on the nature of the
boundary but is typically about 103. Static instability, α 	T > 0, is not sufficient to ensure the
occurrence of cells or a dynamical instability. As Ra is increased beyond this critical value the
motion becomes irregular, possibly with vacillations (oscillations that periodically come and go).
At a sufficiently high Ra, the motion becomes turbulent, although some vestige of the cellular
structure at which convection began may be retained. This transition to turbulence as Ra increases
can be regarded as passing through a set of discrete stages. The cells observed by Bénard in his
experiments were probably affected by variations in surface tension as well as buoyant convection.
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Figure 3.3. Buoyant plumes or thermals. The plumes or thermals, made visible by
dye in the two photographs, rise from a heated surface in the laboratory in the absence
of shear. The transient near-vertical rising plumes carry dye from the bottom and are
topped by circular vortices, like that illustrated in Fig. 1.9(a), of width greater than that
of the plumes. There must be descending fluid between the plumes to conserve
volume. The spacing of plumes is generally less regular than suggested in these
experiments. (From Sparrow et al., 1970.)

are produced if the upper surface of a thin layer of fluid is cooled. Top heating and
bottom cooling produce similar, but inverted, convective motions.

The ocean, however, is deep. Cooling of its upper surface can lead to an unsteady or
transient convective motion in which plumes of water form and periodically transport
water from the boundary, carrying the negatively buoyant fluid into the interior of the
water, much as illustrated (although inverted) in the laboratory experiment shown in
Fig. 3.3, where, as in Bénard’s experiment, the bottom boundary of the fluid has been
heated. These plumes are like thermals in the atmospheric boundary layer that are
made visible by the formation of cumulus clouds. They form the larger eddies of a
range of generally smaller-scale, three-dimensional, turbulent motion.

Periodic cooling of the sea surface leads to substantial changes in density structure
and turbulence within the mixed layer. The diurnal day–night cycle of heating and
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cooling of the mixed layer results in a cycle of turbulent motion that is described in
Section 3.4.2. In a few regions, notably the Labrador and East Greenland Sea, and the
Gulf of Lions in the northwest Mediterranean, cooling in winter results in convective
mixing to depths of 1–3 km, sometimes reaching the seabed. Cold plumes of diameter
300–500 m are observed during winter convection in the Gulf of Lions, sinking at
speeds reaching 0.05 m s−1, with smaller, but definite, upward motion between. The
processes leading to small-scale turbulence in oceanic convection and the nature of
the turbulent motion itself are, however, yet to be thoroughly investigated.

The ocean receives a geothermal flux of heat through the seabed from the Earth’s
core at an average rate estimated to be about 87.8 mW m−2, but with a smaller mean
flux, about 46 mW m−2, through the bed of the abyssal plains. [P3.1] Although this is
a significant contribution to heat within the abyssal ocean, it generally has little effect
on the dynamics of the boundary layer, as shown in Section 3.4.1. There are, however,
local exceptions, places where the heat flux is very large, that are referred to in the
following section.

In steady conditions with turbulence dominated by convection, there is an approx-
imate balance between the second and third terms in the energy balance equation,
(2.16). The rate of loss of potential energy in convective plumes, equal to B, provides
the energy to support the dissipation rate, so that approximately

ε = B. (3.1)

In steady conditions with no change in temperature, the divergence (or d/dz) of the
vertical heat flux must be zero, so that B = B0, where B0 is the flux of buoyancy
through the sea surface, and ε ≈ B0. (This can be deduced by dimensional argument:
the basis is that the dimensions of B0 are, like ε, L2T−3, where L is length and T is
time. In the absence of any natural length scale – and none can be derived from B0

and ε alone – neglecting molecular effects, those involving ν, κT etc., the relationship
implies that ε is approximately constant with depth.)

3.2.2 Buoyant plumes and entrainment

One particular, but dramatic, case of convection in the ocean is that which occurs as a
result of the continuous release of very hot and buoyant fluid, sometimes in excess of
300 ◦C, from hydrothermal vents on the ocean floor within ocean ridges, producing
rising plumes of water that is much less dense than its surroundings. An example is
shown in Fig. 3.4 and sketched in Fig. 3.2(c).

The edges of the plumes entrain water from outside. The local rate at which fluid is
entrained into a rising turbulent plume is found to be proportional to the mean speed at
which the fluid in the plume is rising through the ambient fluid. This rate is in accord
with the ‘entrainment assumption’ introduced in the 1950s by Morton, Turner and
Taylor in connection with their studies of convective plumes. They suggested that
entrainment occurs through the process of fluid engulfment and entrainment by
turbulent eddies, and that, although the eddies must be involved in the eventual
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Figure 3.4. Hot fluid rising from black-smoker hydrothermal vents in a mid-ocean
ridge. The processes of entrainment are identical to those at the edge of the smoke
plume in Fig. 1.8.

homogenization of fluid entrained, viscosity and molecular conductivity play an
insignificant role in the process, provided that the turbulent motion in the plume is
sufficiently energetic. The only velocity scale on which the speed of the local inflow of
fluid into a rising plume can depend is then the difference in speeds, 	u, of the plume
and the ambient fluid. (This must also characterize the speed of circulation of entrain-
ing eddies.) It follows that the rate of entrainment, an entrainment velocity, we, must
be proportional to 	u. It is found empirically that we ≈ 0.1 	u. This assumption has
proved successful in many applications, including the predictions of plume rise and
spread both in the laboratory and in the atmosphere, from scales of a few centimetres
to many kilometres. [P3.2, P3.3]
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In the ocean, the height to which buoyant plumes rise from hydrothermal vents,
typically about 200 m, is determined and limited by the density stratification in the
water into which the plumes ascend. As a plume rises, the entrainment of the denser
surrounding water into the plume causes the plume’s density to increase whilst, because
the overall stratification is stable, the density of the surrounding water decreases with
height above the seabed. At some height the (increasing) density of the water in
the plume and the (decreasing) density of its surroundings become equal. At this
‘equilibrium level’, however, the plume continues to rise for a short distance (or to
‘overshoot’) because of its vertical momentum, before finally sinking and spreading
along isopycnal surfaces at about the equilibrium level (e.g., see Fig. 5.2 later). The
part played by plumes in ocean mixing is discussed further in Section 6.9. [P3.4]

3.3 Stress and no convection; the law of the wall

When the mean flow and the turbulence are steady, so there is no mean flow acceleration
and DE/Dt = 0, and when the buoyancy flux is negligible, the balance of terms in the
turbulence energy equation is principally between the rate of production of turbulent
kinetic energy by Reynolds stress in the presence of shear (the shear-stress) and the
turbulent dissipation, ε, the first and third terms on the rhs of (2.16). Such conditions
are commonly found at small distances, z (typically from 0.05 m to 2–5 m), from a
plane rigid boundary, but beyond a distance at which viscous effects at the boundary,
and its texture or small-scale roughness, have important influences on the flow. As
deduced in Section 2.5.4, the balance of terms implies that, approximately,

ε = (τ/ρ0)dU/dz, (3.2)

where U(z) is the mean flow parallel to the boundary. The absence of acceleration in
the steady mean flow implies that there are no changes in stress across any horizontal
layer, for such changes would alter its momentum and therefore lead to acceleration.
In steady conditions the divergence (or d/dz) of the Reynolds stress is therefore zero,
and the stress is generally constant, not varying with distance from the boundary.

For convenience, the Reynolds stress is often expressed in terms of a virtual velocity:
τ = −ρ0〈uw〉 = ρ0u2

∗, where u∗, with dimensions of velocity, is known as the friction
velocity. If, as is usual in a turbulent flow dominated by inertial forces, the motion is
independent of kinematic viscosity, the mean velocity shear, dU/dz, can only depend
on u∗ and on the distance, z, from the boundary and must, on dimensional grounds, be
given by

dU/dz = u∗/(kz), (3.3)

where k is a constant, known as von Kármán’s constant5 and found empirically to be
approximately 0.41. On integration, (3.3) leads to an equation describing the variation

5 See Further study.
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of the mean velocity with distance from the boundary,

• U (z) = (u∗/k)[ln(z) − ln(z0)], (3.4)

where z0 is a length scale derived as a constant of integration, and known as the
roughness length because it depends on the size of the boundary roughness. This
remarkable relationship, (3.4), was first announced by von Kármán in 1930. The mean
flow, U, varies logarithmically with distance, z, from the boundary with a constant
of proportionality u∗/k. The Reynolds stress, τ = ρ0u2

∗, can be estimated from mea-
surements of the mean velocity, U(z), at, at least, two distances, z1 and z2, above
the boundary by using (3.4) to determine u∗, i.e., by eliminating ln(z0) to obtain
u∗ = k[U (z1) − U (z2)]/ln(z1/z2).

Equations (3.2) and (3.3) give

• ε = u3
∗/(kz). (3.5)

The rate of dissipation of turbulent kinetic energy per unit mass is inversely proportional
to distance from the boundary and increases with the Reynolds stress to the power 3/2.
(If the characteristic velocity of the energy-containing eddies in a turbulent boundary
layer is proportional to u∗ – and this is usually the only dimensionally correct scale –
then comparison of (3.5) with (2.18) implies that the size of the dominant turbulent
eddies, l, increases in proportion to z, the distance from the boundary.) [P3.5, P3.6]

Equation (3.4) (and sometimes related equations such as (3.5)) is referred to as the
‘law of the wall’.

Equations (3.3) and (3.5) lead towards singularities as the boundary is approached,
dU/dz and ε tending to infinity as z tends to zero, and fail to describe flow close to
the boundary, where its roughness or the effects of viscosity become dominant. Figure
3.5 shows the variation of measured current speeds with the logarithm of the distance
from the seabed on the Oregon Continental Shelf. The bed is composed of fine silt and
sand, and, although flat in the immediate locality of the observations, is affected by
burrowing organisms producing small burrows and surrounding crater-like mounds.
The flow is close to zero at the seabed, and increases to about 6 cm s−1 at a height of
1 cm through a viscous sublayer in which the overlying flow adjusts to the boundary.
Above this sublayer, the linear variation is consistent with the law of the wall. Above
a height of about 0.11 m, however, a second but different linear trend is observed,
suggesting that a regime of different friction velocity u∗ (and of different Reynolds
stress) is reached, possibly reflecting the effects of drag caused by the presence of
bed roughness caused by burrowing organisms or by shells and stones beyond the
immediate vicinity of the measurement site.

The relation (3.5) with z equal to the depth below the level of the mean sea surface
also appears to hold in the surface mixed layer when z is greater than about four
times the significant wave height, Hs.6 Much higher rates of dissipation are found at

6 The significant wave height, Hs, is the statistical measure of surface waves defined in footnote 18
of Chapter 2.
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Figure 3.5. The logarithmic bottom layer. The mean horizontal flow speed, U, with z,
is plotted on a log10 scale, where z is the distance from the seabed. There is a viscous
sublayer close to the boundary (log10 z (m) < −2, or z < 1 cm) below the lower of two
layers in which U ∝ log10z. (From Chriss and Caldwell, 1982.)

shallower depths as a result of turbulence generated by breaking waves (Fig. 2.15);
this intermittent and unsteady process of generation introduces further dimensional
scales (such as Hs and the speed of breakers, cb) into the problem of describing the
turbulent motion.

3.4 Stress and buoyancy flux

3.4.1 The Monin–Obukov length scale

It is common for both a buoyancy flux and stress to be present in the surface and the
benthic boundary layers.

The stress at the seabed is usually represented, or parameterized, using a drag
coefficient, CD, as in (2.17): τ = ρ0CDU 2, where U represents the speed of the flow
at some specified distance, commonly about 1 m, from the seabed or sometimes the
depth-averaged current in the shallow seas of the continental shelf. The value of CD

is about 2.5 × 10−3. Since τ is equal to ρ0u2
∗, the friction velocity in the near-bed

logarithmic layer, u∗, is equal to C1/2
D U or approximately 0.05U.
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The wind drag on the ocean surface is generally represented in a similar way but
with a different drag coefficient as τ = ρaCDaW 2

10, where ρa is the density of air
(about 1.2–1.3 kg m−3 at the sea surface, but varying with temperature, pressure and
humidity) and W10 is the wind speed measured at a standard height of 10 m above the
level of the mean sea surface. The drag coefficient at the sea surface, CDa, increases
with wind speed above about 5 m s−1 and ranges from about 1 × 10−3 to 2.7 × 10−3.7

In conditions under which little net momentum is being transferred into the surface
waves, the Reynolds stress of the wind on the sea surface is approximately equal to
the stress in the water below the surface, so that, equating the two stresses, the friction
velocity in the water, (τ/ρ0)1/2, is given by [(ρa/ρ0)CDa]1/2W10.

The dimensions of the available parameters at the boundary, a buoyancy flux, B0

(dimensions L2T−3), and surface stress or τ/ρ0 (dimensions L2T−2), can be combined
to provide only one length scale, in addition to the distance, z, from the boundary, on
which turbulence can depend.
• The dimensional scale characterizing turbulence in convective boundary layers with
an applied stress is known as the Monin–Obukov length scale:

LMO = −(τ/ρ0)3/2/(k B0) (3.6)

or

LMO = −u3
∗/(k B0), (3.7)

where u∗ = (τ/ρ0)1/2 is the friction velocity in the water and k is von Kármán’s
constant.

The usual sign convention is that the surface heat flux, F0, is positive for an upward
flux of heat (and, by virtue of (2.8), so is B0). The Monin–Obukov length scale, LMO,
is therefore negative when F0 > 0. These are destabilizing conditions, favouring con-
vection, i.e., when the sea surface is losing heat or when the benthic boundary layer
is warmed by a geothermal heat flux. Conversely, LMO is positive for stabilizing con-
ditions where F0 < 0, so the flux contributes towards a statically stable stratification,
e.g., when there is a downward flux of heat into the sea surface promoting lower density
near the water surface.

At distances from the boundary beyond the effects of breaking waves and bottom
roughness or viscosity effects but at distances z < 0.03|LMO|, buoyancy has little effect
and the law of the wall (3.4) is generally valid.

In destabilizing conditions with LMO < 0, mixed conditions in which both shear
and buoyancy affect turbulence occur within the range of distances 0.03|LMO| < z <

|LMO|. The buoyancy flux has a small, but notable, effect in this range: when z/ |LMO|
is less than about 0.3, the mean flow speed is given approximately by

U (z) ≈ (u∗/k)[ln(z/z0) + 5z/LMO]. (3.8)

7 There is some evidence, however, that the drag coefficient at the sea surface decreases with wind
speed as speeds reach hurricane force. The reason why is unknown.
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The shear flow, then given by dU/dz ≈ (u∗/k)[1/z + 5/LMO], is less than that in
conditions of the same stress but in the absence of a buoyancy flux, B0, because
of the enhanced vertical transfer of momentum in the convectively driven motion
illustrated schematically as ‘unstable’ in Fig. 3.6. In contrast, in stabilizing conditions
with LMO > 0 (‘stable’ in Fig. 3.6), for example in relatively weak or only moderate
wind and when the ocean surface is strongly heated by solar radiation, the vertical
momentum transfer is suppressed. Turbulent energy is lost in doing work against the
buoyancy forces. In such conditions, the stress required to maintain the same shear,
dU/ dz, is reduced or, equivalently, the shear produced by a given stress is increased,
resulting in conditions at the sea surface sometimes referred to as a ‘slippery sea’.8

A negative buoyancy flux, B0, at the sea surface, caused by a downward flux of less
dense freshwater in the form of rain, may quite rapidly promote stratification near the
sea surface and lead to a decay of turbulence in the underlying mixed layer.9 [P3.7,
P3.8, P3.9].

At distances z > |LMO| from the boundary, buoyancy tends to dominate in desta-
bilizing conditions, driving ‘free convection’ that is independent of surface stress.
Transient plumes begin to form as described in Section 3.2.1. When z > 2|LMO| there
is an approximate balance between the second and third terms in the energy balance
equation (2.16), expressed as (3.1).

Measurements of ε shown in Fig. 3.7 are from a convective layer formed in the
upper ocean during an outburst of cold air off the east coast of the USA, when the
surface buoyancy flux resulting largely from evaporation reached a value of 3.2 × 10−7

W kg−1, and these are compared with measurements of ε under convective conditions
in the atmosphere. The dissipation rate, ε, is approximately uniform with depth as
predicted in Section 3.2.1. The mean value of ε in the convective layer is

〈ε〉 ≈ 0.72B0, (3.9)

where B0 is the surface buoyancy flux. Although buoyancy plays a major part in mixing
the upper ocean, the geothermal heat flux generally has a negligibly small effect on
turbulence in the benthic boundary layer of the abyssal ocean. [P3.10, P3.11]

3.4.2 Diurnal and seasonal heat cycling of the mixed layer

The nature of turbulent motion in the mixed layer at a particular time and location
usually depends on how rapidly the buoyancy and wind forcing are changing and on
the remaining effects of past changes and events, such as storms. Although conditions
within the ocean can rarely be described as ‘steady’ over times when, for example,
the changes in fluxes or transfer rates are negligible in comparison with the mean
fluxes or rates, some of the ideas derived in the previous section regarding idealized,

8 Similar ‘stable conditions’ affecting the relation of stress and shear may occur in the bottom
boundary layer when the flux of sediment eroded from the seabed into the layer is relatively large.

9 Some aspects of the complex processes of heat transfer at the sea surface are described in
problems P3.8 and P3.9.
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Figure 3.6. A schematic representation of turbulence and flow near a boundary in
differing heating regimes. (a) The mean current as a function of ln z, where z is the
height above a fixed boundary, in the following three conditions: when there is an
upward flux of heat, or buoyancy flux, B0, through the boundary (‘unstable’), when the
lower boundary is cooled (‘stable’) and when there is no heat flux through the
boundary (‘neutral’). (b) The change in turbulence and shear in the corresponding
three conditions at the sea surface, those of sea-surface heating, zero heat flux and
surface heat loss, but in similar wind speeds, W10. In conditions of stable heating (top),
a stable stratification reduces the vertical transfer of momentum by turbulent eddies,
leading to relatively greater shear than in neutral conditions (middle). In conditions of
surface cooling (bottom), the tendency for convection to occur enhances the vertical
transport of momentum from the surface and reduces the shear.

strictly steady conditions are still found to be instructive (if not useful), as the following
example shows.

Observations made in the Bahamas during a pronounced diurnal cycle of strong
surface heating and cooling, but fairly uniform wind, are illustrated in Fig. 3.8. The
surface buoyancy flux, B0, is shown below, together with the times (dots) at which the
temperature and ε profiles shown in parts 1–6 were obtained. In parts 1–2 nocturnal
cooling, with LMO ≈ −17 m and B0 > 0, causes convective activity that generates
turbulence in a deepening layer, eventually reaching to a depth of 100 m. Below
this turbulent layer there is a reduction in ε (seen in part 1) of some 1–3 orders of
magnitude over a distance of, at most, a few metres. The nocturnal cooling is followed
by a period of daytime solar heating, the effects of which are illustrated in part 3.
A substantial decrease in ε occurs throughout much of the sampled depth. The heat
flux, with LMO ≈ +17 m, produces stable near-surface stratification, capping what, at
night, had been a relatively deep mixed layer, and limiting the depth to which the wind
stress at the sea surface causes mixing. Recommencement of cooling in the evening
leads again to convection and the erosion of the stratification, resulting in a deepening
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Figure 3.6. (cont.)

turbulent layer (parts 4–6). There is sometimes little indication in the vertical profiles
of temperature (or density) of how far the surface-generated turbulence extends (e.g.,
see profiles 1 and 5) and, without measurements of ε (or possibly the rate of loss of
temperature variance, χT ), it is generally impossible to estimate with certainty the
thickness of the near-surface layer of active turbulence. During the convective periods
the mean dissipation rate in the mixed layer, 〈ε〉, is approximately equal to 0.61B0,
slightly less than is found in the much deeper and more prolonged convective layer
shown in Fig. 3.7.

The intricate interactions between the external forcing produced by cooling and
wind are illustrated in Fig. 3.9, a 23-day time series during which strong winds (part
(a)) produced relatively high surface stress in three periods, with accompanying diurnal
cycles in heat flux (part (b)). Particularly notable are the oscillations and gradual
deepening of the thermocline during the periods of higher winds, accompanied by
cooling of the mixed layer, and the downward progression of regions of (dark shaded
in part (d)) high dissipation in the mixed layer, especially during periods of surface
heat loss (F0 > 0) between 30 December and 3 January (or days 365–369; dates are
indicated at the top of the figure, and year days below), when N 2 < 0 in part (e) implies
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Figure 3.7. Dissipation in the mixed layer in conditions of strong convection. The
variation of ε/B0 with z/D, where D is the thickness of the mixed layer and the
coordinate z is the distance from the boundary. Top: in the ocean (with depth, z,
upwards). Bottom: for comparison, in the atmosphere (with height, z, upwards). The
dashed line is the level where z = D. Deeper in the ocean or higher in the atmosphere
the fluid is stratified and ε decreases rapidly. Conditions in the ocean were unsteady,
with the mixed-layer depth gradually increasing from about 75 to 165 m over a period
of about 36 h. The mean (upward) buoyancy flux at the surface during this period was
about 3 × 10−7 W kg−1 and the mean friction velocity about 1.4 × 10−2 m s−1, leading
to a value of LMO ≈ −22 m and a mean value of LMO/D ≈ 0.2. Free convection
should occur in the range 2|LMO| < z < D or 0.4 < z/D < 1, where ε is observed to
be approximately constant. (From Shay and Gregg, 1984b.)

that the stratification is statically unstable. Relatively high dissipation at depths of 40–
80 m near the foot of the mixed layer in the period 4–9 January is a consequence of
an internal process of mixing resulting from enhanced shear.

Cycles of mixing similar to those of the diurnal cycle are found to occur on sea-
sonal time scales, most notably in the subtropics. They are accompanied by convec-
tively driven, mixed layer deepening in winter, and the reformation of the seasonal
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Figure 3.8. A day–night cycle of ε and temperature in the mixed layer: 1–6 show
profiles of ε (stippled) and temperature (line). Below is the variation in the surface
buoyancy flux, B0, as a function of time. The times, 1–6, of the profiles are marked by
dots, and 3 is at noon. The 30-h period begins with surface cooling and positive
buoyancy flux in the early evening of the first day, includes (around time 3) a period of
daytime heating when the buoyancy flux becomes negative, and continues into a period
of renewed cooling continuing until midnight of the second day. The rate of loss of
turbulent kinetic energy, ε, is obtained using a free-fall probe, and the vertical distance
over which ε is estimated (about 5 m) accounts for its step-like profile. (From Shay and
Gregg, 1986.)

thermocline as solar heating increases in spring. Just as in daytime in the diurnal cycle
shown in Fig. 3.8, stratification leads to a reduction in the depth to which surface mixing
can penetrate: the water in the deeper part of the winter mixed layer becomes isolated
from the surface by the formation of the thermocline in early spring and continues
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Figure 3.9. The variation of turbulence in the mixed layer during periods of strong
wind forcing and diurnal heating and cooling. The data were obtained near the Equator
in the Pacific Ocean during a period of westerly wind bursts. (a) Hourly averaged wind
stress. (b) The net surface heat flux, F0, positive values indicating (unstable) periods of
surface cooling. Parts (c)–(e) are all from the surface to 100 m with (c) temperature,
(d) the rate of dissipation of turbulent kinetic energy, ε, and (e) the square of the
buoyancy frequency, N 2 = −(g/ρ)dρ/dz. In (e) the density gradient is estimated over
8-m differences of the density averaged vertically over 4 m. White regions are where
N 2 < 0 and the mean density profile is statically unstable. Black contours are values of
N 2 = 10−6, 10−5 and 10−4 s−2, respectively. White contours are at N 2 = 3.16 × 10−4

and 10−3 s−2. The microstructure data are obtained from the free-fall package,
‘CAMELION’, described by Moum et al. (1995) (see Further Study, Chapter 2). This
probe is tethered to the research vessel by a cable of diameter 0.44 cm and falls at
about 0.8 m s−1. It is deployed from the vessel’s stern whilst under way at about
0.2 m s−1. (From Smyth et al., 1996.)
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to have no direct contact with the atmospheric forcing until it is again reached by
convection in the following winter (Fig. 3.10). During summer and early autumn, this
‘isolated water’ may retain some of the properties, such as its vertical component of
vorticity, that were impressed on it during winter, but others may be strongly depleted,
e.g., concentrations of oxygen and nutrients through their uptake by marine organisms
during summer.

3.4.3 Other mixing processes in the upper ocean

• Processes contributing to the mixing of the upper ocean boundary layer are sketched
in Fig. 3.11, and some of these are described below.

The presence of waves makes a strong physical distinction between this boundary
layer and that near the seabed. Waves act as a catalyst in the process of transfer of
momentum from the wind into ocean currents. The breaking of wind-generated waves
creates turbulence that contributes to the mixing of the upper ocean, enhances the rates
of dissipation above that predicted by the law of the wall, (3.5), and transfers into
the mean flow the momentum previously imparted to the waves from the wind. The
energetics of breaking waves and their generation of bubbles and spray are subjects of
considerable attention and study particularly because of their bearing on the stirring
of the mixed layer, the exchange of gases between the ocean and the atmosphere, and
the generation of aerosols.

Foam was mentioned in Section 1.4 as an indicator of subsurface turbulent motions
in the surf zone. When the wind exceeds about 4 m s−1, which is sufficient for occa-
sional wave breaking to begin in open water far from shore and to produce bubbles,
bands of foam or other flotsam aligned roughly in the wind direction and 5–100 m
or more apart can often be seen floating on the sea surface. Bands of foam are also
to be seen in moderate to strong winds on the surface of lakes, and an example is
shown in Fig. 3.12(a). In the 1920s, Langmuir realized that these bands or ‘windrows’
are indicative of convergent motions in which water at the surface, although mainly
moving downwind, also has spatially periodic cross-wind components with ampli-
tudes of a few centimetres per second that carry floating material into the bands as
sketched in Fig. 3.12(b). To preserve continuity, the water moves downwards below
the bands at speeds of 1–10 cm s−1 (increasing with increasing wind), leaving the
buoyant material floating in the windrows on the surface, and subsequently diverges
and rises back towards the sea surface. This circulatory motion is now referred to as
Langmuir circulation. It appears to be produced by the interaction of waves and shear
flow.

Water in and just below the windrows moves downwind more rapidly than the
mean flow, resulting in an across-wind variation in downwind flow speed, as indicated
in Fig. 3.12(b).10 The speed of the converging flow at and just below the surface,

10 This cross-wind shear may contribute to the greater downwind than across-wind dispersion
observed in dye patches (Section 5.4.1) through the mechanism illustrated in Fig. 1.10(a). The
effects of Langmuir circulation on dispersion are described in Section 5.2.7.
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Figure 3.10. The seasonal cycle of heating in the upper ocean. The data are from the
northern hemisphere at 50◦ N, 145◦ W. (a) Profiles of temperature showing the
formation of a mixed layer and seasonal thermocline in May and the subsequent
deepening of the mixed layer and winter cooling. (b) Contours of temperature.
(c) Temperature variations at four depths. As a result of surface heating during the
spring, by May water at depths of 40–60 m becomes isolated from the direct influence
of the atmosphere through the formation of the seasonal thermocline. Subsequent
surface forcing has little effect on water below 40 m until convective cooling results in
a deepening mixed layer in October–November. There is no variation in temperature
below 100 m, the maximum depth of winter convection. This maximum depth will
vary between winters, depending on the atmospheric forcing. Convection during a
second and subsequent winters may fail to penetrate to the deeper water mixed in the
first winter and left beneath the thermocline, either because the depth of mixing is
reduced because of a decrease in severity of successive winters or perhaps because the
water is carried towards the Equator where atmospheric forcing is less and where
winter convection does not penetrate so deep. In such cases the deep water retains the
‘fossil’ remains of some properties impressed on it during its earlier contact with the
atmosphere. (From Wijesekera and Boyd, 2001.)
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Figure 3.11. A sketch of the processes leading to the mixing of the upper ocean
boundary layer. (A): Breaking waves. (B): Langmuir circulation. (C): Temperature
ramps. The effect of the Earth’s rotation results in a rotation of the mean current
direction (to the right of the wind in the northern hemisphere) as sketched. This
appears to lead to a rotation of the axes of the large eddies, C, through a small angle, α,
as suggested in the sketch, so that the values of skewness in Fig. 3.14 measured in
directions at 90◦ to the wind are non-zero. (From Thorpe, 1985.)

although small, is sufficient to advect clouds of bubbles created by randomly break-
ing waves to the bands, forming lines of subsurface bubble clouds. The circulation
also carries planktonic organisms and contributes to their vertical cycling within the
mixed layer, thereby exposing them to varying levels of solar radiation. Water that
has been heated or cooled whilst close to the surface and which descends beneath
the windrows has a mean temperature typically a few milli-kelvins different from that
of the surrounding water in the mixed layer. This has little dynamical effect but pro-
vides a coherent thermal ‘signature’ indicating the presence and vertical extent of the
circulation.

Over short periods of time the closed circulation cells may limit the spread of
both floating and dissolved material across the wind direction, material released into
a circulation cell from a location between bands being able to spread across wind no
further than the nearest adjoining band. The cells are not, however, steady, but are
transient. Neutrally buoyant floats designed to follow the flow are not observed to
cycle repeatedly within the mixed layer. The windrows and associated convergence
regions fluctuate in location and, although a cell may persist for some tens of minutes,
they are often found to amalgamate with neighbouring cells. One such ‘Y junction’ is
sketched in Fig. 3.12(b).
• The circulation cells, although limited by the presence of the sea surface, have
the properties of variability and transience found in smaller-scale turbulent motions,
and the circulations are now often described as ‘Langmuir turbulence’, characterized
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(a)

(b)

Figure 3.12. Langmuir circulation. (a) Windrows produced by Langmuir circulation
on the surface of a lake. The mean distance between windrows is about 8 m. (b) A
sketch of the circulation pattern, including a ‘Y junction’ where neighbouring cells
combine. Windrows composed of floating material or foam form as a consequence of
convergent motion at the water surface. Their separation is twice the width of the
individual Langmuir cells.

by a parameter called the ‘turbulent Langmuir number’,

Laturb = [u∗/(2S0)]1/2, (3.10)

where u∗ is the friction velocity and S0 is the speed of the wave-induced Stokes drift
at the water surface. The turbulent Langmuir number has a typical value of about 0.3
in the ocean, but may be respectively larger or smaller in periods of rising or falling
winds. The relative effect of Langmuir circulation on the turbulent flow in the mixed
layer is enhanced as Laturb decreases.
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Much of the study of Langmuir turbulence has been carried out using large eddy sim-
ulation (LES) models and, whilst comparison with observations appears favourable,
more is required. The Langmuir cells are large eddies that supply energy to the turbu-
lence cascade within the mixed layer. Through its advection of water within the mixed
layer, the circulation distributes or spreads the turbulent energy produced at smaller
scales by other processes, including breaking waves. Langmuir circulation helps sus-
tain the uniform density of the mixed layer. The circulation may also contribute to the
process of entraining denser water from the stratified pycnocline and mix previously
stratified near-surface water in a period of increasing wind speed. Once a mixed layer
has been generated, however, it is less certain that the circulation is very important
in the process of entrainment or in the deepening of a mixed layer during periods of
persistently strong winds.11

The Langmuir cells are not the only coherent structures observed in the mixed
layer. Measurements of temperature structure made with arrays of thermistors with
1 mK (or better) resolution reveal patterns of variation with relatively large and coher-
ent gradients in the temperature field that are orientated on surfaces across the wind
direction and tilted downwind at typically 45◦ to the horizontal. They are sketched
in Fig. 3.13(a). Figure 3.13(b) shows typical variations of temperature measured by
a fixed vertical array of thermistors in a mean flow. The sudden increases in temper-
ature (arrowed in Fig. 3.13(b) and occurring sequentially in time down the array as
surfaces of large gradients pass by) correspond to warmer near-surface water reaching
the sensors as sketched in Fig. 3.13(a). These ‘temperature ramps’ are also found in the
atmospheric boundary layer, where they are sometimes referred to as ‘micro-fronts’.
They are advected by the mean flow in the mixed layer, and often extend through
vertical distances of about a third of the thickness of the mixed layer.

The ramps are also detected in temperature measurements obtained by towing
arrays of thermistors through the water. Their abrupt changes in temperature lead to a
skewness of the spatial derivative of the temperature gradient, S(dT/dx).12 As shown
in Fig. 3.14, the magnitude of the skewness is of order 1, but it varies approximately
sinusoidally with the angle between the tow direction and the wind, as the tilted surfaces
are crossed at different angles by the moving temperature sensors. The skewness is of
opposite sign in conditions of surface heating and cooling corresponding, respectively,
to the stabilizing and destabilizing conditions described in Section 3.4.1. The skewness,
S(dT/dx), is positive when B0 < 0 and LMO > 0, as in Fig. 3.14, and when the tow
direction is upwind (θ ≈ 0◦).

The causes of the temperature ramps in the near-surface mixed layer are not defi-
nitely established, but they have been shown to involve the downward displacement of
water from near the sea surface, suggesting a surface source, perhaps breaking waves.
The existence of ramps in the atmospheric boundary layer over land implies that waves
are not the only cause, and it is possible that they are related to the hairpin vortices or

11 The entrainment of water into the near-surface mixed layer is the subject of Section 4.5.
12 The skewness of a variable, X, is defined as S(X ) = 〈(X − 〈X〉)3〉/σ 3/2

X , where, as before, 〈X〉 is
the mean value of X, its average in time or space and where σX =〈X2〉−〈X〉2 is the variance of X.
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Figure 3.13. Temperature ramps. (a) A sketch showing temperature ramps being
advected past the vertical fixed array of thermistors in conditions of surface heating.
Abrupt rises in temperature occur as the ramps are advected past the array, at times
increasing with the depth of the sensors. (b) The variation of temperature with time
measured by a vertical array of five thermistors in the mixed layer where the mean flow
is about 8 cm s−1. Ramps are marked by arrows. (From Thorpe and Hall, 1980.)

‘bursts’ known to cause a vertical transfer of water and momentum within the benthic
boundary layer described in the following section.

3.4.4 The benthic (or bottom) boundary layer

• Except near hydrothermal vents (Fig. 3.4), over decaying organic material (e.g., see
P. 3.11) or where gases or ground water are released into the overlying water column,
the buoyancy flux through the seabed has little effect on the structure of the adjoining
boundary layer.

Over very flat surfaces in the laboratory and in the absence of a buoyancy flux,
‘streaks’ of alternately faster and slower moving fluid, aligned downstream, are found
within a viscous sublayer extending a distance of about zv = 10ν/u∗ from the seabed
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Figure 3.14. The skewness, S, of the time derivative of temperature. Measurements
are obtained from towed sensors and are plotted as a function of the direction of the
tow, θ , relative to the wind, as defined in the insert, in conditions of stable surface
heating, F0 < 0. (From Thorpe, 1985.)

and affecting its mean velocity profile as shown, for example, in Fig. 3.5. The streaks
are typically a distance 10zv apart and 100zv in length. [P3.12, P3.13] Vortical motions,
with their axes aligned in the flow direction and not unlike those in Langmuir circula-
tion, are also observed in the laboratory, but are less regular and of rather smaller size
even than the streaks. Similar flow structures will occur in the sea, where the bottom
is flat, e.g., where it is composed of very fine sediments or muds. The near-bed flow
will generally, however, be strongly affected by roughness when stones, shells or other
components of the bed protrude above the mean bed level to more than the thickness of
the viscous sublayer (typically a few millimetres), and the effects of the disturbance of
such obstacles, the ‘roughness elements’, or their wakes, will determine the statistical
spatial and temporal variability of the flow near the seabed. Relatively large roughness
elements such as rocks, or ripples and waves formed in the sediment by the overlying
flow, can, as mentioned earlier, result in flow separation and the generation of eddies.

Coherent structures have been identified within the turbulent flow above the layer
dominated by viscosity or small-scale roughness elements, the best-described being
vortices with shapes resembling that of horseshoes or, in the high-Reynolds-number
flows common in the ocean, hairpins, the curved part of the hairpin structure being
above and downstream of its trailing legs (Fig. 3.15). These appear to be associated
with the ‘bursts’ of larger than average Reynolds stress in which there are upward
motions, marked ‘E’ (for ejection) in Fig. 2.17, and account for the relatively large
scale, mentioned in Section 2.5.3, at which much of the stress is carried. They represent
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Figure 3.15. A sketch of the development, A to C, and flow pattern of a hairpin
vortex in the bottom boundary layer. The legs of the vortex have a form that is similar
to the pair of mutually interacting and self-propelling vortices illustrated in Fig.
1.9(b)(i). Groups of three to five hairpin vortices aligned in the direction of the mean
flow are sometimes observed.

a process of detrainment of fluid from the near-bed region of the boundary layer. They
grow in size as they ascend through the water column, and in sufficiently shallow water
they reach the water surface, generating the boils of size comparable to the water depth
shown in Fig. 1.6.

Benthic boundary layers 5–60 m thick, with vertically uniform temperature and
salinity and maintained in a mixed state by turbulence generated by the shear-stress
energy production term, τ dU/dz, are commonly found overlying the seabed in deep
water. ‘Benthic nepheloid layers’ are those boundary layers that contain elevated levels
of sediment concentration, as in the example in Fig. 3.16. These turbid layers of lower
light transmission are generated by short-lived and rare periods of relatively high
currents that lead to erosion of fine material from the seabed. The sediment sinking
very slowing back towards the bed may remain in suspension for several months
and be carried by the mean currents far from its source. Other layers of low light
transmission are found in mid-water (intermediate nepheloid layers) and near the sea
surface (surface nepheloid layers). The former are sometimes produced by the erosion
and turbulent suspension of sediment from the sloping boundaries of the ocean and its
subsequent spread (much as in Fig. 1.16(d)), whilst the latter may be a result of, for
example, plankton blooms.

3.4.5 Tidal mixing and straining in shallow seas

Stratification is often seasonally and spatially variable in the tidally affected shelf seas.
Whilst, for example, the southern North Sea is unstratified throughout the year, the
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Figure 3.16. A benthic nepheloid layer. Profiles of potential temperature (θ ) referred
to the sea surface, salinity (S) and a measure of the suspended sediment or ‘nephel’
concentration (Ne), at a site in the Hatteras Abyssal Plain where the water depth is
about 5550 m. The water properties are relatively uniform in the 25-m-thick benthic
boundary layer with higher levels of Ne. Small variations in S and Ne are close to the
resolution of the measured values and are probably not real. (From Armi and D’Asaro,
1980.)

northern part becomes strongly stratified in summer. The two regions are separated by a
front, typically 1–10 km wide, but many tens of kilometres in length. The mean location
of such tidal mixing fronts is determined by a competition between the destruction of
stratification through the turbulent mixing caused by seabed-generated turbulence and
the production of stratification by solar heating with a surface buoyancy flux B0 < 0.
(Recall that B0 is measured as being positive if there is a positive upward flux of
heat.) If, as is generally valid, molecular effects can be ignored, there is only one non-
dimensional term on which the location of a front separating stratified and non-stratified
water can depend. In a mean tidal flow, 〈|U |〉, in water of depth h (where both 〈|U |〉
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Figure 3.17. Tidal mixing fronts around the British Isles in summertime. Warmer
surface (and stratified) water appears relatively dark. Clouds (white) cover the
southwestern part of Ireland, the lower left-hand part of the image, and extend from
southwest England across the English Channel. The fronts, some marked by arrows,
separate regions of stratified waters from waters shown in lighter grey tones that are
relatively cold at the surface and that are vertically uniform and unstratified, being
mixed by turbulence generated by tidal flows. For example, water north of the front
(marked 1) extending across the North Sea from the English to the German coast (not
shown) is stratified in temperature whilst that to the south is well mixed and
unstratified. Much of the Irish Sea is also well mixed, although there are stratified
regions in Cardigan Bay, off west Wales, and further north off the English coastline.
There is a front (2) in the western Irish Sea, separating the (lighter-toned) mixed water
in the central Irish Sea from the (darker) stratified water near the Irish coastline, and a
relatively sharp front (3) is visible in St George’s Channel at the southern entrance to
the Irish Sea. There is also a front (4) extending from the coast of Northern Ireland
towards the Hebrides. (Image courtesy of the University of Dundee, Scotland.)



3.4 Stress and buoyancy flux 105

and h depend on position), this term is h|B0|/〈|U |〉3. In shallow regions of relatively
fast tidal flows where h|B0|/〈|U |〉3 is relatively small, turbulence generated by shear
stress on the bottom reaches the surface and results in mixing throughout the water
column, sustaining unstratified conditions. The bottom boundary layer then extends
all the way up to the surface and the whole water column is mixed by the turbulence
generated at the seabed. Where turbulence is relatively weak or the water depth is large,
so that h|B0|/〈|U |〉3 is large, the input of solar heat in summer produces stratification
that prevents complete mixing, and here a thermocline is generally maintained until
the onset of winter cooling or severe wind mixing.
• Fronts separating stratified and well-mixed regions form in locations where
h|B0|/〈|U |〉3 reaches a critical value. An empirically determined value of

h (m)/〈|U (m s−1)|〉3 = 500 (3.11)

provides a rough predictor of the location of summertime ‘tidal mixing fronts’ on
the European Continental Shelf, some of which are shown in the infrared image of
Fig. 3.17.

The simple formulation h|B0|/〈|U |〉3 = constant, commonly referred to as the ‘h
over u cubed criterion’, has been tested successfully in a number of shelf-sea regions
around the world, although modifications are needed to account for the effects of
seasonal heating, the spring–neap tidal cycle, and the competing input of turbulent
energy from the wind.

Because the speed of tidal currents, |U |, has generally two maxima during each
complete tidal cycle, and the production of turbulent kinetic energy near the seabed
is proportional to U 2|U | (Section 2.5.3), the rate of dissipation of turbulent kinetic
energy, ε, has a periodicity that is twice that of the tide. Near the seabed, ε is greatest
close to the time of maximum flow, but the time at which the maximum rate of turbulent
dissipation occurs increases with height above the bed. For example, in tidal currents
of 0.7–0.8 m s−1 under unstratified conditions in a part of the Irish Sea where the
mean water depth is 90 m it is found that the maximum ε occurs at the sea surface
about 1.8 h after the maximum at the bed.13 This time delay in ε appears to be, in
part, a consequence of a lag in its local production by the shear-stress rather than
an upward diffusion of turbulent energy from the vicinity of the seabed, but exactly
how the production and transfer processes may relate to the ‘bursts’ and ejection
processes near the seabed and the arrival of boils at the sea surface has yet to be
discovered.

A further process, important particularly in regions of freshwater influence (ROFI),
is the periodic stratification resulting from the straining of horizontal density gradients
by tidal motions. This tidal straining can partly be understood with reference to Fig.
1.10(a). Suppose that the initial square, ABCD, represents a vertical section down an
estuary with fresher, less dense water at AD emerging from a river on the left, and

13 In stratified conditions the lag is greater, the maximum dissipation at a height of 30 m above the
seabed being found about 3 h later than that at the seabed.
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denser seawater at BC further down the estuary on the right, and that the tide is ebbing,
moving to the right in the figure. Friction at the seabed results in a shear flow carrying
the less dense water, lying along AD, over the denser water at BC, leading to a distorted
shape much as is shown in the figure at time t, and resulting in a stable stratification
with less dense over more dense water. The reversal of the tidal flow in the following
flood tide leads to a reduction in the vertical density gradient as the distorted shape
is translated back towards the initial square. The vertical stratification consequently
varies through the tidal cycle. In practice, the mean shear is not uniform through the
water column, but is greater near the seabed. In the ebb flow some turbulent energy
produced by the shear stress near the bed is expended in mixing the developing and
increasing overlying stable stratification, and consequently (as in Fig. 3.6(b) (top))
the shear is greater than during flood where stratification is reduced. On the flood
tide the shear may even lead to a reversed situation with denser salty seawater being
carried over the fresher water coming from the river, possibly resulting in convective
instability,14 so increasing the turbulent kinetic energy near the seabed and further
reducing the mean shear, much as illustrated in Fig. 3.6(b) (bottom).

Suggested further reading

Classification of mixing processes and
entrainment rates

The idea of classifying mixing processes as external or internal according to their
immediate source of energy, with examples of such classification, is developed by
Turner (1973; section 4.3.1). He also describes the entrainment assumption (1973;
section 6.1.2) first made by Morton et al. (1956).

The benthic boundary layer

Chriss and Caldwell’s (1982) experiment (results of which are shown in Fig. 3.5)
remains one of the most careful and detailed studies of flow close to the seabed.

Wimbush (1970) made very ingenious measurements of the vertical structure of
temperature over the floor of the deep ocean. Measurements are elaborated by Wim-
bush and Munk (1971) and compared with those in the atmosphere. There is no very
comprehensive study of the benthic boundary layer in the deep ocean that includes
observations of turbulence both very close to the seabed and in the overlying water
column, but Armi and D’Asaro’s (1980) paper, with its fold-out figure showing their
observations of the variations in temperature and currents in the boundary layer over
the floor of the Hatteras Abyssal Plain, is very informative.

14 There appear, however, to be no direct observations of the structure of convection (e.g., plumes) in
these conditions, and further study is warranted.
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The upper ocean mixed layer

Langmuir’s short (1938) paper, the first to explain the pattern of circulation known now
by his name, provides an instructive, if not amusing, description of his investigations
carried out to confirm his notion that circulation cells exist.

Moum and Smyth (2001) give a succinct account of the processes leading to mixing
in the upper ocean.

The papers by Shay and Gregg (1984a, corrigendum 1984b, 1986) are important
studies of convection in the layer, and the earlier paper includes a comparison with
observations of convection in the atmospheric boundary layer.

Schott et al. (1996) give an interesting account of their observations of convection
in the Gulf of Lions.

Further study

Von Kármán’s constant

Von Kármán’s constant, k, is known only empirically through laboratory and field
observations. Recent experiments to determine k in the atmospheric boundary layer
are described by Andreas et al. (2006).

Langmuir circulation

Langmuir circulation is a subject that has been given much attention by theoreticians
and observationalists. It is generally accepted that a ‘vortex force’ that depends on the
presence of shear and mean particle motion produced by waves (the Stokes drift) drives
the circulation. A thorough description of Langmuir circulation and its generation is
given by Leibovich (1983). Thorpe’s (2004) review provides some information about
Langmuir turbulence, but interested readers should refer to original sources, including
McWilliams et al. (1997).

Laboratory experiments and field observations by Veron and Melville (2001) show
that small circulation cells (typically 5 cm wide) are rapidly generated following a
sudden increase of wind (Fig. 3.18) but perhaps not by the same mechanism as that
which produces the larger cells discovered by Langmuir. These small cells may be of
importance in that they exchange water previously in close contact with the air with
that in the interior of the near-surface layer, a process of ‘subduction’ that involves
flow separation from the water surface. The transfer process exposes subsurface water
(possibly of relatively low gas concentration) to the molecular transfer of gases (as
well as heat) from the air, across what is, for the water newly arrived at the sea
surface, a large concentration gradient, and may therefore contribute to air–sea gas
transfer.
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Figure 3.18. Temperature patterns formed as wind increases. Infrared images show
the temperature of the water surface at 1-s intervals during an increase in wind speed in
a light gust. The sequence is from left to right along the top row, and then similarly
along the middle and bottom rows. Warmer linear structures aligned in the wind
direction develop as the cool surface skin (described in P.3.9) is replaced by water
rising from below. The initial bands rapidly become more intense (warmer) and less
regular, although some banding in the wind direction survives. Some advection of the
structures from left to right is evident: the apparent temporal evolution may be a result
of spatial variations. The mean wind is about 2 m s−1 in the direction of the arrow, and
the image covers an area 0.53 m square. Vertical bands are artefacts of the
instrumentation. (From Veron and Melville, 2001.)

Breaking surface waves

The breaking of surface waves is a topic that, as indicated in Section 3.4.3, has many
different facets, beyond their direct generation of turbulence. Breakers form spray, or
droplets, and bubbles. The near-surface ocean is therefore a ‘two-phase’ flow system,
and this adds considerable complexity to the flow’s dynamics, notably so when droplets
or spray are present in high concentration, as is generally the case in hurricane condi-
tions or, with lower wind speeds, near the sea surface at locations where waves are in
the process of breaking. The bubbles generated by breakers are important as a conduit
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for air–sea gas exchange. The gases within subsurface bubbles are at a greater pressure
than are those in the atmosphere because of the hydrostatic increase in pressure with
depth and because surface tension increases the pressure within bubbles beyond that in
their surroundings. The atmospheric gases of which bubbles are composed therefore
tend to pass from the bubbles into solution in the surrounding water, increasing its
level of gas saturation. Because bubbles oscillate at high frequency for short periods
after their formation, they emit sound and this contributes to the general level of sound
in the sea. Bubbles also reflect sound (e.g., sounds produced beneath the sea sur-
face by acoustic sonar detection systems or ADCPs) and breakers reflect microwaves
(coming from instruments above the sea surface, e.g., radar), factors and instrumental
means that are used to detect breaking waves. Further information is given by Melville
(1996).

Bottom boundary layer and fronts

Major advances in the understanding of the dynamics of bottom boundary layers in
the ocean are likely from the further collection and analysis of data using PIV (see
Fig. 2.3).

More about the tidal mixing fronts in shelf seas is found in the reviews by Simpson
(1998) and Sharples and Simpson (2001). Simpson et al. (2000) describe the phase
lag of dissipation with height above the seabed in tidal currents. Reference to tidal
straining and other effects in ROFI can be found in Simpson et al. (1990).

The greatest omissions in the topic area of boundary layers are discussions of the
relatively large-scale effects of the Earth’s rotation, the development of Ekman layers
and consequent upwelling or downwelling, and also effects of sloping boundaries
in the ocean, particularly those of continental slopes and around islands and ocean
ridges. These sloping boundaries are regions both of internal wave generation, through
the conversion of energy from the surface tides, and of internal wave breaking. The
latter has several important consequences, some of which are similar to those in the
familiar surface surf zone described in Section 1.4, whilst several others differ. Crossing
isopycnal surfaces, the boundary layers above sloping boundaries, can, for example,
lead to diapycnal diffusion. They may also be sites of the generation of pancake-like
vortices or ‘vortical modes’ – see Section 5.4.2 – that carry (or disperse) material
away from the sides of the ocean into its interior, a means of forming intermediate
nepheloid layers. A related topic, that of flow through topographically confined regions,
straits and channels, where the flow is ‘hydraulically constrained’ and often subject
to instability, making these regions sites of relatively intense mixing, is referred to in
Section 6.8.

Further reference is to be found in TTO to convection (Chapter 4), the benthic
boundary layer (Chapter 8), the upper ocean boundary layer (Chapter 9), shallow
seas (Chapter 10), boundary layers on slopes (Chapter 11) and flow through passages
and channels (Chapter 12).
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Problems for Chapter 3

(E = easy, M = mild, D = difficult, F = fiendish)
P3.1 (M) Geothermally driven buoyancy flux. What is the mean buoyancy flux

into the ocean resulting from the average geothermal heat flux through the seabed?
Compare this with values of ε typical of the abyssal ocean. Assume that the density
of water overlying the seabed is 1030 kg m−3.

P3.2 (D) Spreading of a buoyant plume. Show by dimensional arguments that, at
a height z above the seabed, a turbulent buoyant hydrothermal plume of warm water
rising in unstratified surroundings of density ρ0, from a small local source where the
buoyancy flux is B0 and the vertical momentum is negligibly small, must have a mean
radius R = c1z, where c1 is a non-dimensional constant. The constant, c1, gives the
(constant) angle of spread of the plume. Near the source the plume must therefore
spread conically. You may suppose that entrainment occurs by turbulent engulfment
of the surrounding water and that molecular processes of heat or momentum transfer
are insignificant in increasing the plume’s width. Show also by dimensional arguments
that the mean rise speed, W, of the plume at height z is given by W = c2 B1/3

0 z−1/3,
and that its mean buoyancy (g times the difference in mean density between the plume
and its surroundings, divided by ρ0) at this height must be c3 B2/3

0 z−5/3, where c2 and
c3 are non-dimensional constants.

Show that the mean rate of dissipation of turbulent kinetic energy per unit mass
must decrease in height in proportion to z−2.

By examining the rate at which the vertical flux of warm water changes with z, show
that the rate of flow into the plume (the entrainment velocity) must be proportional to
W, in accord with the entrainment assumption of Morton et al. (1956).

What is the angle of inclination of the edge of the plume to the vertical if the
entrainment velocity is equal to 0.1W?

P3.3 (D) Spreading of a jet. A submarine vent emits a turbulent jet of fluid with
density ρ equal to that of the uniform overlying seawater, with a flux of momentum
FM = ∫

w(ρw)da, integrated over the small area of the vent, where w is the vertical
velocity. Show that, on dimensional grounds, the jet radius at a height z above the
vent is proportional to z, so that the jet spreads conically, whilst the mean vertical
velocity and average rate of dissipation of turbulent kinetic energy, 〈ε〉, at height z
are proportional to F1/2

M ρ−1/2z−1 and F3/2
M ρ−3/2z−4, respectively. Compare these with

the corresponding relations for a buoyant plume in P3.2. As in that problem, you may
suppose that entrainment occurs by turbulent engulfment of the surrounding water and
that molecular processes of heat or momentum transfer are insignificant in increasing
the jet’s width.

P3.4 (D) Rise of a buoyant plume in stratified water. A turbulent plume is formed by
the continuous release of fluid with buoyancy flux B0 through a small isolated vent on
the seabed. If its vertical momentum is negligibly small and if the buoyancy frequency,
N, of the overlying water through which it rises is constant and molecular transfers are
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negligible, show by a dimensional argument that the greatest height above the seabed
to which the plume will rise is given by zm = q(B0 N−3)1/4, where q is a dimensionless
constant. As in P3.2, you may suppose that entrainment occurs by turbulent engulfment
of the surrounding water and that molecular processes of heat or momentum transfer
are insignificant in increasing the plume’s width.
• The value of q is found empirically to be about 3.8. Because the rising plume has ver-
tical momentum when its density becomes equal to that of its surroundings, the plume
‘overshoots’ this level, reaching a greater height before its vertical velocity decreases
to zero. The plume subsequently collapses and spreads at a height of about 0.8zm. The
effect of the Earth’s rotation is usually important in the subsequent horizontal spread
of fluid from hydrothermal plumes.

P3.5 (E) The Kolmogorov scale in a boundary layer. How does the Kolmogorov
length scale, lK, vary with distance from the seabed, with the friction velocity and with
the stress within a law-of-the-wall constant-stress layer if CD = 2.5 × 10−3? Estimate
lK at a height of 1 m from the bed in tidal flows of 0.2 and 1 m s−1.

P3.6 (E) Dissipation in the bottom boundary layer. The mean flow in the section
shown in Fig. 2.3 is 0.113 m s−1, as given in the figure caption. What dissipation rate
is predicted by the law-of-the-wall relation at the mean height of 0.55 m above the
bottom if CD = 2.5 × 10−3?

The value found is less than the values contoured in Fig. 2.3(b), possibly because
only the higher values of ε are contoured and these are not therefore representative of
the mean. (Other factors might be (i) the flow is not isotropic, leading to erroneous
estimates of ε, (ii) the mean flow was not steady, but modulated by the currents
produced by surface waves that induce effects not included in the law-of-the-wall
theory, and consequently (iii) because the law of the wall was not valid and because
the observations are not in a constant-stress layer. Care is needed in applying the law
of the wall to deduce values of turbulent dissipation rates!)

P3.7 (M) The effects of rainfall. Figure 3.19 shows profiles of the buoyancy fre-
quency, N, and the rate of dissipation of turbulent kinetic energy, ε, before and at two
times, about 1 and 2.5 h, after a rain squall that, during its passage, increased the wind
stress from about 0.06 to 0.5 N m−2 and in which the rainfall reached a peak of about
110 mm h−1. Give a qualitative explanation for the changes that occur in N, and also
for those in ε above and below the depth of about 20 m, as a result of the squall.

P3.8 (M) Convection under ice. Solar radiation passing through a thin layer of ice
formed on the water surface in winter heats the underlying water that is close to freez-
ing point. Explain how this may lead to convective motions in a freshwater lake whilst
it does not lead to convection in seawater.
• The convection in ice-covered lakes is a source of turbulent motion that may help,
in winter, to maintain diatoms in suspension in the water column even though they are
slightly negatively buoyant and so tend to sink to the lake bed.

P3.9 (D) The thermal compensation depth and near-surface temperatures. Incoming
short-wave solar radiation penetrates the ocean to a depth that depends on the clarity
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Figure 3.19. Effects of a rainsquall. Profiles of (left) buoyancy frequency, N, and
(right) ε, (a) before the onset of rain, and at times (b) about 1 h and (c) about 2.5 h after
a rainsquall. (From Smyth et al., 1997.)

of the water (e.g., whether or not it contains suspended sediment or algal blooms).
The heat flux decays approximately exponentially with depth over scales, de, ranging
from about 0.5 to 10 m, the greater values obtaining in the clearer conditions. Heat is
transferred into the water at a rate that equals the divergence of the flux. Outgoing long-
wave radiation is almost entirely from the water surface, as is heat lost by evaporative
cooling. As a result, the temperature in a thin, typically 1 mm thick, layer at the surface
is less than that below, sometimes by as much as 0.5 ◦C. Because of this ‘cool skin’
of the ocean, temperatures of the sea surface measured by microwave remote sensing,
particularly those obtained from satellites, are not identical to those of the mixed layer
at depths of 1 m. The skin is, however, disrupted by breaking waves and in conditions
of changing wind stress as shown in Fig. 3.18.
• An important consequence of the various processes of heat transport between the
ocean and the atmosphere is that the upper layers of the sea may lose heat even though
the incoming radiative heat flux exceeds the net outgoing heat flux. The thermal
compensation depth is the depth at which the vertically integrated heat transfer into



Problems for Chapter 3 113

Heat production (10−5 J s−1 cm−3)

1

S
ed

im
en

t d
ep

th
 (

cm
) 3

5

7

9

1                           3

Figure 3.20. Heating by decomposing
organic matter: measured rates of heat
production by the decomposition of
organic matter in the upper layers of
the sediment on the sea floor. The units
of heat production are 10−5 J s−1 cm−3.
(From Graf, 1989.)

the ocean derived from incoming solar radiation balances the flux outgoing from the
ocean at the water surface.

If the net incoming solar radiation at the sea surface is 250 W m−2 and de = 1.5 m,
whilst the net outgoing heat flux, the sum of the latent heat flux associated with
evaporation, the long-wave heat flux and heat flux carried by molecular transfer (the
sensible heat flux), is 100 W m−2, find the thermal compensation depth above which
the cooling at the sea surface may lead to unstable stratification. (Make appropriate
choices for the values of any parameters required to make the calculation.)

Suppose that rain, consisting of fine drops that do not result in much mixing or
turbulence in the surface layer, falls on the sea surface in the Tropics at a rate of
5 mm h−1. If the drops are of the same temperature as the water at the sea surface, but
are of density 25 kg m−3 less than the density at the sea surface, find the buoyancy
flux and from it derive the equivalent flux of heat. What effect does the rainfall have
on the stability of the upper layer of the ocean if the values given above for the heat
flux (250 W m−2 and 100 W m−2) are sustained during rainfall? (See also P3.7.)

P3.10 (D) The absence of geothermally driven convection. Taking the mean geother-
mal heat flux through the bed of an abyssal plain as 46 mW m−2 and the drag coefficient
as 2.5 × 10−3, and supposing that the currents are typically 0.05 m s−1, estimate the
Monin–Obukov length scale at the boundary. At what height above the sea floor might
free convection be found?
• The well-mixed benthic boundary layer is usually of height less than 60 m, above
which the ocean is generally stably stratified. You should conclude that convection
resulting from the geophysical heat flux has a negligible role in mixing in the benthic
boundary layer.



114 Turbulence in oceanic boundary layers

(a) (b)

0 4 8

0.1

1.0

10.0

U (cm s−1)U (cm s−1)
0 4 8 12

0

4

8

12

16

20

U (cm s−1)
0 4 8

0

0.4

0.8

1.2

z
: D

is
ta

nc
e 

ab
ov

e 
se

di
m

en
t (

cm
)

z
: D

is
ta

nc
e 

ab
ov

e 
se

di
m

en
t (

cm
)

z
: D

is
ta

nc
e 

ab
ov

e 
se

di
m

en
t (

cm
)

Figure 3.21. Profiles of current speed above the seabed on the Oregon Continental
Shelf. (a) A linear plot of average speeds, with an inset showing the speeds in the
lowest 1.2 cm of the water column. The same data are shown in (b) but with the height
above the seabed plotted on a logarithmic scale. The straight lines represent the best
linear fits to data in the inset in (a) within the lower viscous sublayer, where dU/dz is
almost constant, and in (b) within the overlying log (or law-of-the-wall) layer, where
U ∝ log10z. (From Caldwell and Chriss, 1979.)

P3.11 (D) Heating by decomposing detritus. Figure 3.20 shows the heat production
in sediments at a water depth of 1430 m on the Vring Plateau off the Norwegian coastal
margin caused by the decomposition of organic matter following a spring bloom of
phytoplankton in the upper ocean, the sinking of organic material and its partial burial
by benthic organisms. Is the heat produced likely to be important in driving convective
mixing in the benthic boundary layer above the sediment? (Use data values given in
P3.10 to quantify the answer.)

P3.12 (E) The size of streaks in the viscous sublayer. If the drag coefficient at
the seabed is CD = 2.5 × 10−3, estimate the thickness of the viscous boundary layer
and the mean separation and length of streaks within it in a tidal flow of 0.1 m s−1,
supposing that the seabed is flat.

Roughness elements of size comparable to the thickness of the sublayer will disrupt
the formation of streaks and dominate the nature of the variations in the near-bed flow.

P3.13 (M) Continuity of stress between the viscous sublayer and the overlying
turbulent flow. Estimate the friction velocity in the law-of-the-wall layer of Figure
3.21 between 0.01 and 0.1 m from the seabed, and hence the stress exerted by the
seabed on the overlying water. Estimate the drag coefficient, CD, related to the flow at
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a height of 0.1 m. If the stress in a viscous sublayer near the seabed is ρν dU/dz, where
ν is the molecular viscosity, find the near-bed mean velocity shear, dU/dz, required
to transmit the stress at the seabed to the overlying turbulent layer through the viscous
sublayer. Compare this shear with that observed. (Following Caldwell and Chriss,
1979, from which Figure 3.21 is taken, you should take ν = 1.5 × 10−6 m2 s−1.)



Chapter 4

Turbulence in the ocean pycnocline

4.1 Introduction

4.1.1 Processes of turbulence generation

This chapter is about turbulence within the stratified body of the ocean beyond the
direct effects, described in Chapter 3, of its boundaries. The ultimate sources of energy
leading to mixing in the ocean are external. The processes causing mixing in the
stratified regions of the ocean derive their energy internally, as illustrated in Fig.
3.2, from sources (e.g., radiating internal waves) that may themselves be directly or
indirectly driven by external forcing at the boundaries.

Two very different processes usually dominate in the generation of turbulence and
diapycnal mixing in the stably stratified ocean. The first is instability resulting from
the shear or differential motion of water, i.e., the vertical gradient of the horizontal
current, dU/dz, which is often caused by internal waves.1 This is described in Section
4.2 and some aspects and evidence of the related turbulent motion are presented in
Sections 4.3–4.7. The second process is more subtle, a form of convection that results
from the different molecular diffusion coefficients of heat and salinity. How these lead
to instability is explained in Section 4.8.

1 These internal waves can propagate and transport the energy required to generate turbulence
because the ocean is stratified. The shear-generated instability referred to (described in more detail
in Section 4.2) is a form of internal wave breaking. Probably less common, and yet to be
definitively observed in the ocean, is a form of wave breaking that mimics that of plunging surface
waves. It is commonly referred to as ‘convective overturn’, and involves waves becoming so large
that the isopycnal surfaces fold over, resulting in statically unstable regions where density
increases upwards and in which convection, and subsequently shear instability, may occur. (The
term ‘convective overturn’ is, however, rather misleading, describing the result rather than the
cause of instability: the folding or overturning is a result of the differential advection of particles,
more dense over less dense, by the wave.)

116
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4.1.2 The first observations of turbulence in
the thermocline

The first published measurements of turbulence within the stratified waters of the
thermocline were reported in 1968 by Grant, Moilliet and Vogel. They were made
off the west coast of Vancouver Island using hot-film anemometers mounted on a
submarine. Grant and his colleagues compared their measurements of turbulence with
those made in the mixed layer near the sea surface. In the latter, at a depth of 15 m,
turbulence was found to be continuous, but variable in intensity (as shown, for example,
in Fig. 2.14). The mean value of the dissipation rate, 〈ε〉, was found to be equal to 2.5 ×
10−6 W kg−1, which was estimated by fitting the observed one-dimensional spectra
of speed determined from the anemometers to the theoretical Kolmogorov spectrum
(2.15). The mean rate of loss of temperature variance, 〈χT 〉, was 5.6 × 10−7 K2 s−1,
which was estimated from (2.13) but using the measured fluctuations in horizontal
gradient, ∂T ′/∂x .

In the stratified water in and below the seasonal thermocline, however, turbulence
was patchy, and this has generally proved to be a characteristic of turbulence in the
stratified regions of the ocean. Grant et al. noted that the mean rates of dissipation
in stratified water at a depth of 90 m, 〈ε〉 = 1.5 × 10−8 W kg−1 and 〈χT 〉 = 7.2 ×
10−8 K2 s−1, were substantially smaller than those they found in the mixed layer.
• The observations draw attention to a fundamental difference between the turbulence
in the stratified ocean and that in the ocean’s boundary layers or, for example, in ships’
wakes and aircraft jets: the latter is generally sustained, being in close proximity to
external energy inputs, whereas the former is usually intermittent, being maintained by
variable or transient mixing processes, such as internal waves. Rarely are the internal
sources of turbulence energy production (e.g., those leading to a transfer of energy
to turbulence from the flow field) maintained in a local region of the stratified ocean
for times exceeding f −1, known exceptions being where turbulence is sustained in
breaking internal waves with frequency near to the inertial frequency f (as illustrated
in Fig. 4.11 later) and in double diffusive convection (Section 4.8). Thus, in this chap-
ter, greater attention is paid to transitional processes, those leading from a relatively
quiescent flow to turbulent motion, and the subsequent decay of the turbulence to
which they lead, than was the case in the discussion of boundary layers in Chapter 3.

At about the same time as the paper by Grant et al. appeared, a graphic description
of the process leading to turbulence in the thermocline was published. A team of
divers led by Woods released dye into the thermocline off Malta, and photographed
the disturbances caused by internal waves and turbulence made visible by the dye. The
thermocline was found to be layered with internal waves, typically 20 m or more in
wavelength, propagating along thin layers of relatively large density gradient (layers
made visible by the dye and termed ‘sheets’ by Woods) between more uniform and
weakly turbulent layers in which dye was mixed and more diffuse. This ‘fine-structure’
of the ocean density, with density gradients varying over vertical scales of 1–50 m, is a
common feature of the ocean pycnocline, although the ‘layer and sheet’ description has
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Figure 4.1. Billows in the Mediterranean thermocline: a photograph taken by divers
of billows made visible by a sheet of dye within the seasonal thermocline. The dye
sheet is viewed obliquely from above. The dye was released into a thin, roughly 0.1 m
thick, density interface within the thermocline, a layer where the density increases
sharply with depth and along which the dye has spread. In the background an internal
wave produces an undulation in the continuous band of the dye. The shear produced at
the crests and troughs of the waves results in an instability in the form of bands of
billows, of which seven or eight are clearly visible. The billows thicken the dye sheet
and are visible in the photograph as bands or as roughly elliptical blobs of dyed fluid.
The bands marking the individual billows are normal to the direction of wave
propagation and parallel to the vorticity generated by the waves travelling along the
interface. (From Woods, 1968.)

not proved to give a useful means of characterizing ocean structure in a quantitative
way. Small undulations, about 1 m in length and so much shorter than the internal
waves, steepening and rolling up to develop into overturning ‘billows’, were seen to
form on the crests of some of the higher internal waves, as illustrated in Fig. 4.1. The
billows generate turbulence and mix water across the sheets, producing a diapycnal
flux of density. Laboratory experiments illustrated in Fig. 4.2 have also shown that
billows form when waves of sufficiently large amplitude propagate along a stratified
layer of thickness very much smaller than the wavelength of the waves. The instability
leading to this form of wave breaking and turbulence generation is discussed in the
following section.2

Woods’ observations provide an explanation of the patchy nature of turbulence
observed in the thermocline by Grant et al. Measurements of the dissipation rates in
turbulence produced by the transient and infrequent billows became possible only later,
in the 1970s, with the development of the air-foil probes described in Section 2.5.2 and

2 As explained in Section 1.8.1, internal waves do not propagate only along density interfaces. Their
upward and downward propagation through the stratified ocean provides a means of energy
transport from the seabed and the sea surface, but adds complexity to the problem of predicting the
distribution, persistence and nature of mixing caused by their breaking.
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Figure 4.2. Billows produced as a consequence of shear in internal waves on a
density interface in a laboratory experiment. The waves are travelling to the right along
an interface separating layers of water and denser brine, and the billows have a
clockwise rotation consistent with the shear at the wave trough that has moved out of
frame to the right. (The shear at the wave crest is in the opposite direction, and billows
there are anticlockwise for waves travelling to the right.) The images are produced by
adding fluorescent dye to the lower brine layer as it is inserted below the freshwater
layer prior to the start of the experiment. Fluorescence is induced by illumination with
a thin sheet of light from a laser, and the fluorescence level acts as a surrogate measure
of salinity. (From Troy and Koseff, 2005.)

with the design of free-fall instrument packages having very small levels of vibration.
These instruments are capable of withstanding huge pressures and, consequently, of
obtaining reliable measurements of turbulent fluctuations at depths well beyond those
at which divers can work.

4.2 Shear-flow instability and the transition
to turbulence

The billows shown in Figs. 4.1 and 4.2 are caused by what is known as Kelvin–
Helmholtz instability. The conditions necessary, but not sufficient, for a stably stratified
shear flow to be unstable, allowing small disturbances in a finite band of wavenumbers
to grow, were discovered by Miles and Howard in 1961.
• Instability of a steady, inviscid, non-diffusive, two-dimensional, parallel horizontal
flow (i.e., a steady flow in which ν, κT and κS are negligible) can occur only when the
gradient Richardson number in the flow,

Ri = N 2/(dU/dz)2, (4.1)

is less than 1
4 somewhere in the flow, where N is the buoyancy frequency and dU/dz

(the vertical shear) is the gradient of the horizontal component of current, U(z).
This is known as the Miles–Howard theorem. Flows in which Ri is greater than 1

4 at
all levels, z, are ‘stable’, in the sense that all small disturbances decay or propagate as
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Figure 4.3. Shear-flow stability and instability. (a) The selected profiles of density, ρ,
and velocity, U. Two uniform layers are separated by an interfacial region of thickness
2d, within which the shear and density gradient (or buoyancy frequency) are constant.
The stability diagram for this particular flow is shown in (b), the curve dividing the
unstable region from that in which the flow is stable. The Richardson number, Ri, of
the flow is based on the uniform gradients of density and velocity in the interfacial
layer between two uniform layers and, in this case, this is equal to the minimum
Richardson number, Rimin. The stability diagram has axes kd, a non-dimensional form
of a wavenumber k of disturbances to the flow, and Rimin. In this particular case Ric =
1
4 , and, for all values of Rimin > 1

4 , the flow is stable and there are no disturbances of
any wavenumbers that grow. For a value of Rimin < 1

4 there is a range of wavenumbers
within which disturbances of the flow will grow and, for such disturbances, the flow is
‘unstable’. (c) The growth rate of these unstable disturbances, q = a−1 da/dt , where a
is the disturbance amplitude, non-dimensionalized with the shear, dU/dz, in the
interfacial layer, as a function of kd at various values of Rimin. (The shear, dU/dz, has
dimensions T−1.) The growth rate increases as Rimin decreases. Flows with other
density and velocity profiles will have different stability diagrams and growth rates.
(From Miles and Howard, 1964.)

internal waves without increase in amplitude. The term ‘somewhere in the flow’ in the
theorem gives importance to the size of the smallest Richardson number, Rimin, found
as the flow speed and density vary in z. If Rimin exceeds 1

4 , then Ri > 1
4 everywhere

and, according to the theorem, the flow is stable.
For instability to occur, the minimum value, Rimin, must be less than 1

4 , but Rimin
1
4 does not ensure that instability will occur; the theorem implies a necessary, but not
sufficient, condition for instability. For a given flow, the largest value of Rimin for which
instability is possible is known as the critical Richardson number, Ric, of the flow. The
value of Ric depends on the shape of the density and velocity profiles, and for some flows
is smaller than 1

4 . (One example of a flow with Ri c < 1
4 is that of dense water flowing

down a slight slope beneath a uniform layer of less dense water.) When, in a given flow,
Ri is less than Ric at some level z, small waves in a limited band of wavenumbers will
grow, usually in the vicinity of z. The stability diagram of Fig. 4.3(b) shows the range
of disturbances that are unstable in the particular flow shown in Fig. 4.3(a), and the
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Figure 4.3. (cont.)

corresponding growth rates are plotted in Fig. 4.3(c). The occurrence of growing
disturbances implies that the flow is unstable: if disturbed (and small disturbances are
omnipresent in the ocean), it cannot be sustained in its original state. [P4.1]

How the instability develops in a laboratory experiment is shown in Fig. 4.4. Two
layers of different densities, the less dense layer above the other, move at the same speed
but in opposite directions parallel to the relatively thin interface between them. The
Richardson number, Ri, varies with depth and is smallest at the centre of the interface,
and for this flow (but, as mentioned above, not all) the critical value, Ric, equals 1

4 .
No growing disturbances are observed when the minimum Richardson number, Rimin,
exceeds 1

4 , and the flow is then stable. When Rimin is less than 1
4 , however, waves

appear spontaneously and grow exponentially with e-folding time scales less than
the buoyancy scale, 2π/Nmax, where Nmax is the maximum buoyancy frequency (that
in the centre of the interface). These waves ‘roll up’ to produce billows (Fig. 4.4(c)),
vortices with axes aligned normal to the vertical plane of original shear flow, i.e., in the
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direction of the vorticity vector of the shear flow. This is the same relative orientation
as have the bands marking billows in Fig. 4.1; they lie ‘across the flow’.

The Miles–Howard theorem is valid only within the very limited conditions for
which it is stated and in which it can formally be proved. It is strictly applicable only to
steady flows, but the conditions (e.g., the value of Ric) under which small disturbances
may grow in steady shear flows can be applied in flows that are varying relatively
slowly with time, for example the flows produced by internal waves.3 The minimum
gradient Richardson number produced in the flow field of internal waves travelling on a
relatively thin interface between two layers of different densities occurs near the crests
and troughs of the waves. In the temporally varying shear and stratification caused by
the waves, the minimum Richardson number must, however, be substantially less than
the critical value, Ri c = 1

4 , of the equivalent steady flow before small disturbances
can grow sufficiently to produce overturning billows. [P4.2] Like the transition from
laminar to turbulent flow investigated by Reynolds (see footnote 3 of Chapter 1), the
critical value of the controlling parameter (i.e., Rimin here) may depend on the nature
of other disturbances present in the oceanic flow, including residual turbulence from
past internal wave-breaking events.

Unlike the rapid transition described by Reynolds, however, the transition from lam-
inar flow to turbulence resulting from Kelvin–Helmholtz instability passes relatively
slowly through a set of distinct stages. If Rimin is substantially less than Ric, neighbour-
ing billows may rotate around one another and merge, a process known as ‘pairing’
that transfers energy to larger scales. In general, relatively small-scale internal motions
develop within the billows, their early stages being regular and spatially periodic,
though rapidly becoming disorganized, three-dimensional and turbulent. The turbulent
patches, still retaining the vestiges of periodicity of the billows, become elongated in the
flow direction and amalgamate as shown in Fig. 4.4(e), resulting in a layer of turbulence
containing small-scale density fluctuations. Turbulence eventually subsides, leaving
a layer thicker than the original interfacial layer (Fig. 4.4(n)). The gradient Richard-
son number in this layer is about 0.32, which is greater than 1

4 , so, according to the
Miles–Howard theorem, the flow is now stable with respect to small disturbances.

Although the small-scale structure of the density and flow fields during and follow-
ing Kelvin–Helmholtz instability has not been measured in laboratory experiments,
results from numerical studies shown in Fig. 4.5 indicate that the flow and density
field is anisotropic in the early stages of turbulence when motion is dominated by the
billows or their remains (Fig. 4.5(b)), but becomes isotropic (i.e., gradients in the flow
quantities are independent of direction) during a period of energetic turbulence (Fig.
4.5(c)), before again becoming anisotropic as the turbulence decays and the density
field becomes dominated by fine-scale layers (Fig. 4.5(d)). The decay of turbulence
is approximately exponential in time, t, with ε ∝ exp[−t/(qτ )], with q = 1.0 ± 0.1,
where τ is equal to the buoyancy period, 2π /N, and N is the buoyancy frequency in
the turbulent layer.

3 ‘Relatively slowly’ means that the time taken for disturbances to grow is very much less than the
time over which the mean flow changes (e.g., the wave period in internal wave flows).
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A field of small-scale variations in temperature, salinity or density remaining after
the decay of turbulent motion is termed ‘fossil turbulence’. Such anisotropic remnants
of turbulence may persist long after the turbulence has decayed, the variations in the
properties (e.g., temperature) being gradually removed by the action of molecular
diffusion and, where the residual field contains regions of statically unstable fluid, by
weak convection controlled by viscosity and molecular diffusion.

The energy dissipated by turbulence in the Kelvin–Helmholtz transition from lam-
inar to turbulent flow and back to laminar flow can be quantified by subtracting the
potential energy gained by increasing the layer thickness from the kinetic energy lost
by the mean flow. The ratio of the potential energy gained to the kinetic energy lost,
a measure of the ‘efficiency’ of the mixing in terms of producing diapycnal mixing,
depends on the minimum Richardson number at which instability starts, but is typically
in the range 0.1–0.25. Most of the kinetic energy lost by the mean flow is transferred
to and dissipated in turbulence. Although, if the surrounding water is stratified, a frac-
tion of the turbulent energy may be radiated as internal waves, this is generally very
small and most of the turbulent energy is dissipated through viscosity into heat, and
is therefore transferred from the motion and density field into a molecular form. As
already seen (e.g., in P2.4), the heating (and therefore changes in density and potential
energy produced by the viscosity heating) in the stratified ocean is minuscule and is
not available to initiate any significant further motion or mixing.
• Much of the kinetic energy lost in Kelvin–Helmholtz instability is effectively
removed from the ocean rather than being used in increasing the potential energy.
Whilst the relatively small fraction transferred to potential energy may initiate motions
and so feed back kinetic energy, for example though the collapse and spread of a mixed
patch as in Fig. 1.16, the energy transferred by turbulence to heat has no significant
role in the subsequent dynamics. [P4.3]

The time from the onset of turbulence in the Kelvin–Helmholtz billows to its even-
tual decay in the laboratory experiments, τKH, is given empirically by

τKH ≈ 15U/(g	ρ/ρ0), (4.2)

where the flow speed varies from – U below the original interface to U above and the
density increases from ρ0 − 	ρ above the interface to ρ0 + 	ρ below. [P4.4]

4.3 The Richardson number in the ocean

Turbulence in the stratified ocean is ‘patchy’. Internal waves produce transient shear,
locally reducing the Richardson number and occasionally leading to instability or
wave breaking (as in Fig. 4.2) that creates local patches of turbulence that subsequently
decays or collapses. Because the instability of a stably stratified shear flow is dependent
on the Richardson number, the local value of Ri in the ocean may be a useful guide
to the factors leading to turbulence and can provide a means to quantify mixing. We
therefore turn next to the measurement of Ri.
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The vertical gradient of the horizontal current, du/dz, can be measured using a
free-fall instrument equipped with an air-foil probe as explained in Section 2.5.2,
and density may also be determined over small vertical scales, so near-instantaneous
values of Ri can, in principle, be found. The resulting values are highly variable and,
although they provide a statistical measure of the field of motion, measurements from
vertically falling instruments are generally not helpful for describing the temporal or
spatial conditions leading to instability in local domains (or depth ranges); billows
grow over finite times at depths where Ri is subcritical, <Ric. Instead, averaged values
of Ri at a selected depth have commonly been used to investigate the prevalence of
conditions necessary for the onset of Kelvin–Helmholtz instability.4 Two quantities
are required: the mean shear, d〈U 〉/dz, and the mean buoyancy frequency, 〈N 〉, given
by [(g/ρ0)d〈ρ〉/dz)]1/2, both representing average values over some short period of
time, �2π/N , at some location.

A scatter plot based on measurements of the square of the velocity difference and
the temperature difference made in the seasonal thermocline using a pair of vector-
averaging current meters (VACMs), one 3 m above the other, is shown in Fig. 4.6. The
horizontal axis is the square of the velocity difference and the vertical is proportional to
the density difference, since density was dominated by temperature. The ratio of
the plotted quantities is equal to the Richardson number and curves of constant Ri
are therefore straight lines. There appears to be a cut-off in the observed values on a
line Ri ≈ 1

8 , and most of the points lie above the line Ri = 1
4 where the flow should

be stable to small disturbances. The relatively few values of Ri less than 1
4 may be for

transitional conditions of developing instability, returning Ri to a value > 1
4 for which

the flow is stable. The observations suggest that the main cause of small-scale shear, the
oceanic internal wave field, may be close to a ‘saturation limit’ in which the addition
of more wave energy will lead to a greater loss of energy through Kelvin–Helmholtz
instability to turbulence, i.e., additional wave shear and strain (defined in (4.15)) will
lead to more frequent subcritical values of Ri and consequently to more wave break-
ing.5 It is evident, however, that small values of Ri are rare – at least in estimates made

4 Average values are often used simply for convenience or because they are the only values than can
be measured with a high degree of accuracy with available equipment. There is a further
consideration: whether values of Ri provide much information about the stability of an oceanic
flow that is, to some degree, already turbulent. Except perhaps to quantify better the turbulent flow
itself, there appears to be little merit in estimating Ri at vertical scales less than those of existing
turbulent eddies (e.g., scales less than the Ozmidov scale defined in Section 4.4.1), within which
flow is unsteady and non-horizontal and therefore does not satisfy the conditions under which the
Miles–Howard theorem applies, and where there will be some negative values of Ri where mixing
(temporarily) produces static instability. Although laboratory experiments have not been carried
out to study the growth of billows in a shear flow that is already turbulent (e.g., a layer with a mean
shear that is, when density is horizontally averaged, statically stable, but in which there is turbulent
motion at some scale small compared with the thickness of a layer), it is likely that the growth of
billows in such a flow will depend mainly on the Richardson number of the mean flow and only to
a small degree on the turbulence, provided, for example, that the time scale over which turbulence
removes energy from the mean flow is much larger than that of billow growth in an equivalent
non-turbulent flow.

5 The numerical calculation of Fringer and Street (2003) referred to in P4.2 shows that billows will
occur in waves travelling on a density interface only when Rimin < 1

8 . This is in accord with the
cut-off in the observations, but more study is required in order to establish the generality of the
result for internal waves in other, more realistic, density profiles.
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Figure 4.6. Shear, temperature gradient and Richardson number. A scatter plot of
values of (horizontal axis) log|	v|2 and the corresponding values of (vertical axis)
log(αgh 	T ), where both variables are measured in units of m2 s−2. The symbol α

denotes the thermal expansion coefficient, and 	v and 	T are the differences in
velocity and temperature, respectively, measured by pairs of vector-averaging current
meters located in the seasonal thermocline in the North Pacific Ocean and separated
vertically by h = 3m. Values are averaged over 112.5 s. The lines show values where
the Richardson number is equal to 1

8 and 1
4 . For most of the measured values, Ri > 1

4
and the flow is therefore stable with respect to small disturbances. (From Davis et al.,
1981, following an earlier study of the scatter of shear squared and N 2 by Eriksen,
1978, off Bermuda at depths of 900 m.)

over 3 m – so that, on average, wave breaking owing to Kelvin–Helmholtz instability
is infrequent. [P4.5]

The variation of Ri represented by the scatter of points in Fig. 4.6 is a reminder
of the variable nature of the ocean, and of the fact that, although Ri may help to deter-
mine the onset of instability in the laminar flow conditions of a laboratory experiment,
in the turbulent and wave-affected ocean it is a variable quantity with a statistical distri-
bution. A flow becoming unstable may already contain small-scale turbulent motions,
perhaps as a residue of earlier instability (see also footnote 4). A more direct connection
between Ri and turbulence is needed.

An empirical relationship between the local mean values of Ri and the rate of dis-
sipation of turbulent kinetic energy, ε, derived from free-fall instruments has been
obtained at depths between 400 and 800 m in the North Atlantic.6 Averaged values
of ε are contoured in N 2–S2 space in Fig. 4.7, with N 2 and S (=dU/dz) esti-
mated over vertical scales of 4 m. Contours of ε lie roughly along lines of constant
Ri, and 〈ε〉 decreases as Ri increases: 〈ε〉 ∼ 5 × 10−10 W kg−1 when Ri = 1

2 and

6 The data were obtained as part of the NATRE experiment described in Section 4.7.
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Figure 4.7. Shear, buoyancy frequency and rate of dissipation. Contours of mean
dissipation rate (1010ε, with ε in units of W kg−1) in terms of the square of the vertical
gradient of the horizontal current, S = dU/dz, and the square of the buoyancy
frequency, N. Values are estimated over vertical distances of 4 m at depths of
400–800 m in the eastern North Atlantic. The straight lines indicate values of
Richardson number, Ri, equal to 1

8 , 1
4 and 1

2 . (From Polzin, 1996.)

〈ε〉 ∼ 50 × 10−10 W kg−1 when Ri = 1
8 . (It will be noticed that these values are

minute in comparison with those measured at shallower depths by Grant, Moilliet
and Vogel.) There is a reduction in 〈ε〉 as Ri increases but no ‘cut-off’ as Ri becomes
greater than 1

4 (i.e., where the mean flow is stable with respect to shear instability)
or where Ri = 0.32, the value to which, in the laboratory experiments, turbulence
collapses. The relationship

〈ε〉 = fr(	z)2〈N 3(Ri−1 − Ri−1
c )(Ri−1/2 − Ri−1/2

col )〉/96 (4.3)

provides a parametric representation and estimate of 〈ε〉 correct to within a factor of
about 2 (i.e., with an uncertainty of about 50%). Here fr is the fraction of the record
within which Ri is less than its critical value (usually taken as 0.25), 	z is the vertical
scale (here 4 m) over which S and N 2 are estimated, Ricol is the Richardson number,
about 0.32, to which turbulence will collapse, and 〈. . .〉 implies that average values
are to be taken over the period or horizontal distance within which ε is estimated.

Similar statistical relationships relating 〈ε〉 to the mean shear generated by internal
waves have been found. These indicate that internal waves are a major contributor to
turbulent mixing in the stratified ocean. The pattern of variation of 〈ε〉 with N 2 and S2

found in deep water and shown in Fig. 4.7 is not replicated in the relatively shallow
shelf seas, suggesting the presence of different processes of turbulence generation (see
Further study). The absence of a cut-off in 〈ε〉 is, however, a reminder of the statistical
nature of the observations, the failure to resolve shears and density gradients at the
relevant scales (footnote 4), the non-applicability of the Miles–Howard theorem in
unsteady flows, and the fact that turbulence, once generated, can be self-sustaining
provided that the turbulence Reynolds stress leads to a transfer of energy from the
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mean flow to turbulence through the shear-stress term in (2.16) at a rate exceeding that
of its loss.

Whilst the statistical relationships indicate that Ri is related to turbulence, they do
not provide information about the physical structure of the ocean, in particular about
the size and presence of billows and overturning eddies or the associated production of
regions of static instability, which are the characteristic features of the consequences
of Kelvin–Helmholtz instability. The presence and vertical extent of regions of static
instability provide another means of quantifying turbulence motion, as described in
the following section.

4.4 Further turbulence parameters derived from
microstructure measurements

4.4.1 Estimation of ε

• The size of eddies provides a way of estimating ε, using the Ozmidov length scale,
LO. This is defined as

LO = 〈ε〉1/2 N−3/2, (4.4)

and is proportional to the vertical size of the largest eddies which can overturn in stably
stratified but turbulent water.

(The relationship expressed in 4.4 can be derived on dimensional grounds by sup-
posing that the scale of the inertial motion is large and that consequently viscosity
is negligible. The only dimensional quantities characterizing the turbulent eddies in
stratified water are then ε and N, the latter providing a measure of the mean density
structure within which the eddies overturn. The shear, and therefore Ri, is neglected
as a contributor on the basis of an assumption made by Ozmidov in 1965 that the
Richardson number adopts a universal critical value of order unity in turbulent flow.
More generally, however, the expression on the rhs of (4.4) might be multiplied by a
function of the dimensionless Ri.) Although data exhibit considerable scatter, there is
evidence that the scale does provide a measure of the eddies that produce regions of
static instability; the Ozmidov scale is found to be proportional to an easily measured
quantity, the root mean square displacement, LT (sometimes known as the Thorpe
length scale), defined in Section 2.4.2. A comparison of the two length scales is shown
in Fig. 4.8.
• The proportionality of LO and LT leads to a relation often used to estimate the mean
rate of dissipation:

〈ε〉 = c1L2
T N 3, (4.5)

where c1 is a constant equal to (LO/LT)2, with mean values found empirically to be
in the range 0.64–0.91. The scatter in LO versus LT data illustrated in Fig. 4.8 adds
additional uncertainty to the estimates of ε obtained using (4.5). Approximate values
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Figure 4.8. Comparison of the
Ozmidov length scale, LO, with
the Thorpe scale, LT. Data in this
example come from observations
in deep water in the Romanche
Fracture Zone. Values of ε and N
(and thence LO) were found using
a high-resolution profiler (HRP;
shown in Fig. 2.13(b)) and LT

estimated from CTD data. The
fitted line is LO = 0.95LT. (From
Ferron et al., 1998.)

of the mean dissipation rate, 〈ε〉, can, however, be estimated from vertical profiles of
density, without the demand for the resolution of the micro-scale measurements of
velocity shear required in using (2.9) or (2.11). (It is often assumed that temperature,
which is easier to measure than density, can be used as a surrogate to infer density;
the vertical scale of density overturns is commonly determined from those observed
in temperature profiles, justifiably so for temperature overturns in freshwater lakes
with temperatures in excess of 4 ◦C, where density is maximum. The vertical scale
of density overturns can also be determined from those of temperature in the ocean,
where salinity as well as temperature affects density, provided that the relation of
temperature to density is monotonic.) Studies have shown that the root mean square
value of displacements, LT, is dominated by the larger, more accurately determined
displacements, η, found in a reordered density profile as in Section 2.4.2. The value, N,
in (4.5) is derived from the mean of the reordered density profiles, which is notionally
the mean profile disturbed by overturning turbulent eddies. The mean dissipation rate,
〈ε〉, may consequently be estimated approximately using (4.5) from conventional CDT
profiles lowered at about 1 m s−1 from a ship and recording at rates usually exceeding
30 Hz, provided that the heaving of the ship in rough weather does not produce vertical
motions of the slowly lowered CTD that carry it back into water it has previously
disturbed.

The Ozmidov scale characterizing the largest eddies that can overturn also repre-
sents an upper bound of the vertical scale at which the motion and density in turbulent
eddies may be isotropic. At larger scales, eddies (if they exist) will be flattened, with
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greater horizontal than vertical scale. The ratio of the Ozmidov scale to the Kolmogorov
scale (at which viscous dissipation becomes significant) is LO/ lK = [〈ε〉/(νN 2)]3/4 or
I 3/4, where I is the isotropy parameter defined in (2.14). If this is very large, which is
a requirement identified in Section 2.3.5 as a necessary condition for isotropy at some
small eddy scale, there is an appreciable range of scales between those of the largest
eddies that can overturn and those of smaller eddies within which viscosity becomes
significant. The greater the separation of the two scales, the more likely it is that an
inertial subrange exists and that, in the inertial cascade of energy by eddy interactions
from large to small scales, any anisotropy that may exist at the larger scales will be
lost, resulting in isotropy at sufficiently small scales.

It should be recalled, however, that the Ozmidov scale, like LT, is a statistical
‘ensemble’ mean quantity. It does not provide a measure of the vertical dimension of
the single largest eddy to overturn in a given period of time or region of space. Isotropy
is also a statistical description of the mean state of motion, and I > 200 will not ensure
the directional uniformity of any particular structure within the turbulent flow at any
particular moment.

4.4.2 Estimation of eddy diffusion coefficients

Two relationships discovered in the 1970s have proved valuable in quantifying the
effects of ocean turbulence from measurements of ocean microstructure using free-fall
instruments. They are important in relating turbulence to temperature microstructure
and mixing.

The first is an equation for the eddy diffusion coefficient of heat:

• KT = κT C, (4.6)

where C is known as the Cox number,

C = 〈(∂T ′/∂x)2 + (∂T ′/∂y)2 + (∂T ′/∂z)2〉/(d〈T 〉/dz)2, (4.7)

the ratio of the variance of the gradient of temperature fluctuations, T ′, averaged
over all three coordinate directions, x, y and z, to the square of the mean vertical
temperature gradient, d〈T 〉/dz.7 [P4.6] If, as often assumed, the turbulent temperature
field is isotropic at scales that contribute most substantially to the terms in (4.7), it
follows that

C = 3〈(∂T ′/∂z)2〉/(d〈T 〉/dz)2. (4.8)

Whilst in principle (4.6) and (4.8) allow KT to be estimated using free-fall instru-
ments that measure the vertical variations of ocean temperature, in practice it places

7 Equation (4.6), discovered by Osborn and Cox (1972), is derived from an equation for the
molecular transfer of heat in a turbulent flow.
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severe instrumental demands on the resolution of very small variations in temperature
gradient that dominate the average.8

The second relation9 relates the eddy diffusion coefficient for density (or mass) to
the rate of dissipation of turbulent kinetic energy per unit mass:

• Kρ = �ε/N 2, (4.9)

where � is an ‘efficiency factor’ and N is the mean buoyancy frequency.
This widely used relation is derived from the assumption that the three terms on

the rhs of the turbulent energy equation (2.16) sum to zero. This supposes that, in the
local region of study, the ocean is in a steady state (which is sometimes an unjustified
assumption) and that other terms contributing to the change in turbulent kinetic energy
are negligible. The balance of terms gives

〈uw〉dU/dz + ε + g〈wρ ′〉/ρ0 = 0. (4.10)

The ‘flux Richardson number’, Rf, is a non-dimensional value that is quite distinct
from the gradient Richardson number, Ri. It relates to energy transfers in a turbulent
flow rather than to conditions in which a flow may become turbulent, and is defined as
the ratio of the rate of removal of kinetic energy by buoyancy forces to the production
of turbulent kinetic energy by the shear,

Rf = g(〈wρ ′〉ρ0)/(−〈uw〉dU/dz). (4.11)

From its definition in Section 2.2.2, the eddy diffusion coefficient of density is given
by Kρ = −〈wρ ′〉/(d〈ρ〉/dz). Using the definition of the buoyancy frequency, Kρ =
g〈wρ ′〉/(ρ0 N 2), and from (4.10) and (4.11), the eddy diffusivity Kρ can be written in
terms of Rf as

Kρ = [Rf/(1 − Rf)]ε/N 2, (4.12)

or as (4.9) if

� = Rf/(1 − Rf). (4.13)

(The efficiency factor, �, is then equal to the rate of increase of potential energy in a
turbulent flow divided by its rate of loss of kinetic energy.)
• Estimates of Rf ≈ 0.17, obtained from laboratory experiments and from measure-
ments in the ocean (e.g., see Section 4.4.3), give � ≈ 0.2, and this is the commonly
adopted value. The precise value of � is, however, subject to continuing debate, and
values exceeding 0.2 are found in conditions where double diffusive convection is
possible, as explained in Section 4.8. [P4.7]

The eddy diffusion coefficients, Kρ and KT, are equal when density is determined by
temperature alone or when the contributions of salinity to density are negligible, and

8 As for ε in Section 2.5.2, semi-empirical methods of interpolation of spectra have been devised to
determine the contribution of small unresolved scales.

9 Equation (4.9) was first proposed by Osborn (1980).
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(4.9) then allows estimates of KT to be obtained from microstructure measurements of ε

and ρ (and hence N) made with a free-fall instrument. Measured values are commonly
of order 10−5 m2 s−1 in the ocean pycnocline except within a few hundred metres of
rough topography, e.g., the continental slopes, mid-ocean ridges and seamounts, where
higher values are found (Section 4.7).

An example of the observed variations in ε and in estimates of Kρ obtained using
(4.9) is shown in Fig. 4.9.

4.4.3 Rf and the ratio of the eddy coefficients
of mass and momentum

Using the definitions Kν = −〈uw〉/(dU/dz) given by (2.2) and Kρ = −〈wρ ′〉/
(d〈ρ〉/dz) as in the preceding section, with the equation (4.11) for Rf, the ratio of
the eddy coefficients of mass and momentum (or eddy viscosity) is found to be related
to the flux and gradient Richardson numbers by

Kρ/Kν = Rf/Ri. (4.14)

In 1931 Taylor examined measurements of velocity and density made by J. P. Jacobsen
between 1913 and 1919 at pairs of stations in the Schultz Grund and Randers Fjord of
the tidal Kattegat, and derived the ratio Kρ/Kν and (using 4.14) the flux Richardson
number, Rf. (Estimates of the gradient Richardson number, Ri, were obtained from
measurements separated vertically by about 2.5 m in the Schultz Grund and 1 m in
the Randers Fjord.) The mean ratio, Kρ/Kν , is in the range 0.05–0.03 for Ri in the
range 4–10,10 and appears to decrease with increasing Ri. The flux Richardson number,
Rf, estimated from (4.14) is significantly less than unity and the rate of removal of
kinetic energy by buoyancy forces is therefore substantially less than the production of
turbulent kinetic energy by the shear, the difference being the contribution of turbulent
kinetic energy to ε. Although the data are scattered, Taylor was able to draw three
additional conclusions important in the development of the understanding of turbulent
motion in stratified flows: (i) that Kν is more than 100 times greater than the kinematic
viscosity, ν, so that friction (or stress) in the water column must be achieved by turbulent
motion, not molecular viscosity alone; (ii) that turbulence is found (but is now known
generally to be patchy) even when the mean value of Ri exceeds unity, and (iii) that
the data in stratified waters are not consistent with an earlier assumption by Reynolds
and Prandtl that Kρ = Kν in turbulent flow.

Subsequent laboratory studies confirmed that the ratio Kρ/Kν decreases with
increasing stability or Ri, and that Rf is substantially less than unity and, although
typically about 0.17 (as mentioned in Section 4.2.2), may depend on Ri.

10 Values quoted by Ellison and Turner (1959).
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Figure 4.9. Diffusion, dissipation and buoyancy frequency in a section across the
Straits of Florida. The variations of log10 values of (a) Kρ, (b) ε and (c) N 2 are shown.
Measured values of N 2 based on density differences measured over 10 m in the
vertical, and of dissipation, ε, averaged over 10 m and measured by the MSP free-fall
probe, are used to determine Kρ using (4.9) with � = 0.2. The dissipation, ε, varies
over two orders of magnitude, and Kρ ranges from 10−6 to 10−4 m2 s−1, with greatest
values close to the sloping sides of the Strait. (From Winkel et al., 2002.)
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4.5 Entrainment into the surface mixed layer

The near-surface mixed layer deepens through the action of processes that are not fully
understood.

The assumption that entrainment is proportional to the velocity difference at the
edge of a vertically rising plume mentioned in Section 3.2.2 may be extended to
conditions in which entrainment into the mixed layer is impeded by buoyancy forces
at its base. Work must be done in transporting the denser pycnocline water upwards
into the less dense mixed layer. A further parameter, a bulk Richardson number, RiB =
g 	ρ D/[ρ(	u)2], a non-dimensional measure of the dynamical effect of the mixed
layer flow, is available to determine the entrainment rate, where 	ρ and 	u are,
respectively, the density and velocity changes across the lower boundary of the mixed
layer of thickness D. (Although the length scale, D, does not characterize the pycnocline
thickness, it does limit the vertical dimensions of turbulent eddies in the mixed layer
and is therefore relevant to the mixing at its lower boundary.)

Numerous laboratory experiments have been performed to simulate the oceanic
conditions and to determine the non-dimensionalized rate of entrainment of water,
wc/	u, across a density interface separating turbulent and laminar layers as a func-
tion of the bulk Richardson number. These include experiments in which turbulence
is generated by a grid of bars oscillating rapidly and mixing a layer within a relatively
deep stratified fluid. The mixed layer is bounded by interfaces across which the density
changes and beyond which it is uniform or of uniform gradient. (The characteristic
velocity scale, 	u, may be taken as the rms velocity in the turbulence near the inter-
face.) In other experiments a homogeneous turbulent layer flows over (or under) a
static denser layer, generating a shear flow at the interface. The non-dimensionalized
entrainment rate, wc/	u, generally decreases as RiB increases (from a value of about
0.1 in the absence of stratification when RiB = 0), and there appears to be general
agreement that wc/	u ∝ Ri−3/2

B , at least in some range of RiB > 1.
Laboratory experiments with shear flows find that both Kelvin–Helmholtz insta-

bility and Holmboe11 instability are involved in the processes of entrainment, but
are dominant in different ranges of RiB. Precisely how the conclusions of laboratory
experiments relate to the oceanic mixed layer where turbulence is generated by shear,
convection, breaking waves and Langmuir circulation has yet to be resolved.

4.6 Observations of mid-water mixing processes

In recent years there have been several observations of turbulence associated with
internal waves. Figure 1.13, for example, shows an internal wave detected using a
high-frequency acoustic sonar. The acoustic scattering is from particles or organisms
in the water column and from temperature microstructure resulting from shear-induced

11 See Further study and Fig. 4.20.
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Figure 4.10. Dissipation in an internal-wave beam. Relatively high values of
dissipation, ε, are found along the path of a beam of internal tidal energy originating
from a region near the shelf break in Monterey Bay, California. The
horizontal-to-vertical scales are distorted. The dashed line shows the calculated
path of an M2 tidal ray generated at the shelf break. Two contours of ε, at about
2 × 10−7 W kg−1 and 1 × 10−6 W kg−1, are shown. Values greater than
1 × 10−6 W kg−1 are stippled. (From Lien and Gregg, 2001.)

turbulence and mixing caused by the wave. The wave is asymmetrical, with a wave
trough that is more pronounced than the wave crest, the result of the pycnocline on
which the wave travels being much closer to the sea surface than to the sea floor. As
a consequence, it is at its trough that the wave induces the greatest shear, initiating
instability and mixing, and leaving the trail of acoustically detected microstructure.

Three further examples of turbulence apparently caused by internal waves are shown
in Figs. 4.10–4.12. The first of these shows a band of turbulence reaching some 6 km
into deep water from the continental shelf break (the edge of the shelf or the top of
the slope). Its inclination is consistent with the downward propagation of an internal
wave beam of M2 tidal frequency, probably generated near the shelf break by motions
caused by the surface tides. Whether the internal tide is itself breaking or, perhaps
by producing an increased level of shear, is causing waves in the background internal
wave field to break is not revealed by the observations.

Figure 4.11 shows variations in shear, strain (see (4.15) below), ε and Kρ resulting
from near-inertial internal waves (perhaps generated by an earlier passing storm) radi-
ating downwards from the surface. The regions of high and persistent dissipation, ε,
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Figure 4.11. Observations of mixing in the Banda Sea made over a period of 14 days.
From top to bottom: the vertical derivatives of the east (u) and north (v) components of
current, the strain given by (4.15), log10 ε and log10 Kρ , the latter determined from (4.9)
with � = 0.2. The vertical derivatives of the velocity components (shear) show bands
of high vertical gradients that become shallower with increasing time. Their period (the
time between their successive arrivals at a given depth) shows that they are caused by
waves of inertial frequency. Although the phase propagates upwards, the energy of the
inertial waves propagates downwards in accordance with Fig. 1.14. The mean profile
of N is shown to the left of the strain. High values of ε and Kρ are visible as lighter
tones in the region of large density gradient (large N) or pycnocline near 100 m depth
as the rising layers of high shear pass through it. (From Alford and Gregg, 2001.)
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Figure 4.12. The location of density overturns within isopycnals. In the two examples
shown, the thin lines are isopycnal surfaces, the large dots are regions where the
displacement scale exceeds 2 m and the stippled regions are where Ri (measured over
6.4 m) is less than 0.25. (From Alford and Pinkel, 2000.)

appear to be related to the upward propagating phase of the waves but, as in Fig. 4.10,
it is not clear whether they lead directly to turbulence by increasing the shear and
strain, or only indirectly by affecting the ambient waves.

Figure 4.12 shows a time series of observations made from the Floating Instrument
Platform, FLIP, using an acoustic Doppler sonar and a lowered CTD with a vertical
resolution of 0.15 m. The lines shown are isopycnal surfaces, their vertical changes
marking the presence of internal waves propagating or being advected past FLIP by
a relative flow. The stippled regions are where Ri (estimated over a vertical scale of
6.4 m) is less than 0.25. The large dots are locations where the displacement scale, LT,
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exceeds 2 m, indicating regions of unstable stratification and revealing the very patchy
nature of statically unstable and potentially active zones of mixing in the pycnocline.
Patches of overturns sometimes follow, and sometimes cross, the isopycnals, and not
all overturns are located where the 6.4-m Ri is small.

Whilst, however, there is, on average, a significant correlation between the loca-
tions of these overturns and those of low Ri, the distortion of the density field by the
internal waves, sometimes known as the strain, γ , appears to provide a better index
of overturning. The strain of the wave field can be written in terms of the buoyancy
frequency (or, equivalently, using (1.5), in terms of the vertical density gradient) as

γ = [(〈N 2〉/N 2) − 1], (4.15)

and is positive where the vertical density gradient is reduced below the mean value
at a given level by the presence of the waves and negative where it is increased. It
appears that shear is not the key factor describing the relation between internal waves
and the presence of unstable stratification; the waves produce shear but also modulate
the stratification. (As in the studies on which Figs. 4.6 and 4.7 are based, much fine-
structure may be poorly or inadequately resolved by the coarse 6.4-m resolution of
Ri.)

Kelvin–Helmholtz billows have been detected by sonar from acoustic scattering off
layers of particles (sometimes zooplankton) on the continental shelf and in regions of
strong shear in sea straits. (They have also been detected by radar in the atmosphere.)
An example from the Strait of Gibraltar is shown in Fig. 4.13. The Mediterranean
is a region of high evaporation rates and, consequently, high salinity. Water from
the North Atlantic flows eastward into the Mediterranean though the Strait (partly
to compensate for the loss of volume through evaporation) above a layer of warmer
and saltier water that flows westwards as an undercurrent out of the Mediterranean,
subsequently forming a ‘tongue’ of high-salinity ‘Mediterranean Water’ at a depth of
about 1200 m in the eastern North Atlantic as shown in Fig. 5.1 later. Shear between
the two layers in the Strait is particularly high where the outflow accelerates in passing
over the constrictions imposed by sills. Figure 4.13 shows the resulting mixing, which
is marked by billows with a height of about 50 m over the Camarinal Sill. Tidal flows
through the Strait result in a modulation of the flow over the sills and the generation
of internal bores or hydraulic jumps in which dissipation rates reach 10−4 W kg−1.

Kelvin–Helmholtz billows have also been observed using arrays of thermistors in
the ocean and in lakes and are probably of common occurrence, but there appear to
be no observations that follow the onset, decay and changing structure of the related
turbulence.

4.7 The rate of diapycnal mixing

Observations of ocean microstructure with free-fall instruments have proved invaluable
in establishing the general variations in diapycnal diffusivity in the ocean. By the
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Figure 4.13. Billows in the Strait of Gibraltar: an acoustic (sonar) image of billows
over the Camarinal Sill in the Strait during a period of 11 min as the vessel carrying the
acoustic transducers passed over the sill from west to east. Reflections from the seabed
are visible at depths corresponding to a pressure of 1.8 MPa (about 180 m). The larger
billows (at times 1338–1340) are about 25 m high and occur at or near the boundary
between the overlying eastward-going Atlantic water and the lower westward-going
Mediterranean water (see also Fig. 2.4(b)). The billows are visible because the
scatterers of sound, e.g., fish swim bladders and zooplankton, are advected by water, or
because the growing billows create temperature microstructure that reflects
high-frequency sound. Comparison of the shape of the billows with that of Fig. 4.4
indicates that the water above them is indeed moving to the east relative to that below.
(From Wesson and Gregg, 1994.)

late 1980s, however, there was some doubt about the magnitudes of the mean eddy
diffusion coefficient of heat estimated from microstructure measurements based on
(4.9) in conditions under which it is appropriate to take Kρ = KT . In 1966 Munk had
carried out a calculation that concluded that the mean value of KT in the abyssal Pacific
Ocean is about 10−4 m2 s−1 (now usually referred to as Munk’s canonical value of
eddy diffusivity), but the microstructure measurements gave a value about an order of
magnitude less, 10−5 m2 s−1.
• Munk’s conclusion that KT ≈ 10−4 m2 s−1 is based on a so-called advection–
diffusion balance. A reduction in temperature at a given level resulting from the slow
upward movement of deep cold water, water that has been cooled and has sunk in
the Antarctic and spread towards the Equator (as described in Section 6.4.3), is coun-
tered by heat diffused downwards from the warmer upper ocean, so keeping the net
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Figure 4.14. A north–south section of potential density, σθ , referenced to 2000 m and
zonally averaged across the Atlantic. Cold Antarctic Bottom Water (AABW)
originating in the Antarctic spreads northwards on the bottom of the Atlantic Ocean (as
well as in the Indian and Pacific Oceans), leading to a slow rise in the overlying water
as indicated by the arrows. The temperature of this water is maintained constant by a
downward diffusion of heat. The balance of advection and diffusion was used by Munk
(1966) to obtain an estimate of the vertical eddy diffusion coefficient, KT. The zonally
averaged topography fails to represent adequately the true depth of the
Greenland–Iceland sill, which is about 600 m. (From Toggweiler and Key, 2001.)

temperature, and density, approximately constant (Fig. 4.14). [P4.8] The rate of pro-
duction of the colder deep water can be estimated, and therefore so can its upward
speed, which is found to be about 4 m per year. Munk’s calculation effectively pro-
vided a long-term average value of KT for the whole water mass below 1500 m at
moderate latitudes in the Pacific.12 Values of eddy diffusivity similar to Munk’s have
been found using an advection–diffusion-balance method in deep basins in other parts
of the ocean. [P4.9]

The significant discrepancy between Munk’s value and the estimates based on data
from free-fall instruments made it appear possible that the values derived from the

12 Munk considered four processes that might produce the required mixing: breaking internal waves,
the effects of mixing at the lateral boundaries of the ocean, double diffusive convection (Section
4.8) and the diurnal vertical migration of swimming zooplankton. He was able to discount the third
and fourth because of their spatial limits. Ganachaud and Wunsch (2000) used methods similar to
Munk’s to derive the diapycnal diffusivity in the Atlantic, Indian and Pacific Oceans at depths of
about 2000–3800 m, and also below about 3800 m. Values of KT range from
(3 ± 1.5) × 10−4 m2 s−1 in the intermediate deep Atlantic to (12 ± 7) × 10−4 m2 s−1 in the deep
Indian Ocean.
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latter were somehow in error. If the measurements of shear from which ε is derived
are accurate, the problem might be to do with under-sampling. This could occur in
two ways. Because only a limited number of estimates of ε (and therefore KT ) are
obtained from a set of free-fall microstructure profiles, and because ε is known to be
approximately log-normal, too few of the relatively high values of ε might be sampled,
so that the estimate of the overall mean value is too low. Alternatively, it was possible
that the rather small number of profiles gathered by the late 1980s had not sampled the
ocean sufficiently well in both space and time (perhaps missing regions and periods
of large KT ) to obtain a reliable estimate of the mean diffusivity.

An ingenious method based on the use of an injected tracer was devised to obtain a
direct measure of a ‘long-term’ and large spatial average value of the vertical diffusiv-
ity. Although this was incidental to the main objectives of the experiment, it provided a
test of the reliability of the estimates of KT derived from microstructure measurements.
A chemical, sulphur hexafluoride, SF6, is found to be almost neutral in the ocean in
that it is chemically stable and does not associate with particles. It can, moreover, be
detected at concentrations of about one part in 1017, concentrations far lower than for
the tracers used previously, and at levels at which it makes an insignificant contribution
to the density of seawater. (For comparison, the fluorescein dye used in earlier disper-
sion studies can be detected at best down to concentrations of about one part in 1012.)
Methods were devised to release the SF6 tracer into the sea, and, in May 1992, a patch
containing about 140 kg of the tracer was inserted into the pycnocline at a depth of
300 m in the northeastern Atlantic in an experiment led by Ledwell and Watson
called the North Atlantic Tracer Release Experiment (NATRE). The patch was fol-
lowed using acoustically tracked floats, and its subsequent vertical, or diapycnal, dif-
fusion was monitored by ship surveys over a period of 30 months, during which time
the original 20-km-wide patch had spread to reach a horizontal size of more than
1000 km. (This spread is shown later in Fig. 5.13 and the horizontal dispersion of
the tracer is discussed in Section 5.4.3.) The vertical diffusion of the patch, from
about 20 m to 150 m in 30 months, is shown in Fig. 4.15, and from the increased
patch thickness a value of the vertical diffusivity of the tracer can be determined:
(1.7 ± 0.2) × 10−5 m2 s−1. This is consistent with estimates of Kρ derived using free-
fall instruments in the same area and depth range.
• Although the experiment raised questions about whether the diapycnal diffusivity
of SF6 is exactly the same as that of density or temperature, the results demonstrate
that the measurements of Kρ by the free-fall instruments are reliable to within a factor
of about 2 (or 50% uncertainty) and vindicated the estimation of KT using free-fall
instruments.

Later experiments using microstructure measurements and SF6 have shown that the
diapycnal diffusivity is often much greater than 10−5 m2 s−1, reaching 10−3 m2 s−1

or more in regions above rough topography, possibly because of the local breaking of
internal waves, notably those of tidal frequency (Section 6.3.2). Much higher values of
ε and KT are, for example, found over the mid-Atlantic Ridge than over nearby abyssal
plains. As shown in Fig. 4.16, there is evidence that flows within canyons on the flanks
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Figure 4.15. The vertical diffusion of the SF6 tracer during NATRE. The mean
measured concentrations are shown as a function of height above their mean level
during four different surveys of the diffusing and dispersing patch made over a period
of 30 months. The four months in which the measured values were obtained are
shown. The horizontal and vertical scales vary so that, for example, the maximum
concentration decreases with time whilst the thickness of the patch increases (1 pM =
10−12 moles per litre, i.e., 10−9 mol m−3, and 1 fM = 10−15 moles per litre.) The
horizontal dispersion of the SF6 patch is shown in Fig. 5.13. (From Ledwell et al.,
1998.)

of the Ridge may contribute to enhanced mixing. These relatively recent observations,
and the lack of earlier measurements in such regions, provide an explanation for
the apparent discrepancy from Munk’s estimate: the free-fall microstructure probes
were not under-sampling values of ε, but the spatial distribution of the microstructure
observations made by the late 1980s was inadequate to account for the regions in which
mixing is greatest. Few (if any) estimates of KT had been obtained in the relatively
small geographical regions, especially those close to the mid-ocean ridges, where
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Figure 4.16. Enhanced dissipation over rough topography: rates of dissipation, ε,
measured by recording a series of free-fall microstructure profiles in an east–west
section over the Mid-Atlantic Ridge at the edge of the Brazil Basin. (The topography is
shown in Fig. 5.14.) Individual profiles are shown as columns of rates of dissipation
averaged over 100-m-depth intervals. The topography underlying the profiles is shown
in grey, and the black line above it marks the level of the crests of the topography
surrounding the position of the profiles. Most of the high values of dissipation lie
between the bottom and the nearby ridge crests, and thus within canyons. Within
500 m of the bottom the dissipation is often two orders of magnitude (i.e., 100 times)
greater than at mid-depth or at similar heights above the nearby abyssal plains. (From
St. Laurent et al., 2001.)

dissipation is now known to be relatively large, so the mean spatial average value of
KT derived from the then existing microstructure measurements was much lower than
Munk’s value.
• It is now apparent not only that turbulent mixing is temporally varying and patchy in
the pycnocline, but also that there are geographical regions, ‘hot-spots’, where mixing
is generally much more intense than average. The sources of the energy required to
support diapycnal diffusion in the ocean are discussed in Chapter 6. [P4.10]

4.8 Double diffusive convection

Whilst internal wave breaking contributes substantially to the mixing of the stratified
ocean, a further process is evident in regions where such mixing is relatively weak
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and in which the vertical gradients of temperature and salinity have the same sign,
both positive or both negative. A form of convective motion known as double diffusive
convection is then possible.

An extraordinary, if hypothetical, means of producing perpetual motion was sug-
gested by Stommel, Arons and Blanchard in 1956. They supposed that a long thin-
walled heat-conducting tube is lowered vertically into the ocean at a location where
the water near the surface is warmer and more salty than it is at depth, and that the water
within the tube is moved upwards, perhaps initially by a pump. Since the temperature
within the ocean decreases with depth, the water driven upwards within the tube will
be at a lower temperature than that outside and, all along the length of the tube, it
will be heated by heat conduction through the tube walls. Its salinity cannot change
by conduction through the impermeable tube walls but, being raised, is less within the
tube than it is outside. This effect, and the heating through the walls, makes the water
within the tube less dense than that outside. The water in the tube has everywhere
above it fluid of lower density than that of the surrounding water, and the pressure at
the bottom of the tube (and at every level inside it) is therefore less than that in the
water nearby. There is consequently a pressure force that can drive the water in the tube
upwards. The motion will be sustained so long as the positive upward salinity gradient
remains. (Equally, if the water is first driven downwards, the downward motion will
also continue.) This phenomenon is known as ‘the perpetual salt fountain’. It works
(at least in theory) because heat, but not salinity, is passed through the tube walls.

Although the idea did not lead to a pragmatic design of an efficient engine, friction
and bio-fouling being insurmountable problems, it led Stern in 1960 to the idea that,
because the molecular diffusivity of salt, κs (about 1 × 10−9 m2 s−1) is very much less
than the thermal conductivity, κT (about 1.4 × 10−7 m2 s−1), the tube walls were really
unnecessary for motion to be continuously driven. Seawater in which the temperature
and salinity both increase upwards – for example as in Fig. 1.12 above 900 m – can
be unstable even if the vertical density gradient is stable (dρ/dz < 0). A small volume
of (non-turbulent) water moved upwards in such conditions receives heat by thermal
conduction from its warmer surroundings and so its temperature rises. Although its
salinity will also rise through molecular transfer from its relatively saline surroundings,
the rate of salt transfer is very much less than that of heat, and consequently there are
conditions in which the decrease in density of the displaced fluid volume through rise
in temperature exceeds the increase through salinity. On becoming less dense, fluid
continues to rise under buoyancy forces developing in a form of convective motion,
but one that differs in the way it is driven from that described in Section 3.2. In terms
of the classification suggested in Fig. 3.2, double diffusive convection is an internal
process. Its scale of size or velocity does not depend directly on the fluxes of energy
through the boundaries of the ocean or on distance from a boundary.13

13 A further distinct type of convective instability known as ‘cabelling’ results from the non-linear
dependence of density on temperature and salinity and from the mixing of water masses of equal
density but different temperatures and salinities. [P4.11]
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� There are two types of double diffusive convection, the first known as the ‘finger
regime’, when, as above, less dense but warmer and saltier water lies over colder
fresher water. It takes the form of ascending and descending convective columns
or fingers of water, typically 1–6 cm wide, ‘salt fingers’, as in Fig. 4.17. Because
the molecular conductivity of heat is greater than the molecular diffusivity of salt,
the density of relatively cold and fresh ascending fingers becomes less, as described
in the preceding paragraph, being reduced by the more rapid transfer of heat than
of salinity from the surrounding descending fingers. The latter, losing heat more
rapidly than salinity, become denser but remain more saline than their ascending
surroundings and tend to continue their descent.

� The second type of double diffusive convection is the ‘diffusive regime’, in which
relatively warm and salty water lies beneath less dense, colder and fresher water. If
it is displaced downwards, the colder water becomes less dense as a consequence
of the molecular transfers with its relatively warm but salty surroundings, and rises
buoyantly to recover its original position, but, having achieved a lower density than
when it started, overshoots its original position and continues to rise, but now losing
heat and becoming denser. Its subsequent re-sinking and rising lead to a growing
oscillation. Fluid initially moved upwards undergoes an increase in density, with
subsequent sinking and overshoot, leading to a similar growing oscillation. Such
growing oscillations are termed ‘overstability’. The diffusive regime of convection
can be active in the Arctic, for example above a relatively warm and salty intrusion
of water of Atlantic origin.

The development and motions of both types of instability are impeded by the
frictional effects of viscosity, and the width and growth rate of the fastest-growing salt
fingers depend on the kinematic viscosity.

We have so far described what happens when both temperature and salinity increase
or decrease upwards. There are two other possible classes of temperature and salin-
ity variation. If salinity decreases upwards and temperature increases upwards, the
contributions of both quantities lead to decreasing density and so produce a density
gradient that is negative (i.e., dρ/dz < 0, with density decreasing upwards). This is a
regime of static stability that is termed ‘doubly stable’. In the opposite case, when the
salinity increases upwards and temperature downwards, both contribute to a density
that increases upwards. Consequently the density gradient is positive and the water
column is ‘statically unstable’.
• A parameter determining the nature of double diffusive instability is the density
gradient ratio,

Rρ = (α dT/dz)/(β dS/dz), (4.16)

where α dT/dz is the contribution of the mean vertical temperature gradient, dT/dz,
to the vertical density gradient and β dS/dz is the corresponding contribution of the
mean vertical salinity gradient, dS/dz. The ratio, Rρ , is less than zero in the doubly
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Figure 4.17. Salt fingers. These are formed in the laboratory by carefully allowing a
warm weak brine solution containing a fluorescent dye to spread over a cold fresh
layer of water. A vertical sheet of light is used to cause the dye to emit light and so
make the developing fingers visible in this horizontal view. The ‘fingers’ are typically
2 mm in width in the laboratory experiment, but in the ocean fingers may be some few
centimetres wide. (From Huppert and Turner, 1981.)

stable regime (dT/dz > 0, dS/dz < 0) and in the statically unstable regime (dT/dz <

0, dS/dz > 0), but Rρ > 0 in both the double diffusive regimes. From (1.4) the vertical
density gradient is

dρ/dz = ρ0(−α dT/dz + β dS/dz), (4.17)

and for overall static stability this must be <0. Using (4.16), (4.17) can be written

dρ/dz = ρ0β (dS/dz)(1 − Rρ), (4.18)

which is <0 if dS/dz > 0 (as in the finger regime), provided that Rρ > 1. Similarly,
dρ/dz < 0 if dS/dz < 0 (in the diffusive regime), provided that Rρ < 1. In the finger
regime Rρ > 1; in the diffusive regime 0 < Rρ < 1.

The convection described so far does not involve turbulence; the motions driven by
instability are laminar. Provided that the contribution to turbulence from other sources
such as breaking internal waves is relatively weak, the initial form of instability in
double diffusive convection (i.e., the salt fingers in the finger regime) is found to
evolve into a spatially coherent structure containing layers of uniform temperature
and salinity. The layers appear as a ‘staircase’ in the temperature and salinity profiles,
a ‘T–S staircase’ as illustrated in Fig. 4.18. The weakly turbulent layers are typically
2–50 m thick, stacked one above the other. In the finger regime, the initial finger
form of instability with laminar flow persists within the relatively thin (0.1–1 m thick)
interfaces between the layers, interactions between fingers leading to their disintegra-
tion at the edges of the uniform layers. The layers, a form of temperature and salinity
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Figure 4.18. A T–S
staircase at depths between
200 and 400 m in the
subtropics. Both
temperature and salinity
increase upwards, favouring
the formation of salt
fingers, and Rρ = 1.6.
(From Schmitt, 1981.)

fine-structure, are sustained by a convective buoyancy flux through the salt fingers, and
are observed when 1 < Rρ < 1.7. The first observation of such staircases was in the
late 1960s at depths of some 1200 m, beneath the relatively warm and saline Mediter-
ranean outflow spreading westwards from the Strait of Gibraltar into the eastern North
Atlantic.

There is evidence that the magnitude of the efficiency factor, �, that appears in
(4.9) can be affected by double diffusive convection even in conditions under which
the presence of turbulence prevents the formation of double diffusive layers. Data
obtained from a free-fall microstructure probe during NATRE, in which there was
no clear evidence of staircase-like structures, have been analysed to determine the
statistical variation of � as a function of the Richardson number, Ri, and the density
gradient ratio, Rρ , as shown in Fig. 4.19.14 In the doubly stable regime shown in
Fig. 4.19(a), where Rρ < 0, values of � are near 0.2 across the ranges of sampled Ri
(0.01 < Ri < 100), in accordance with the value commonly adopted. Similar values
are found in the finger regime when Rρ is greater than about 2, and also in this regime
when 1 < Rρ < 2 and the shear is large so that Ri < 1 (Fig. 4.19(b)). When the
shear is relatively small, however, so that Ri > 1, and when the stability parameter is
moderate (in the finger regime when Rρ is greater than unity but less than about 2), �

is found to have values between 0.4 and 1 (the top left quadrant of Fig. 4.19(b)). The
greater efficiency is equivalent to an increase in the flux Richardson number, Rf, or a
greater fraction of energy being transferred to potential energy from turbulent kinetic
energy.

14 Supposing, as earlier when salinity plays no part, that KT = Kρ , and using (4.6), (4.9) and the
relation between χT and C (P4.6), an expression is found for the efficiency factor:
� = N 2χT /[2ε(d〈T 〉/dz)2]. Measured values of ε, χT (or C), N and the vertical temperature
gradient are used to find �. Its difference from the value 0.2, the value observed in regions where
double diffusive convection plays no part (as in Fig. 4.19(a)), may be taken to imply that the effect
of salinity is dynamically important in some parts of the ocean.
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Figure 4.19. The variation of the efficiency parameter, �, with the Richardson
number, Ri, and the density gradient ratio, Rρ . In the oceanic regime in which double
diffusive convection cannot occur, shown in (a), values of � (defined in 4.9) are
generally close to 0.2. Larger values are found when convection is produced as a
consequence of diffusion in the finger regime shown in (b), provided that 1 < Rρ < 2
and Ri is not small; i.e., � > 0.2 in relatively low shear when turbulence is unlikely to
be generated by shear-flow instability and conditions favour salt-fingering. (After St.
Laurent and Schmitt, 1999.)

• In the finger regime when the shear is weak (Ri > 1) and when there is moderate
stability (1 < Rρ < 2), double diffusive convection may contribute substantially to
the mixing process, even in conditions under which thermohaline staircases are not
produced. No observations of turbulence and its relation to Ri and Rρ seem to be
available yet for the less common conditions favouring the diffusive regime.

Suggested further reading

Diapycnal mixing

Taylor’s (1931) paper is a classic example of how important conclusions may be drawn
from relatively simple measurements. The methods used by Jacobsen to derive Kρ and
Kν are described, with some modifications, by Proudman (1953).

Turner’s (1973) book gives an excellent introduction to the theoretical and labora-
tory investigations of Kρ/Kν or Rf, and includes discussion of laboratory experiments
on turbulent entrainment in stratified shear flows.

Woods’ (1968) paper provides an excellent and unique photographic description of
internal wave breaking and diapycnal mixing in the ocean. Other than shadowgraph
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images of ocean fine-structure and microstructure, notably of salt fingers, e.g., see
Kunze et al. (1987), there are few underwater images that demonstrate the turbulent
nature of the ocean or its sometimes coherent structure.

Gregg (1987) provides a fine and detailed review of the knowledge of ocean mixing
in the 1980s obtained from the early, and still limited, use of microstructure profilers.

Munk’s (1966) paper entitled ‘Abyssal recipes’, in which the canonical value
KT = 10−4 m2 s−1 is derived, was of great originality at the time and is worth read-
ing alongside its successor, Munk and Wunsch (1998), published 32 years later, if
only to appreciate how much (and how slowly) ideas have developed and thinking
has changed. The discovery of relatively high turbulence dissipation rates over rough
topography over the mid-Atlantic Ridge at the eastern boundary of the Brazil Basin
by Polzin et al. (1997) gave particular stimulus to the study of mixing in the abyssal
ocean.

Ledwell et al.’s (1998) account of the results of NATRE relating to diapycnal
diffusion is a benchmark paper in the subject.

Double diffusive convection

The note on the perpetual salt fountain by Stommel et al. (1956) still bears its hallmark
of originality and is a reminder of the continuing search for means of extracting energy
from the ocean. The discovery of T–S staircases is described by Tait and Howe (1971).

Turner’s (1973) book gives a still highly relevant account of the basic processes
involved in double diffusive convection, but the relevant chapter (Chapter 8) should be
read in conjunction with a more recent account, for example Schmitt’s (2001) article
that gives a concise account of more recent discoveries and the effect of the convection
in the ocean.

Further study

Flow instability

The discovery of the theorem now known by their names is described in separate papers
by Miles (1961) and Howard (1961). Drazin and Reid’s (1981) textbook provides a
comprehensive account of the mathematical theory of the stability of fluids in motion,
and is useful as a basic reference.

Only a cursory description of the transition from laminar flow to turbulence fol-
lowing Kelvin–Helmholtz instability has been given here. Other types of shear-flow
instability are known. One that may be common at the foot of a surface mixed layer
as a means of erosion of the thermocline is Holmboe instability (Fig. 4.20). In this the
velocity shear extends beyond the region of large density gradient. The instability takes
the form of billows that detach stratified water from the region of high density gradient,
rather than leading directly to a decrease in the high gradient. Strang and Fernando
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Figure 4.20. Holmboe instability. The instability occurring (a) on the upper side and,
(b), at a later stage, on both sides of a dyed interface between layers of different
densities in a laboratory experiment. (c) A numerical simulation of the instability at
four sequential stages of development, but with flows opposite to those in (a) and (b)
The lines represent isopycnal surfaces. Relative times are marked at the top on the left.
(Parts (a) and (b) from Thorpe, 1968, and (c) from Smyth and Winters, 2003.)

(2001) describe laboratory experiments on the processes and rates of entrainment into
a turbulent flow, and provide references to earlier studies of entrainment.

Some of the processes leading to internal wave breaking are described by Staquet
and Sommeria (2002).

Mixing in straits

Wesson and Gregg (1994) give a detailed account of their measurements of turbulence
over the Camarinal Sill in the Strait of Gibraltar, background to which is provided by
Armi and Farmer (1988).
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Parametric representation

The parameterized relation for ε (4.3) was derived by Polzin (1996). It is also well
worth reading Kunze et al. (1990). An empirical formulation for ε in terms of the
properties of the internal wave field was devised by Gregg (1989), but MacKinnon and
Gregg (2003) found that a different formulation applied on the New England Shelf,
with highest values of ε at large buoyancy frequency, N, and shear, S.

A comprehensive and instructive analysis of data obtained from lowered ADCPs
and CTDs in the Indian, Pacific and Atlantic Oceans has been carried out by Kunze
et al. (2006) to determine ε and KT using a parameterized relation that depends on
internal-wave shear and strain. Weak eddy diffusivities of order 10−5 m2 s−1 are found
in most of the upper ocean, throughout the water column near the Equator, and over
smooth topography, but eddy diffusion coefficients approaching 10−4 m2 s−1 are often
found in the bottom 1000 m, and may extend into the main pycnocline. Sections made
through the oceans show that vertically integrated values of ε are very heterogeneous.
Readers may also find the observations and discussion of reduced mixing in equatorial
waters by Gregg (2003) of interest.

Measurements by Peters et al. (1988) of velocity, density, ε and χT in the equatorial
Pacific have been analysed to derive empirical relations between Kρ/Kν and Ri. As
in Section 4.4.3, these are consistent with a decrease in Kρ/Kν with increasing Ri.
(The authors, however, caution against the use of their formula to parameterize mixing
in locations where the effects of a large mean shear and appreciable internal waves
driven by the diurnal convection are absent or less substantial than in the Equatorial
Undercurrent or equatorial regions.)

Further information about Kelvin–Helmholtz instability, the breaking of internal
waves and mixing in mid-water is to be found in Chapters 3, 5 and 7, respectively, of
TTO.

Problems for Chapter 4

(E = easy, M = mild, D = difficult, F = fiendish)
P4.1 (M) The gradient Richardson number. The steady horizontal flow with speed

U = U0 + U1 tanh(az) and density ρ = ρ0[1 + 	 tanh(az)] has critical Richardson
number, Ric, equal to 1

4 . The terms U0 and U1 are the mean and fluctuating speeds,
respectively, ρ0 is a reference density, 	 is a fractional density change and a is an
inverse length scale such that 2a−1 characterizes the thickness of the velocity and
density interface at z = 0.

Find the gradient Richardson number, Ri, expressed as a function of z, U1, 	, a
and of g, the acceleration due to gravity.

What is the minimum Richardson number, Rimin, expressed in similar terms?
If the interface scale 2a−1 = 1 m and 	 = 3 × 10−5, what is the smallest velocity

difference, 2U1, across the interface that would be required in order to make the flow
unstable with respect to small disturbances?
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Figure 4.21. Billows growing on an interfacial wave: a numerical simulation of
billows growing at the crest and trough of an internal gravity wave travelling along a
density interface. (From Fringer and Street, 2003.)

P4.2 (M) Billows produced by internal waves. Figure 4.21 shows billows formed by
Kelvin–Helmholtz instability at the crests and troughs of internal waves travelling on
a thin interface in a numerical simulation made by Fringer and Street. Are the waves
travelling to the left or to the right? If the velocity difference across the interface at
the wave crests and troughs is 2aσ , where a is the wave amplitude and σ is the wave
frequency, estimate the smallest wave slope, ak, of internal waves of wavenumber k
travelling along an interface between the two relatively deep layers that is required
in order to reduce the Richardson number at the crests and troughs to 1

4 when the
wavelength of the interfacial waves is 20π times the interface thickness. You may
suppose that the dispersion relation is σ 2 = g′k, where g′ = g 	ρ/ρ0, and the densities
of the upper and lower layers are ρ0 − 	ρ and ρ0 + 	ρ, respectively.
• Small instabilities require time to grow into billows. It is found that, in the periodic
shear induced by the internal waves, billows grow to an overturning state, causing
mixing, only if the shear is maintained and Ri is less than the flow’s critical value of
1
4 for a sufficiently long time. Fringer and Street find that the time required demands
that the Richardson number is reduced to 1

8 at the crests and troughs for billows to
overturn.

P4.3 (F) Energy transfers and efficiency of Kelvin–Helmholtz instability. As a
consequence of Kelvin–Helmholtz instability, the thickness of an interface between
two uniform deep layers is increased from 2d to 2D. The initial laminar flow and density
are continuous and vary linearly with vertical coordinate, z, in the interfacial region
from uniform horizontal x-directed speed, U, and density ρ0 − 	ρ in the upper deep
layer to values of −U and ρ0 + 	ρ, respectively, in a lower layer, as illustrated in Fig.
4.3(a). The ratio 	ρ/ρ0 � 1. (The velocity and density profiles are approximations to
the error-function profiles of the laboratory experiments shown in Fig. 4.4.) After the
transition caused by the Kelvin–Helmholtz instability, the velocity and density in the
interface are still continuous with linear variations in z, as in Fig. 4.3(a). The initial
gradient Richardson number, Ri, in the interfacial region has a value < 1

4 . After the
turbulent motion resulting from instability has dissipated, the Richardson number in
this region is 0.32, as observed in laboratory experiments.
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In the model transition described above, find expressions (in terms of U, ρ0, 	ρ, h
and H) for (a) the change in kinetic energy of the mean flow per unit horizontal area,
	KE, during the transition; (b) the corresponding change in potential energy per unit
horizontal area, 	PE; and (c) the energy per unit area dissipated by turbulence in
the transition. Derive an equation for the efficiency of the transition, 	PE/	KE, as a
function of Ri. What is its maximum value?
• Most of the kinetic energy lost is dissipated in turbulent motion and a relatively small
fraction converted into potential energy.

P4.4 (M) The time scale of turbulence collapse. How long is the period of collapse
of turbulent motion following Kelvin–Helmholtz instability in terms of the buoyancy
period in the resulting thickened layer? Compare this period with that of the approx-
imately exponential decay of ε ∝ exp[−t/(qτ )], where q = 1.0 ± 0.1 and τ is equal
to the buoyancy period.

P4.5 (F) Richardson numbers derived from measurements made at vertically sepa-
rated points. If the mean density gradient is stable, show that the Richardson number,
Ri(2h), estimated by taking differences of density and horizontal velocity at two points,
z = −h and z = h, separated by a finite vertical distance, 2h, must be greater than or
equal to the smallest gradient Richardson number in −h ≤ z ≤ h. • This means that
the Richardson numbers observed by taking differences in density and velocity at two
vertically separated points on, say, a mooring, will generally exceed, and thus over-
estimate, the smallest gradient Richardson number, Ri. In particular, the minimum
Richardson numbers, Rimin, on which the Miles–Howard criterion for the stability of
a flow is based, and which are required to establish the stability of a flow, will be
overestimated.

P4.6 (E) The Cox number and the rate of loss of temperature variance. How are the
Cox number, C, and the rate of loss of temperature variance, χT , related?

P4.7 (E) Estimation of turbulent dissipation rates. Show that, in conditions under
which the eddy diffusion coefficients of heat, KT, and of density, Kρ , are equal, (4.6)
and (4.9) provide a further way to determine ε from measurements.

P4.8 (D) The advection–diffusion balance. A thin layer of water of thickness δz
lies at position z (measured upwards) where the mean vertical temperature gradient in
the ocean is dT/dz. This gradient is positive, but varies with depth. If the water moves
steadily upwards at speed w, by how much does the temperature at level z decrease
after a small time δt? What is the rate of change of heat per unit horizontal area in the
layer?

If the vertical downward flux of heat per unit volume in the water resulting from
turbulent mixing is ρ0cp KT dT/dz, where KT is the eddy diffusion coefficient of heat
(which we suppose to be independent of z), find the downward heat flux at the bound-
aries of the layer at z and z + δz, neglecting w, and hence determine the rate of change
of heat per unit horizontal area in the layer due to transfers by turbulence, ignoring the
heating caused by turbulent dissipation and the steady vertical rise of water.

If the temperature (and heat content) within the layer is constant, obtain an equality
based on the balance of heat change caused by steady vertical movement, or advection,
and the vertical diffusion of heat by turbulence.
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Figure 4.22. Heat balance in a deep-ocean basin. Flow enters a deep-ocean basin
over a sill on the left. The basin is closed on the right. There is a downward flux of heat
by diffusion from water of higher temperature above the T1 isotherm and upward
(upwelling) motion at speed, w, within the basin at the level of the T1 isotherm,
maintaining a steady state.

Use this equality to find the eddy diffusion coefficient of heat, KT, if the temperature
variation in the ocean is steady and is given by T = T0 exp(z/d), where d = 1 km
and T0 is a constant reference temperature, when the vertical upwelling speed, w, is
4 m yr−1.

P4.9 (D) Estimates of diffusion in deep ocean basins. Hogg et al. (1982) and Saun-
ders (1987)15 calculated KT in deep ocean basins that are surrounded by topography
and closed except for influx through channels (the Vema Channel into the Brazil Basin
and the Discovery Gap in the eastern North Atlantic, respectively) within which mea-
surements of the temperature and currents allow estimation of the net flux of heat
entering the basins below an isothermal surface of temperature T1 that intersects the
basin sides (Fig. 4.22). In a steady state in which there are no long-term changes to the
position of the isothermal layer or to the inflow, and if the mean inflow is Q (measured
in m3 s−1) and the area of the isothermal surface within the basin is A, what is the
mean upward speed, w, of the water rising across the isothermal surface?

An expression for the flux of heat entering the basin through the channel is
ρcp

∫
uT da, where T is the water temperature, u the horizontal flow speed into the

basin and da an element of the area of a vertical section across which the integral is
taken. What is the flux of heat carried by the advection of the rising water across the
area, A, of the T1 isothermal surface?

If there is no geothermal heat flux through the seabed within the basin and the mean
temperature of water in the basin does not change, the difference between the flux
of heat through the channel into the basin and that leaving by advection through the
isothermal surface must be balanced by a diffusive flux through the surface of area A.
Supposing that the mean temperature gradient across the surface, dT/dz, is measured,
what is the net downward diffusive flux of heat if the eddy diffusion coefficient is KT?

Write down the equation of heat balance and use it to derive an equation for KT.

15 Morris et al. (2001) give a comprehensive review of more recent estimates of KT using the same
methodology in the Brazil Basin, and make a comparison with estimates derived from dissipation
measurements.
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Figure 4.23. Cabelling. A T–S diagram, a graph showing how temperature, T, and
salinity, S, vary on curves of constant density, or σT . The mixing of equal volumes of
the water masses represented by A and B on the same σT curve results in water of
temperature and salinity shown by point C lying on the line connecting A and B, but
below the curve of constant density. Since the density below the constant-density curve
is greater than that on it, the mixed water mass at C is of greater density than those at A
and B and will tend to sink, an instability known as ‘cabelling’.

If the flow from the Madeira Abyssal Plain through the Discovery Gap into
the closed basin, the Iberian Abyssal Plain, is 0.21 Sv, the heat flux, estimated as
ρcp

∫
u(T1 − T )da below the T1 = 2.05 ◦C potential temperature isothermal surface,

is 17.3 GW, the area, A, of the 2.05-◦C isothermal surface within the Iberian Abyssal
Plain is 1.2 × 105 km2 and the temperature gradient across the T1 isothermal sur-
face is 1.0 × 10−4 ◦C m−1, derive an estimate for KT. (Assume that the density is
1030 kg m−3 and that cp = 3.99 × 103 J kg−1 ◦C−1.)

(Saunders also takes into account the geothermal heat flux through the bed of the
Iberian Plain.)

P4.10 (D) The effect of marine snow. ‘Marine fluff’ is an accumulation largely com-
posed of loosely bound organic particles or flocs that have fallen (as ‘marine snow’)
onto the seabed. The deposit grows rapidly following ‘spring blooms’ of phytoplank-
ton, to a thickness of some 0.05 m in about 2 weeks. (See also P3.11.)

Supposing that the flocs of which the snow is comprised each capture a volume of
water equal to E times their own volume whilst falling (E is an efficiency) and carry it
on average a distance L downwards through the temperature-stratified water column
before it is exchanged with, and passed into, the surrounding water, but ignoring the
heat carried by the lattice-like material of which the flocs are composed, derive an
expression for the effective rate of downward transport of buoyancy. Hence find an
effective vertical diffusion coefficient, Kp, associated with the particles’ sinking. You
should explain any assumptions made. If E = 1 and L = 10 m, what is Kp?
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Is marine snow likely to be an important contributor to the vertical diffusion of heat
in the ocean?

P4.11 (D) Cabelling. Equation (1.4) is a local linear approximation to the equation
of state. More precisely, density has a non-linear relation to temperature, salinity
and pressure, e.g., see Gill (1982; Appendix 3). The T–S diagram (temperature T is
plotted vertically and salinity, S, horizontally) sketched in Fig. 4.23 shows lines of
constant σT (or density) as functions of T and S. The lines of constant σT have negative
curvature (concave downwards). Points A, (S + δS, T + δT ), and B, (S − δS, T −
δT ), represent two masses or bodies of water of equal density. Sigma-T, σT , increases
as S increases or T decreases, so that the density of water at salinities or temperatures
below the line of constant σT on which points A and B lie is greater than that at A
and B. If mixed together in equal amounts, water masses at A and B would combine
to give a body of water of salinity S and temperature T, shown by point C, halfway
between A and B. This lies below the line of constant σT and is therefore of greater
density than the water masses A and B. (Mixing in unequal proportions would lead to
water with temperatures and salinities on the line joining A and B.) Mixing between
water masses of equal density but unequal temperatures and salinities may therefore
result in water of greater density that may consequently sink.

Supposing that the density of the T–S curve on which points A and B lie is given
by

(1000 + σT ) kg m−3 = 1027.0 kg m−3

= 103
(
1 − 8.052 × 10−5T

+ 8.046 × 10−4S − 3.017 × 10−6T 2
)

with T (>0) in ◦C and S in psu, and that the salinities at the locations A and B are 34.2
and 33.8 psu, respectively, find the corresponding temperatures at A and B. Hence
find the salinity and temperature of the equal-volume mixture represented by point C.
How much colder is this than the point on the T–S curve on which A and B lie which
corresponds to the same salinity as the mixture, C?

If mixing between the water masses A and B occurs over a time period of a year with
an associated rate of dissipation of turbulent kinetic energy, ε, of 2 × 10−8 W kg−1,
can the heat generated by the turbulence be sufficient to prevent the increase in density
through cabelling?



Chapter 5

Turbulent dispersion

5.1 Introduction

5.1.1 The properties of dispersants

The objective of this chapter is to describe some of the ideas and observations that
have been devised to assess and quantify rates of turbulence dispersion in the ocean.

There are several reasons why dispersion, introduced in Section 1.5.1, is of impor-
tance in the ocean. It is dispersion that determines the distribution of the naturally
occurring ‘tracers’, such as salinity, for example the area within the North Atlantic
that is affected by the high salinity emanating from the Mediterranean through the
Straits of Gibraltar (Fig. 5.1). The volume of the water column in the Pacific affected
by the plume containing helium 3 (3He) coming from hydrothermal vents in the East
Pacific Rise (Fig. 5.2) is a consequence of several processes of dispersion, notably in
the initial buoyant ascent of the plume, including the entrainment of surrounding water,
and the subsequent advection and spread in the stratified ocean of the water ‘labelled’
by the 3He. In many cases, especially those relating to the accidental discharge of
toxic chemicals or oil into the sea or the development and spread of harmful algal
blooms (HABs; Fig. 5.3), the dispersion of solutes or particles by turbulent motion
may have dire consequences as the pollutants spread to sensitive regions, especially
those near shore where there can be a detrimental effect on mariculture, human health
and recreation. Prediction is therefore of great practical importance.

The material – the solutes, particles or organisms (such as, for example, the salinity,
3He, oil drops or films and algae) – carried in seawater and spread by its turbulent
motion is referred to as the ‘dispersant’. As the examples mentioned above suggest,
dispersion frequently relates to stirring motions that exceed those at which turbulence is
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Figure 5.1. Spread of the Mediterranean Water at a depth of 1100 m in the northeast
Atlantic. The Mediterranean Water is relatively salty, a result of high evaporation and
relatively low precipitation in the Mediterranean and connected seas, and enters the
North Atlantic through the Straits of Gibraltar (marked by an arrow). The contours are
of the excess of mean salinity relative to a reference value of 35.01 psu. Circles
represent the reported locations of Meddies (see Fig. 5.16 later). The underlying
topography is shown in light to dark shades changing at 2000 and 4000 m depth.
(From Richardson et al., 2000.)

Figure 5.2. A plume of 3He originating from hydrothermal activity on the East Pacific
Rise and advected to the west by the mean currents. The hydrothermal plumes rising
over the East Pacific Rise (e.g., see Fig. 3.4) are not resolved in this section but will
contain even higher concentrations of 3He than those contoured. (From Lupton, 1995.)
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Figure 5.3. A harmful algal bloom (HAB). The bloom of toxic algae, cyanobacteria,
in the Baltic Sea has a filamentary structure aligned downwind (towards the lower left),
perhaps affected by Langmuir circulation, and has been broken by the wake of the
research vessel. (Photograph by the Finnish Institute of Marine Research. With
permission of the Scientific Commission on Oceanic Research.)

isotropic; the relevant stirring motions are often highly anisotropic, with vertical scales
constrained by buoyancy and with motions and spread of dispersants sometimes also
differing in two horizontal directions.
• Dispersion depends, however, not just on the turbulence processes leading to dis-
persion, but on the nature of the dispersant, for example whether it is a solute in water
(like a dye), or consists of discrete particles or tends to form clusters (flocs) of par-
ticles or, in the case of heavy oils, ‘blobs’. Dispersion depends also on the buoyancy
of the dispersant, whether it floats to the surface (as do light oils) or sinks (as do
sedimenting particles or algal detritus). The dispersant may consist of a dye that has
little dynamical effect on the seawater into which it is dissolved or, like salinity, may
have a buoyancy effect or even lead to double diffusive convection. Other dispersants,
at least at high concentrations, may change the turbulence properties of the water into
which they spread: an oil film can reduce the frequency of wave breaking and hence
the generation of near-surface turbulence, whilst high concentrations of sediment par-
ticles eroded and dispersed by a rapid current over a mobile seabed can significantly
increase the density of the sediment–water mixture and affect the energetics of the
turbulent motion.

Figures 5.1 and 5.2 illustrate an important property of fluids in general and the
ocean in particular. Generally, a maximum in the concentration of a solute (such as
salinity or 3He) cannot be created by natural processes within the body of the ocean
without the presence of an internal source. Quantities like salinity cannot be produced
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or increased within the water, but only at its boundaries (e.g., by layers of salt at the
seabed dissolving into the overlying water or through evaporation at the sea surface).
If a maximum concentration is observed within some finite volume of water, in the
absence of an internal source it can only be in water that has come from a boundary
source; maxima, if they occur, are a result of fluid being transferred from a source at
the boundaries of the ocean. (The one-way transfer of water from near the sea surface
to greater depth is commonly termed ‘subduction’. Fronts, for example, are regions in
which subduction often occurs. On a smaller scale, the vertical transport in convection
may also result in subduction.) The source and subsequent transfer may be relatively
continuous, leading to a gradual reduction in peak concentration with distance from the
source as the quantity is diffused and mixed with the low-concentration surroundings
(e.g., as suggested by Fig. 5.2) or otherwise removed from the water.1 Sources and
transfer may also be discontinuous – or made so by the presence of eddies, resulting in
local maxima of concentration – but the concentration must decrease as the quantity
is carried away from its source.2

Vertical profiles in which a maximum concentration (or measure of a quantity) is
found in mid-water therefore indicate that water has been advected (usually horizon-
tally but, in convective conditions, perhaps vertically), and can be a valuable clue to
processes of intrusion or relative motion. Maximum values occur naturally near the
source of quantities on the ocean boundaries, e.g., of 3He at the source of the plume on
the East Pacific Rise. Care must be taken, however, in interpreting profiles, particularly
when temperature is the observed fluid property. Surface cooling, or the cool skin of
the ocean and the radiation of heat from the atmosphere, may lead to vertical profiles
in which the temperature has a maximum value below the water surface. Unlike other
transfer processes, radiation can transfer heat through the water and raise its temper-
ature. But this is, effectively, a process of creation from an internal source of heat
energy (where there is a divergence in the radiative heat flux), not one at a boundary.

The value of these comments about concentration maxima is in their application in
tracing soluble dispersants as they spread and in discovering their source.3 In contrast
to solutes, particles may, however, cluster and increase in local (but not large-volume
average) concentration as they disperse.

More complex interactive factors affect dispersion. Combinations of particles
and buoyant fluid or solutes occur. The hydrothermal plumes from ‘black smokers’
(Fig. 3.4) contain mineral particles which, being denser than the water surrounding
them and hence negatively buoyant, will eventually sink from the spreading plume,
leaving a surface deposit lying on the seabed beneath the plume and around its source.

1 Removal of gases from solution, for example, may be by their being taken up by marine
organisms, adsorbed onto the surfaces of falling particles and diffused into rising bubbles, or
through their undergoing chemical interactions.

2 An example is that of salinity in Meddies in the North Atlantic; see Fig. 5.16 later. The existence
of a maximum salinity in a Meddy signals that the origin of the water (if not the Meddy) is at a
boundary, and in this case the source may be traced to the Strait of Gibraltar.

3 We have here considered maximum concentrations. The same ideas can be applied to minima, with
the proviso that care must be taken when there are biologically or chemically related processes that
act to decrease the local concentration of a dispersant or fluid tracer.
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A similar ‘loss’ of dispersant from the water column may occur if the dispersant evap-
orates on reaching the sea surface. Dispersants may also dissolve into seawater or
change their form under pressure. An example is that of the bubbles of radius less than
100 µm that are dispersed downwards from breaking waves by turbulence in the upper
ocean. Gases pass from the bubbles into solution in the seawater surrounding them.
The volume of bubbles carried downwards consequently decreases both because they
lose gas into solution and because of the bubbles’ compression by increasing hydro-
static pressure. Both the bubbles themselves and the several atmospheric gases that
they contain may separately be regarded as the dispersants of interest, rendering the
problem one of simultaneously related, ‘multiple’ dispersion.

The complexity introduced by the varied properties of dispersants makes their
spread in the ocean difficult to address in general terms. We shall focus attention on
the dispersion of just two types of dispersants, the first being those that float at the sea
surface or those which, like neutrally buoyant particles or floats, remain on a given
isopycnal surface; and the second, dyes or solutes at concentrations too low to affect
the turbulent motion that, unimpeded by their own buoyancy, follow the motion and
vertical diffusion of the turbulent water.
• The dispersion of particles that float and are therefore constrained to remain on
the sea surface is effectively two-dimensional. Floats that are neutrally buoyant on
some subsurface isopycnal within the pycnocline, being constrained to remain on the
isopycnal surface in mid-water once they have reached it, may also disperse two-
dimensionally on this surface. Floating particles of different densities are constrained
to follow the mean motion of different isopycnal surfaces that, in general, move at
different speeds, so that neighbouring particles on different isopycnals will move apart
in the vertical mean shear as illustrated in Fig. 1.10(a). Both these examples contrast
with the dispersion of solutes that, not retaining their density, are free to be transferred
across isopycnal surfaces by diapycnal mixing or may be spread vertically by turbulent
motions within the mixed layer, rendering the problem ‘three-dimensional’. (Floats
that are neutrally buoyant within the mixed layer present an intermediate problem of
dispersion, one that is three-dimensional but in which the floats are constrained to
remain within a limited depth range.)

When the source of a dispersant is horizontally extensive and does not vary signifi-
cantly in position, for example the (almost two-dimensional) sea surface or a uniform
seabed, or the (one-dimensional) outer edge of a surf zone, the problem of dispersion
may simplify to one with variation in only a single direction (i.e., depth, height above
the seabed, or distance from the edge of the surf zone). The mean dispersant con-
centration, for example, will then vary only in a direction normal to the source. Such
problems are sometimes addressed as being of diffusion, for example of bubbles from
the sea surface or of sediment from the seabed, but are more properly regarded as the
dispersion of particles or solute by turbulent motion, giving appropriate emphasis to
the processes involved and the interaction of turbulence and dispersant.

But first, methods by which to quantify dispersion are required.
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5.1.2 Appropriate measures

The measure of a dispersant that is required in observations or in a predictive model
will often depend on the ‘impact’ that the dispersant has, perhaps on marine life or on
the recreational use of affected beaches. This ‘impact’ of a dispersant may relate either
to its mean concentration or to the greatest concentration that occurs. For example, it
is the mean concentration that relates to the total amount of the dispersant ingested by
organisms or, in the case of oil, that may coat the organisms unfortunate enough to
be enveloped within it for an appreciable period of time. It may be this accumulation
that determines whether organisms survive or not. Alternatively, however, it may be
the maximum concentration or a specified concentration level that is important if, at
some particular concentration, the dispersant becomes lethal to an organism.

Some measure of the spread of a dispersant is required in predictive models, often
in a parametric form that is related to the properties of the environment and the dis-
persant at the (sometimes relatively large) scales resolved by the model. The measure
will depend on whether the dispersant is introduced into the ocean continuously from
a location (Figs. 5.4 and 5.5(a)), like oil leaking from a stricken ship or particles in a
hydrothermal plume, when a statistically steady state may be achieved; or the dispersant
is released at some particular time as a patch or group of particles, an ‘instantaneous
release’ as illustrated in Fig. 5.5(b) and in Fig. 1.7 (to which might be added a steady
advective flow). In the former case, the mean or maximum concentration of dispersant
and its width at some distance from the source may provide useful measures, whilst
in the latter the size of the patch and its mean or maximum concentration as func-
tions of time may be more appropriate, depending on the nature of the impact of the
concentration on the environment.
• In cases in which the turbulent field of motion is homogeneous, it might be supposed
that the spread from a continuous release can be represented as a series of releases
of groups or clusters of particles or patches of dye that are advected by the mean
flow from the fixed release point, thus effectively reducing the prediction problem
to that of instantaneous release. This assumption has to be treated with considerable
caution. Eddies of scale greater than the plume dimensions pass the source and carry
the plume to and fro, causing it to meander as shown in Fig. 5.4(a). Near the source
these large eddies do not cause particles in the plume to move significantly apart from
one another, but lead to temporal variations in the location of the plume. The meanders
result in variations of the measured values of the dispersant concentration at a fixed
point downstream of the continuous source. Concentration is zero if the plume is totally
absent or has temporarily moved away from the point, and non-zero when it is present
(as illustrated in Fig. 5.5(a) by the section of concentration through the plume). The
mean width of the area affected by a plume at some distance downstream of the source
is greater than the instantaneous plume width. The time-averaged concentration at any
point downstream of a discontinuous release will depend on the spread of the clusters
of particles or instantaneous clouds of dispersant carried to the location of the point,
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Figure 5.4. Plumes of floating oil. These composite images of two plumes of oil
released continuously at a constant rate from fixed locations (to the left) were taken
from an aircraft in authorized experimental studies of dispersion in the mixed southern
North Sea. (a) Infrared images show growing meanders in the plume of oil carried to
the right in a tidal current. The crosses are 200 m apart and the length of the meanders
is 100–300 m. (Image kindly provided by Professor A. J. Elliott from work conducted
in collaboration with the UK Warren Spring Laboratory.) (b) A composite photograph
shows a meandering plume of oil, floating on the sea surface, advected to the right
from the release point in a mean tidal current and mean surface wind drift. The
wavelength of the meanders appears to be about 400–600 m. The plume breaks up into
filaments about 10–30 m apart, aligned roughly in the direction of the wind, probably
as a consequence of Langmuir circulation as suggested by the numerical model shown
in Fig. 5.20 later. (From Thorpe, 1995.)

how these overlap, and how often large meanders cause relatively small clusters to
be carried across the location of the point. The maximum concentration in a set of
patches at a given distance from release may depend on patch size, as discussed in
the following section, and differ from the maximum concentration found at the same
distance in a continuous plume.

5.1.3 Effects of relative eddy and patch sizes

It is suggested by the sketch of the distortion of Welander’s checkerboard pattern
in Fig. 1.7 that dispersion may depend on the size of a dispersing patch of dye or
particles. The particles at points A, C, D and E, belonging to a single eddy, remain
close together whereas B, in a neighbouring eddy, is carried in its flow field away from
the other particles. The checkerboard patch extends across two neighbouring eddies
and consequently becomes elongated.
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Figure 5.5. Dispersion in a mean current, U, at moderate times after release. (a)
Dispersion of a plume of dye emitted continuously from a fixed point and shown at a
time after a statistically steady state has been reached, well after the dye was first
carried past the vertical line where (dotted) time-averaged and (full line) instantaneous
dye concentrations are shown. The dashed line shows the outer limits reached by the
dye plume, increasing in width in the downstream direction. (b) A patch of dye at
times t = 0, t1 > 0 and t2 > t1 . The dashed line indicates the path of the centre of the
patch. The distributions of measured concentration in directions along and across the
mean direction of flow (e.g., XX and YY at t = t2) will generally differ. In both cases
the path of the dye is affected by eddies of scale larger than the instantaneously dyed
region and will meander or fold as shown in Fig. 5.4(a). In shallow water, holes may
develop in patches of dye or foam at the sea surface where water carried upwards by
boils replaces the water surface (Figs. 1.4 and 1.6). Diffusion of a dyed patch will
eventually differ in the zonal and meridional directions (see Fig. 5.13(b) later).

The effects of the relative patch and eddy sizes on dispersion are illustrated in
Fig. 5.6. Whilst, in general, these effects depend on the statistics of the eddy sizes,
Fig. 5.6(a) illustrates how eddies much larger than patches of dye or particles advect the
patches, which are distorted by the shear or convergence field within the boundaries of
the large eddies and are only slowly dispersed (or increased in area or volume), mainly
by the motions of smaller eddies. Once the patch size is of scale comparable to that
of turbulent eddies (Fig. 5.6(b)), it is (on average) distorted in the field of shear and
convergence between eddies, and drawn out into the thin filaments or streaks sketched
in Fig. 1.7. Examples are shown in Fig. 1.6(a), the observed floating filaments of oil
drawn out by the presence of boils and, at a much larger scale, in Fig. 5.13(a) later,
the filaments of a chemical tracer, SF6, in the thermocline. When eventually the patch
reaches a size much greater than the turbulent eddies (Fig. 5.6(c)), their effect is to



166 Turbulent dispersion

B

A

B

A

(a)

(b)

(c)

Figure 5.6. Dependence of dispersion on patch and eddy size. Patches or particles are
marked by stippled regions and are shown initially (left) and at some later time (right)
as they are distorted in fields of eddies indicated by the arrowed flow lines. (a) Eddy
scale much greater than patch size. There is relatively little growth in the mean
dimensions of patches, except for that caused by shear within the eddy. (b) Similar
patch and eddy sizes. The patch is drawn into filaments or streaks by the eddies. (c)
Patch size much greater than eddies’. The eddies mix within the patch and extend the
patch boundaries relatively slowly.

mix fluid within the patch itself and slowly to continue the process of spreading of the
patch at its outer boundaries. (Eventually the filaments of SF6 diffuse into one another,
producing the large, but still inhomogeneous, patch shown in Fig. 5.13(b).)

There are several ways in which time can enter the problem of dispersion. As
shown in Fig. 5.6, the rate of dispersion of a patch is related to the size of the patch
and, since this increases with time, to the time over which it has previously spread.
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Dispersion of a patch will be relatively slow whilst fluid remains (on average) within
an eddy (Fig. 5.6(a)). This introduces a concept of eddy lifetime,4 the period during
which an eddy retains a coherent structure before it decays or disintegrates, leaving
the patch of dye or particles that was within it to be invaded by further eddies. These
may distribute the material originally within the eddy amongst several others and
expose material to the process of dispersion illustrated in Fig. 5.6(b). Furthermore, the
nature of eddy disintegration may be important, ranging from a process involving the
pairing of neighbouring eddies and the formation of a single eddy (an increase in eddy
size) to the fragmentation of a dominant eddy into smaller eddies. In stratified regions
the form of eddies and their effect on dispersion may change with time, originally
three-dimensional eddies collapsing to form horizontal vortices (see Fig. 1.16).

Other temporal processes that force motion, but which are not described as ‘eddy-
like’, may contribute to the dispersion of a patch of dispersant in the ocean as the
time after its release increases. These form part of the non-steady and anisotropic
conditions that typify ocean turbulence. Over sufficiently short periods of time the
speed and direction of the wind may be relatively uniform and statistically steady,
with means that are changing very slowly, but over a period of a few hours the wind
speed and direction can change substantially, and so will the motions forced by the
wind within the upper ocean. Such variations in forcing will, for example, change
the orientation of the streaks of oil shown in Fig. 5.4(b) and affect the spreading rate
of the oil on the sea surface. The processes leading to turbulence in the mixed layer
often change over a diurnal cycle (Section 3.4.2). These external effects, appearing
as an unsteadiness of the mean flow or stratification over times of order a day, may,
over much longer periods (e.g., months), be regarded as contributions to the spectrum
of turbulent motions: such natural variability induced by externally forced processes
of mixing may be contained within the terminology ‘turbulent motion’. In practice
great care is required in making estimates (or in deriving coefficients) of dispersion in
quasi-steady or highly variable conditions, in properly assessing average values in the
presence of the inherently variable state of the ocean and in assigning the dispersion
rates that are appropriate in particular conditions where prediction of dispersion is
required.

As well as temporal variability, spatial non-uniformity in dispersion may also be
encountered, for example as a dispersing patch or plume reaches the boundary of a
region confined by tidal fronts (Fig. 3.17) or a region of enhanced mixing caused
by topography (Fig. 4.16), and due account of the presence of such features and of
localized processes of dispersion is required in predictive modelling.

4 The lifetime of an eddy, or of other coherent structures characteristic of turbulent motion, is often
brief. In many cases the lifetime of eddies recognized in shadowgraph images or by PIV is
comparable to the time required for water particles to travel once around a typical eddy’s
circumference. If the lifetime is much shorter, the structure of eddies will be transient, lacking
coherence and possibly making them unrecognizable, beyond any means of detection because of
their short duration. In such circumstances a description of turbulence as a collection of eddies
may be inappropriate and an alternative descriptive term is needed.



168 Turbulent dispersion

5.2 The dispersion of particles

5.2.1 Autocorrelation and integral scales

Dispersion of particles or markers such as floats, or, in the atmosphere, balloons,
by turbulent motion was one of the first topics related to turbulence to be addressed
by theoreticians, notably L. F. Richardson and G. I. Taylor (see footnotes 8 and 10,
respectively, in Chapter 2), both of whom were also able and skilled at performing
experiments to test their predictions, and did so.

Dispersion is related to the spreading or relative position of particles released as
a group at some instant of time, t = 0, but we begin by considering the tracks of
single particles moving with the turbulent water. If the speed of a particle at time t
in direction x (for the sake of argument, supposed horizontal) is given by Uo + u(t),
where Uo is the mean speed of a group of particles, then the location of the particle
relative to its starting or release point is X (t) = Uot + x(t), where x(t) = ∫ t

0 u(τ )dτ .
The relative spread of particles depends on whether or not their motions are similar,
and consequently on whether their locations remain similar. This is related to the idea,
introduced in Section 5.1.3 and taken up again in Section 5.2.2, that eddies that are
large relative to the separation of particles will move all the particles in a similar
way, and so contribute little to increasing the size of a cluster, whereas eddies of size
comparable to or smaller than the distance between particles will move them apart.

A measure of the time scale over which the speed of a particle or float carried by the
motion remains similar during its encounter with eddies in a turbulent flow is provided
by the ‘velocity autocorrelation function’, R(τ ), the mean value of the product of the
speeds, u, of a single particle or float released into the ocean measured at two times
that are separated by a time interval, τ , and normalized and non-dimensionalized by
u′, the standard deviation of the particle speed, u:

• R(τ ) = 〈u(t)u(t + τ )〉/u′2 ≡
{

LimT →∞

[
1

T

∫ T

0
u(t)u(t + τ )dt

]} /
u′2, (5.1)

where u′2 = LimT →∞[(1/T )
∫ T

0 u2(t)dt]. The non-dimensional function R is equal to
1 when τ = 0, but R(τ ) tends to zero as τ tends to infinity because a particle’s (or a
float’s) speeds become incoherent and uncorrelated at large separation times, τ .5

In practice R is calculated from averages over many (i.e., an ‘ensemble’ of) particles
or floats in the ocean, and assumptions are often made about the spatial and temporal
uniformity, or homogeneity, of the turbulent velocity field. This places limitations on

5 In estimating R, it is supposed that floats accurately follow the motion of the water and can be used
to find its speed, so that R represents a measure of relative motion, not just of floats, but also of
water particles. This is not necessarily true; often there will be some ‘slippage’ that must be
accounted for. Cross-correlation functions, of which R is one, are discussed in footnote 11 in
Chapter 2. Being relatively easy to calculate, they were once often used to describe the structure of
varying flows and the variation of quantities such as temperature or dispersant concentration as
well as velocity components. They are sometimes derived from measured values at points
separated in space rather than in time. They are related to spectra as noted in Section 2.3.6. Instead
of cross-correlation functions, it is now more common to use spectra or structure functions to
describe the structure of turbulent flows.
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the durations of time or extents of the ocean locations characterized by measurements
of dispersion. Measured values are often representative only of a particular period of
time or position in the variable ocean: hence the requirement for care in their use that
is noted in the last section.
• The smallest time, τ , at which R becomes zero provides an approximate measure
of the time scale over which motion remains coherent. As we shall explain, however,
a more useful measure, related to the rate of separation of particles and hence to the
size of a dispersing patch, is obtained by integrating R over separation times, τ . This
provides a single measure, a time scale, called the ‘Lagrangian integral time scale’,

TL =
∫ ∞

0
R(τ )dτ, (5.2)

that represents the time for which a particle’s speed remains strongly coherent or self-
correlated. Using u′ to characterize the speed of particles, a corresponding ‘Lagrangian
integral length scale’,

LL = u′TL, (5.3)

can be defined, providing a measure of the scales of eddies in the x direction of a
flow field. (Eulerian time and length scales are commonly used to describe dispersion;
they are found simply by calculating R from the velocities, u, measured at a fixed
point instead of from those of flow-following floats or particles.) The scales TL and LL

provide measures of the turbulence but not, immediately, of its dispersive effects.
A theorem that is central to the study of dispersion is that derived by Taylor in 1921.

It provides the link from measures of the movement of single particles to the dispersion
of many. It shows how turbulence velocities are connected to particle displacements,
and may be stated as follows.
• In a homogeneous turbulent flow, the rate of change of the variance of particle
positions, 〈x2〉, which we suppose to be determined from an ensemble of releases or
from a large number of particles at the same time after release, is related to R by

(d/dt)[〈x2(t)〉] = 2u′2
∫ t

0
R(τ )dτ. (5.4)

This provides a means of determining an ‘eddy dispersion coefficient’, KH, given by

KH = 1

2
(d/dt)[〈x2〉], (5.5)

from the measured autocorrelation function of the velocities of a set of particles or
floats. The coefficient KH is positive for a growing patch of particles or floats, but can
be (temporarily) negative in regions of convergent flow. The coefficient is a measure
of the mean rate of separation of fluid particles in the x direction in a turbulent flow.
A coefficient related to particle separation in the y or z directions can be defined
similarly.

For an ensemble of particles released from a fixed location, 〈x2(t)〉 ≈ u′2t2 for
t � TL, a result found by integrating (5.4) and recalling that R(τ ) ≈ 1 for small τ .
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Since, at time t, particles have been carried by the mean current through a distance U0t,
this implies that the width of a patch of neutrally buoyant particles (given by 〈x2(t)〉1/2)
grows linearly with distance. (This result may be compared to the prediction of a linear
spread of a turbulent buoyant plume or a turbulent jet, a result that can be derived by
means suggested in P3.2 and P3.3.)
• On substituting 〈x2(t)〉 ≈ u′2t2 into (5.5), the dispersion coefficient, KH ≈ u′2t , is
found to increase linearly with time t � TL and is not constant; it depends on time or
on the mean separation, 〈x2(t)〉1/2.

At large times, t � TL, (5.2) and (5.4) give 〈x2(t)〉 ≈ 2u′2TLt , so a patch of particles
of size proportional to 〈x2(t)〉1/2 will tend to grow with a parabolic relation to time
(i.e., 〈x2(t)〉1/2 ∼ t1/2) at large distances from the source.

• It follows from (5.5) that, at large times t � TL, KH ≈ u′2TL: the dispersion
coefficient tends towards a constant value, KH∞, which, using (5.3), can be written

KH∞ ≈ u′LL, (5.6)

where LL may be interpreted as an effective ‘mixing length’ of the turbulent diffusive
field of motion. The time TL provides information about how long it will be before the
rate of dispersion of floats, (d/dt)〈x2(t)〉, becomes constant and no longer depends on
the time after their release.

5.2.2 Richardson’s four-thirds power law

Richardson drew attention to the importance of relative scale. As explained in Section
5.1.3 and Fig. 5.6(a), small patches – and hence pairs of particles that are relatively
close together – are simply advected as a patch, or together moved as a pair, by eddies
of relatively larger scales. Pairs of particles are, however, moved apart by eddies of
scales comparable to or less than the distance between them, as illustrated in Fig.
5.6(b). Small clouds of particles are advected by the motions of the large eddies (those
of size much greater than the cloud) and dispersed mainly by eddies that produce
motions which diverge on scales comparable to the cloud size. The rates of dispersion
of particles therefore depend on the presence of eddies with the appropriate scale to
cause their dispersion, and the coefficient of dispersion will vary according to how
effective eddies of this scale are at causing dispersion. Just as the energy of eddies
depends on size (see Section 2.3.6), it is argued that their dispersive action through
shear or convergence (as in Fig. 1.10) will be scale-dependent. If turbulent motion is
produced by interacting eddies with a broad range of scales, the rate of dispersion of
a cloud of particles should depend on the size of the cloud.
• This notion of scale-related dispersion is encapsulated in Richardson’s law of
diffusion:

∂q/∂t = (∂/∂l)[F(l)∂q/∂l], (5.7)

where q is a concentration and q dl is the number of particles that are separated from
their neighbours by a distance between l and l + dl. Largely on the basis of available
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atmospheric data, Richardson proposed that the scale-dependent dispersion coefficient,
F(l), should be equal to cll4/3, where cl is a constant with dimensions L2/3T−1, a
relation now known as Richardson’s four-thirds power law. (Tests of Richardson’s
predicted dispersion are described in Section 5.3.1. The fact that cl is a dimensional
constant suggests that some physical process, characterized by dimensional quantities
and affecting dispersion, has been overlooked in the formulation of F(l). This is referred
to again in Section 5.4.2.) [P5.1]

5.2.3 Dispersion of pairs of particles

The diffusivity, commonly called the relative diffusivity, of pairs of particles separated
by rms distances D (not necessarily in one coordinate direction) is defined as 1

2 dD2/dt .
This is the value most commonly determined or estimated. For diffusion described by
Richardson, the diffusivity is proportional to D4/3, so, by integration,

D ∝ t3/2, (5.8)

after time t. (The times, or distances, over which this law applies will be discussed
when observations are described in Section 5.3.1.) At large times, t, and when the
particle separation distances are large, long after the release of particles,

D2 ∝ KH∞t. (5.9)

Dispersion coefficients can be derived from measurements of the distances by which
particles become separated in each of the three coordinate directions. These are often
found to be unequal. As suggested in Section 5.1.1, buoyancy forces may constrain
vertical dispersion and the presence of a mean shear can lead to the separation of
particles even in the absence of dispersion caused by turbulence. Its effect is evident,
for example, in the dispersion of floats released on the sea surface, the generally
east–west currents in the Tropics leading at large scales to an evident difference in
estimates of dispersion coefficients in the north–south (meridional) and east–west
(zonal) directions.

5.2.4 Effects of closed vertical circulations on
buoyant particles

It is appropriate here to mention some effects that may occur when the dispersed
particles are positively or negatively buoyant.

The distribution of sediment particles sinking within a closed circulation, like that in
Langmuir cells described in Section 3.4.3, provides an example of non-neutral tracers
and an illustration of how dispersion of buoyant particles may differ from that of neu-
tral particles or a dissolved solute. Sinking particles, perhaps entering the ocean as dust
following its erosion in desert storms as shown in Fig. 5.7, may be trapped for some
time and prevented from sinking in Langmuir circulation cells, as illustrated in Fig. 5.8.
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Figure 5.7. A plume of dust carried by easterly winds from the Sahara Desert over
the eastern North Atlantic. Such dust storms occur generally in late spring or summer,
but this was imaged by satellite on 26 February 2000. By 11 March 2000, the dust
plume had reached the northern coast of South America. As well as scattering solar
radiation and reducing that reaching the ocean surface, dust transports iron that may be
taken up by surface phytoplankton, resulting in increased rates of CO2 assimilation. (A
SeaWiFS image provided by NASA/GSFC and ORBIMAGE, courtesy of Dr Petra
Stegmann, University of Rhode Island, Graduate School of Oceanography.)

If the fall speed of particles through still water exceeds the maximum upward
flow speed in the circulating cells, the circulation affects the paths of the parti-
cles but they always have a positive downward velocity and sink through the cells
(Fig. 5.8(b)). If, however, the maximum upward vertical speed in the circulation
exceeds the particle fall speed, then there is a region within which particles circu-
late and may be trapped (Fig. 5.8(c)). For a specified circulation speed, the volume
of the region in which particles may be recirculated depends on the fall speed, being
greater for the smaller particles that fall more slowly. Positively buoyant, rising par-
ticles (e.g., bubbles produced by breaking waves) may also be trapped if their rise
speeds are less than the maximum downward speed in the circulation.

In practice, however, Langmuir circulation is not as drawn in the simplified
Fig. 5.8(a) – the circulation appears to be more intense near the surface than at depth,
as in Fig. 3.12(b), and is unsteady. Relatively small-scale turbulent motions may eject
particles from one cell into another or the circulation may, on average, break down
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Figure 5.8. The trapping of small sinking particles by closed circulation cells, e.g.,
Langmuir circulation cells. (a) The assumed flow circulation pattern. (b) Paths of
negatively buoyant particles that fall at speeds faster than the maximum upward speed
of flow in the circulation. (c) Paths of particles falling at speeds less than the maximum
speed in the circulation. Particles released from the upper horizontal line (e.g., the sea
surface) will not enter the closed region of particle recirculation, but any that do will
remain trapped if the circulation is steady. An example of the inverted situation of
rising buoyant particles is that of bubbles produced by breaking waves. If their rise
speed is less than the downward motions in Langmuir circulation, small bubbles will
be temporally trapped when transported by transient turbulent motions into the region
of closed circulation. (From Stommel, 1949b, who first described the phenomenon.)

before neutrally buoyant particles can be carried around a cell. The time for which
individual windrows are observed to persist indicates, however, that a local conver-
gence near the windrows is sustained for periods of time roughly corresponding to
that for a neutral particle to be carried around the periphery of a cell (see also footnote
4). The presence of intense bands of subsurface bubbles detected by upward-looking
sonar in the regions of near-surface convergence suggests that, even in their transient
condition, the cells trap slowly rising bubbles. [P5.2]
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Other patterns of closed circulation occurring, albeit temporarily, in turbulent flows
(e.g., rising vortex pairs, Fig. 1.9) may trap and transport particles in a similar way,
even those that are not neutrally buoyant.6

5.3 Observations of the dispersion of floats

5.3.1 Surface floats

The first test of Richardson’s four-thirds power law (Section 5.2.2) for the dispersion
of pairs of floating particles on the sea surface – and indeed the first quantified study of
dispersion in the ocean – was by Richardson and Stommel.7 Measurements were made
in 1948 from a pier in Loch Long, Scotland, near to Richardson’s house in Kilmun
where he lived in retirement. Stommel was on a visit to Imperial College, London, at the
time and had written to ask whether he might come to meet Richardson. Richardson’s
reply was, “Come, but bring some golf balls”. Stommel, not a golfer, was perplexed
by this but, fortunately, before he could make the necessary purchase of the balls
(which was difficult, because of their being in very short supply so soon after the end
of World War Two), he received a telegram: “Forget the golf balls, they all sink”. On
reaching Kilmun, he found that Richardson wanted him to help in an experiment on the
dispersion of floating particles. Richardson had found that pieces of parsnip floated,
but low in the water and thus were little affected by wind, and they could be seen fairly
easily. The experiment was made with parsnips dug from Richardson’s garden, cut
into pieces and dropped from the pier. Their separation was measured using a sighting
device cleverly designed by Richardson. Although the evidence was not strong, it was
concluded that the variation in separation was consistent with the proposed four-thirds
power law.

After further studies, Stommel concluded that a Fickian description of the diffusion
of particles, one having a constant, scale-independent, coefficient of dispersion, is not
valid other than for a closely constrained ranges of scales. Stommel’s results, obtained
from measurements covering a range of particle separation scales, 〈l〉, from 0.1 to
100 m, support Richardson’s four-thirds power law with the dispersion coefficient,
which Stommel defined as 1

2 (d/dt)[〈l2〉], equal to cll4/3. The constant, cl, was found
to be about 2.3 × 10−3 m2/3 s−1.

Developments in acoustic and satellite methods of float tracking in the 1970s
and 1980s led to increasingly reliable measurements of the long-term diffusion

6 Some particles in the ocean coalesce, forming flocs, mineral particles being held together by
organic coatings or mucus material. It is often assumed that the turbulent motion is unaffected by
the presence of particles and that the particle distribution is not biased towards regions of larger or
lesser rates of dispersion. In reality this might not be the case. Even when particles cannot coalesce
if they come into contact with one another, turbulent motion may lead to the congregation of solid
particles because their inertia produces a bias in their trajectories that carries them towards regions
of flow convergence, where the strain rate is high or the vorticity is low.

7 Richardson’s name and the parameters associated with him have been mentioned earlier. Henry
Stommel (1920–1992) was a gifted and highly distinguished oceanographer at the US Woods Hole
Oceanographic Institution who contributed much to the studies of dispersion and the circulation of
the ocean. Further background to the parsnip experiment is given by Ashford (1985).
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Figure 5.9. Spaghetti diagrams. Tracks of floats drogued to follow the water motion
at a depth of 100 m in the North Atlantic showing the motions caused by mean currents
and mesoscale eddies. Eddies are found almost everywhere, although the floats have
been released not uniformly but according to the requirements of specific studies, so
sampling is not uniform. There is only one, for example, that follows the path of the
Gulf Stream up the east coast of the USA. (From Brügge, 1995.)

characteristics by following the tracks of a large number of drifters and floats released
mainly into the North Atlantic and North Pacific Oceans. The ‘spaghetti diagrams’,
the convoluted tracks of floats (Fig. 5.9), demonstrated the validity of earlier con-
clusions based on the use of subsurface Swallow floats,8 namely that the currents in
‘mesoscale’ eddying and stirring motions of some 50–300 km diameter exceed the
mean flows, showing that, at these scales, the water motion is more analogous to a
randomly alternating electric current than to a direct current. At the large scales of
the mesoscale eddies, the Earth’s rotation is important and motion is approximately
geostrophic. Mesoscale eddies are detectable from satellite measurements of the sea-
surface temperature as illustrated in Fig. 5.10 here and Fig. 5.15 later.

Near-surface currents can be followed with a satellite-linked surface float attached
by a cable to a subsurface high-drag drogue. (In some early experiments the drogues

8 Swallow floats are named after their inventor, John Swallow (1923–1994). They work on the
principle that, a Swallow float being basically a structure (an aluminium tube) that is less
compressible than water, it is stable when floating at a depth at which its density matches that of
water. Downward (or upward) displacements cause its density to become less (or greater) than that
of the more (or less) compressed surrounding water, so it will rise (or sink) towards its initial depth.
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became detached after a few weeks, leading to some uncertainty in the measurements
of dispersion.) In recent years many floats have been released, allowing the study of
dispersion at large time and space scales. On average about 2500 ARGOS-tracked
drifter observations in the North Atlantic are available for each month in the period
from 1993 to 1997, allowing study of the effects of regional and latitudinal variations.

Estimates of the dispersion coefficient, KH∞ in (5.6), have been obtained from
observations of floats released in the Pacific during the period 1979–1999 and in the
Atlantic between 1989 and 1999. The distributions of the mean currents and of KH∞,
with corrections to remove the increases in float separation caused by the mean shear
flows, are shown in Fig. 5.11. In general the pattern of the greatest values of KH∞ fol-
lows that of the major currents, the Kuroshio in the Northwest Pacific, the Gulf Stream
in the Northwest Atlantic, the East Australian Current, the Agulhas Retroflection Zone
south of South Africa and the Equatorial currents; the most energetic mesoscale eddies
leading to dispersion are generally found, and are often generated, where the mean
flows are greatest. The values of KH∞ range from about 2 × 103 to 28 × 103 m2 s−1

and there is a general decrease from the Equator towards the poles, although this trend
may be reversed, at least locally, by energetic eddies in the Antarctic Circumpolar Cur-
rent. Values of the Lagrangian time scale, TL in (5.2), are 2–6 days and the Lagrangian
length scale, LL in (5.3), is typically 20–50 km, scales which are consistent with the
source of dispersion being the large-scale and slowly varying mesoscale eddies.
• It is evident from Figs. 5.9 and 5.10 that, even at the large scales of mesoscale eddies,
the ocean is in a state of eddying motion that broadly resembles the turbulence observed
at smaller scales, e.g., the structure shown in Fig. 2.3. It does, however, differ in that
the motions are largely horizontal, of scale far exceeding the Ozmidov length scale, the
largest scale of overturning eddies in the pycnocline, and greater even than the ocean
depth. The Lagrangian integral length scale, LL, providing a measure of eddy scale, is
comparable to the internal Rossby radius, LRo, defined in Section 1.8.2 as LRo = c/ f ,
the scale at which the effects of the Earth’s rotation become important. (Here c is the
speed on long internal waves of the first mode and f is the Coriolis frequency. Both f
and c vary with position and therefore so does LRo: it generally decreases polewards.)

A theory of the large-scale, or ‘geostrophic’, turbulence which takes into account
the effects of the Earth’s rotation and curvature has been devised. Because the
mesoscale eddies depend on different dimensional quantities and have different
dynamics, the form of their energy spectra, for example, differs from that in non-
rotating homogeneous turbulence defined by (2.15). Generally it appears that, at
these relatively large scales, the ocean turbulence is non-homogeneous and generally

←
Figure 5.10. (cont.) about 16 ◦C and water is colder nearer shore. Cloud (black)
obscures the sea surface at bottom left. The image shows a remarkable range of
features, including eddies, jets and meanders in the flow, some originating near
promontories and leading to filaments extending 100 km or more off-shore, for
example off Cape Mendocino and southwest of Point Arena. (Data obtained as part of
the US GLOBEC Northeast Pacific Program. From Hickey and Royer, 2001.)
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Figure 5.11. The eddy dispersion coefficient, KH∞, of surface drifters in (a) the
Pacific and (b) the Atlantic Ocean. Arrows indicate the mean currents; H and L
indicate, respectively, the areas of high KH∞ (>20 × 103 m2 s−1) and low KH∞ (<4 ×
103 m2 s−1). (From Zhurbas and Oh, 2004. Care has to be taken in making the estimates
at specific locations from drifter tracks, not all of which may pass through a fixed point,
and it is recommended that interested readers refer to the original paper for details.)
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anisotropic in all three directions, the vertical, meridional (or north–south) and zonal
(east–west).

The rate of horizontal dispersion at the sea surface within the Atlantic and Pacific
Oceans at the scale of the mesoscale eddies is fairly well determined, although seasonal
variations have yet to be assessed. Dispersion is, however, relatively poorly quantified
at the lateral boundaries of the ocean basins, for example in regions where enhanced
along-slope currents are found over continental slopes.

5.3.2 Subsurface floats

Two methods are available to follow the motions of subsurface floats. The first relies
on acoustic tracking using SOFAR (SOund Fixing And Ranging) that was developed
by Rossby and Webb in about 1970. Long-range acoustic propagation is possible in
the sound channel at the level of minimum sound speed. The channel is at a depth of
about 800 m in mid-latitudes but close to the surface in the polar oceans. A measure of
the travel time of pulses of sound with the known speed of sound in the ocean, about
1500 m s−1, provides the means of establishing range, and triangulation gives posi-
tion. The second method uses satellite location. Autonomous Lagrangian Circulation
Explorer (ALACE) floats spend most of their time drifting at a set depth, only occa-
sionally returning to the surface so that their new location can be fixed and their drift
determined, and to transmit internally recorded data back to shore.

Observations of the dispersion of pairs of floats tracked acoustically at a depth of
700 m in the North Atlantic are consistent with Richardson’s four-thirds power law,
dispersion following D ∝ t3/2 as in (5.8) when D, the rms distance between floats,
is between the internal Rossby radius and a scale of about 300 m. At greater scales,
or typically a few months after pairs of floats are released, dispersion tends to be
consistent with a Fickian relationship (5.9), but with the zonal relative dispersion
generally greater than the meridional.9 (At scales smaller than about 300 m there is,
however, some evidence that D ∝ exp(qt), where q is a constant, corresponding to
exponential growth.)

Analysis of the tracks of subsurface floats at depths between 90 and 4100 m covering
a total of 588 float-years between 1973 and 1998 in the North Atlantic finds that the
tracks of relatively shallow subsurface floats have Lagrangian time and length scales
that are consistent with those of the surface drifters, suggesting that over long periods
of time, t � TL (typically 4 days), the dispersive effects of motions at the sea surface,
such as wave Stokes drift or those of Langmuir circulation experienced by surface
drifters, are insignificant. Outside the Gulf Stream, TL is relatively constant at about

9 An explanation of the difference between the zonal and meridional dispersivities is yet to be found.
It may possibly be related to a reverse (up-scale) cascade of energy proposed by Rhines, that leads
to barotropic zonal jets of width of order (U/β)1/2, where U is the typical speed of current, about
0.05–0.1 m s−1, and β = 2� cos φ/R, where � is the angular frequency of rotation of the Earth, φ

is the latitude and R is the Earth’s radius. In the ocean, the Rhines scale, (U/β)1/2, is typically
about 70 km, rather less than the scale at which the difference between zonal and meridional
dispersion is observed.
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5–7 days for floats at depths between 700 and 2000 m, but the characteristic speeds,
u′, and Lagrangian integral length scales, LL, both decrease with increasing float depth
below 700 m, the latter from 20–40 km at depth 700 m to 5–20 km at 2000 m. In the
Gulf Stream, TL ∼ 4 days at 700 m and increases by a factor of about 1.3 between 700
and 2150 m.

5.4 The dispersion of solutes: methods and observations

5.4.1 Dispersion (or horizontal diffusion) of a solute

A different approach has to be taken to obtain a measure of the spread of a patch of
solute, rather than the spread of particles. Methods are inevitably based on the growth
of a length scale determined from the distribution of the concentration of the solute.

Okubo, for example, analysed measurements of dye released in patches into the
upper ocean. He used the measured area, A(C), enclosed by a horizontal curve of
constant dye concentration, C, which is set equal to the area, πR2, of a circle with the
same area (i.e., R = (A/π )1/2), and he then determined a value, σ r, from

σr(t) =
(∫

R2C(R)2π R dR
/ ∫

C(R)2π R dR

)1/2

. (5.10)

This is a measure of the second moment of the radial distribution of dye. Plots of log σ 2
r

versus log t are obtained, to which a linear relationship is fitted. The estimates of the
horizontal dispersion coefficient, KH, at time t described in the following section are
based on the relation

KH = σ 2
r

/
(4t), (5.11)

a definition chosen to be consistent with that in two-dimensional Fickian diffusion
with a constant dispersion coefficient.

5.4.2 Dye releases in the surface boundary layer

The horizontal spread of patches of dye released into the surface layer in 20 studies
in the North Sea, off Cape Kennedy and Southern California, in New York Bight and
in the Banana and Manokin Rivers was analysed by Okubo. The results are often
used as a basis for estimating near-surface dispersion at scales ranging from 30 m to
100 km over times of 2 h to 1 month.

The data are in accord with an approximate empirical relationship,

σ 2
r = 1.08 × 10−6t2.34, (5.12)

determined using (5.10), with σ r in metres and t in seconds. The variation of diffusivity
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Figure 5.12. Size-related dispersion. The variation of horizontal eddy dispersion
coefficient, KH, with the horizontal scale, l, of patches of dye at the sea surface derived
using (5.10) and (5.11). There is a break at a scale of about 1 km (where log l = 3) in
the dashed l4/3 lines that are closely fitted to the data, and possibly another at 10 km.
(From Okubo, 1971.)

with length scale l, taken to be equal to 3σr(t),10 is approximately given by

KH = 1.03 × 10−4l1.15, (5.13)

with KH in m2 s−1 and l in metres (Fig. 5.12). Although this differs from Richardson’s
four-thirds power law, the values of KH are (remarkably) consistent with dispersion
coefficients determined from particle tracking. [P5.3]
• Closer fits to the data can, however, be found by fitting KH with l4/3 power laws
over segments of the data shown in Fig. 5.12, those with 30 m < l < 1 km and 1 km
< l < 100 km. A major break in these linear fits occurs at about 1 km and corresponds

10 This is selected on the grounds that, if the concentration distribution is radially symmetric and
Gaussian, 95% of the dye is within a circle of diameter 3σ r.
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to a time of about 10 h. A dimensionally correct form for KH is c1ε
1/3l4/3, with a

dimensionless constant c1 and where ε is a quantity having the dimensions of a rate of
energy dissipation. If this form is correct, the two segments in which the four-thirds
law seems to apply would correspond to two ranges with different rates of dissipation
or transfer of energy by the energy transfer or cascade through the energy spectrum.
The break in the spectrum is plausibly a scale at which energy enters the spectrum
from some physical process driving energetic dispersive motions with scales of about
1 km and 10 h. Changes in the energy spectrum of turbulent motion where there is
an energy input (and, correspondingly, changes in the relationship between KH and l)
are envisaged in a generalized theory of turbulence devised by Ozmidov in 1965. It is
possible that tidal flows (the M2 tide has a period of 12.43 h) or other processes such
as Langmuir circulation and eddies (Section 5.4.3) provide such sources of energy.
[P5.4] The nature of dispersion also changes at large scales, for which the effects of
the Earth’s rotation and of mesoscale eddies (Section 5.3.1) become appreciable. New
dimensional parameters then become significant in scaling the dependence of the rates
to the scale of a diffusing patch or plume of solute.

Those performing experiments in the ocean find that patches of dye or other tracers
rarely have the nearly circular form implicit in (5.10), since patches often become
noticeably longer in the downwind direction than across wind.11 Even in flows that
are regarded as turbulent, anisotropy of the stirring motions, notably of shear, may
lead to directional dispersion characteristics. (The higher downwind currents found
in windrows imply the presence of differential currents at the 5–100-m across-wind
scales of the turbulent Langmuir circulation.)

Measures have been devised to express such directional differences in diffusivity.
They commonly depend on measures of the second moments of concentration in each of
the dispersion directions (e.g., x, downwind, and y, across) to determine σx (t) and σy(t),
and on using equations similar to (5.11) to determine separate diffusion coefficients,
Kx and Ky, to characterize dispersion. The downwind dispersion coefficients of patches
of dye are generally found to exceed those in the across-wind direction. [P5.5]
• The significance of such studies of dispersion is emphasized by the results, (5.12)
and (5.13): dispersion depends not only on spatial scales (the size of a dispersing
patch) but also on the time over which dispersion has occurred. The unsteadiness of
external forcing may be important, as remarked in Section 5.1.3. During the period
of a day or more during which oil or a toxic chemical may be released following an
accident at sea, the effects of changes in wind speed, for example, may alter the nature
of turbulence in the upper ocean and even change the processes that are dominant in
causing dispersion.

5.4.3 Tracer releases in the pycnocline

As well as giving estimates of diapycnal diffusion, the spread of SF6 in the NATRE
diffusion experiment described in Section 4.7 provides information about isopycnal

11 Okubo (1971) acknowledged this: ‘The real diffusion pattern never shows radial symmetry’.
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dispersion. The SF6 tracer was injected at a depth of about 300 m in bands less than
100 m wide and about 5 km apart, and its general location was subsequently found
with the use of acoustically tracked neutrally buoyant floats. Two weeks after injection
the bands were found to have blended into what appeared to be a single continuous
patch. In the following months the mean motion of this patch was to the west at a rate
of about 1 cm s−1, but, as it grew over this period of time, the patch became distorted
by the shear in the large mesoscale eddy field (i.e., it was stirred by the large turbulent
eddies, much as illustrated in Figs. 1.7 and 5.6(b)). When it was next surveyed, 6
months after release, the tracer was found to be present in sinuous bands or ‘streaks’
of rms width about 3 km, estimated to be some 1800 km in overall length and separated
by tracer-free water, as shown in Fig. 5.13(a) (October and November).

The rate of the reduction in the width of these streaks by shear and divergence
produced by the mesoscale eddies may be calculated from knowledge of the mesoscale
field of motion, much as described in Section 1.6. An estimate for the mean horizontal
dispersion at the 3 km scale of the streaks can be derived by assuming that the observed
streak width represents a steady state in which the reduction in width by divergence and
shear is countered and balanced by small-scale dispersive processes. The dispersion
coefficient is found to be KH ≈ 2.7 m2 s−1.12 Although they constitute a significant
achievement and an interesting estimate, the observations do not determine whether this
estimate or the processes leading to dispersion are representative of those in the ocean
pycnocline at scales of 3 km or are particular only to the regions within the mesoscale
eddy field where the streaks are produced; neither do they definitively identify the
processes contributing to small-scale dispersion. There is a continuing debate about
the extent to which internal waves and very-small-scale eddies are involved.

Further insight into the processes of dispersion at scales of 1–10 km is provided by an
analysis of investigations of the spread of dye in stratified water over the New England
Continental Shelf by Sundermeyer and collaborators. They conclude that relatively
mixed patches of water produced, for example, by breaking internal waves, spread
much as illustrated in Fig. 1.16 and, under the effect of the Earth’s rotation, begin to
rotate, forming a field of small pancake-like eddies within the stratified water. Such
eddies, or ‘vortical modes’, interacting with one another (and perhaps with internal
waves) disperse material horizontally, leading to a horizontal dispersion coefficient
estimated to be

KH ≈ (7/2)[h6 	N 4 ϕ/(L2 f 3 Kν)], (5.14)

where h and L are typical vertical and horizontal dimensions of the eddies, 	N is the
difference between the buoyancy frequency within and that outside the eddies, ϕ is
the frequency at which mixing events (e.g., breaking waves) occur, f is the Coriolis
frequency and Kν is the vertical component (as defined by (2.2)) of the eddy viscosity in
the region outside the mixed patches. (It is not known whether similar eddies resulting,
for example, from patchy wind mixing can affect dispersion in the mixed layer in

12 This estimate by Ledwell et al. (1998) compares with an estimate, KH = 1.0 m2 s−1, found using
(5.13) for the dispersion of a surface dye patch with a length scale, l, of 3 km.
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Figure 5.13. Dispersion of a tracer in the NATRE. The horizontal outlines of a patch
of SF6 released at about 300 m depth in the eastern North Atlantic in the North
Atlantic Tracer Release Experiment (NATRE). (a) The injection in early May 1992,
marked as INJ, and the location of the tracer patch in subsequent surveys in May,
October and November 1992. The October and November surveys sampled different
parts of the streaky dispersed tracer patch. (b) The tracer’s location in surveys about a
year after release, in April and May 1993, when (although patchy) the region occupied
by the tracer is more uniform and much less streaky than in the previous surveys. 1 N
≈ 110 km. (From Ledwell et al., 1998.)

subsequent calm conditions and explain the apparent breaks in the linear fits to data
in Fig. 5.12.)

When they were surveyed a year after release in the NATRE study, the streaks of SF6

tracer had combined to produce a huge patch some 500 km across in the meridional
(north–south) direction and of width 700–800 km in the zonal (east–west) direction.
The tracer was found almost everywhere within the patch, but at variable concentration,
as shown in Fig. 5.13(b). Complete homogenization of tracer concentration had still
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Figure 5.13. (cont.)

not been achieved even after a further 18 months, by which time the patch was some
900 km in extent in the meridional direction and 1600 km in the zonal.

Estimates of the isopycnal (approximately horizontal) dispersion coefficient, KH,
based on the evolving size of the streaky SF6 patch are about 0.07 m2 s−1 at scales
of 0.1–1 km, and 2 m2 s−1 at scales of 1–30 km. As expected, these are very much
greater than the diapycnal diffusivity of (1.7 ± 0.2) × 10−5 m2 s−1 found in the same
experiment (Section 4.6). After 12–18 months of dispersion and at scales of 300–
1000 km, there is a clear difference between the horizontal zonal and meridional
diffusivities. The evolving distribution of the tracer indicates horizontal diffusivities,
estimated on the basis of Fickian dispersion, of 2300 m2 s−1 in the zonal direction
and 650 m2 s−1 in the meridional, values that are consistent with those deduced from
subsurface float tracks. [P5.6]

The tracer, SF6, has also been released in other regions. By the time of the first
survey, 14 months after release at depth 4000 m in an experiment in the Brazil Basin,
about 500 m above the top of east–west-trending fracture-zone valleys and ridges to
the west of the Mid-Atlantic Ridge, much of the tracer had spread to the southwest,
further from the Ridge (Fig. 5.14). Some had, however, moved eastwards, following
isopycnals that extend to greater depths into the valleys of the fracture zone. The lateral
scale of the patch was fairly symmetrical after 14 months, with a width of about 300 km.
When the tracer was next sampled, 26 months after release, the zonal dimension of the
patch had expanded to about 800 km, significantly greater than its meridional extent
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Figure 5.14. Dispersion of a tracer released at great depth. The horizontal spread of a
tracer, SF6, released at the position marked INJ, at about 4000 m depth near 22 ◦S
18 ◦W in the Brazil Basin, below and about 650 km west of the top of the Mid-Atlantic
Ridge. Surveys are at (top) 14 months and (bottom) 26 months after the release of the
tracer. Dots mark sampling points and the grey background indicates the presence and
orientation of the underlying rough fractured topography. Depths exceed 4800 m in the
dark areas to the west of the Ridge, whilst over the Ridge depths are typically 3500 m
or less. The patch has spread along isopycnal surfaces that tilt down towards the Ridge,
and is about 300 m thick in the first survey and 500 m thick in the second. (From
Schmitt and Ledwell, 2001.)
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of 450 km. These scales are about half those of the shallower NATRE tracer study, a
consequence of the lower mesoscale eddy activity and stirring in the deep waters of the
basin. The dispersion coefficients are significantly lower than those found in NATRE
but still have greater values in the zonal than in the meridional direction.

The use of SF6 as a tracer is becoming a standard means of studying both diapycnal
diffusion and isopycnal dispersion.

5.4.4 Natural and anthropogenic tracers

The ‘natural tracers’ that characterize water masses may be conservative ones such as
salt that, except for the small loss through spray to airborne droplets (aerosols), does
not readily pass from the ocean, or non-conservative, such as temperature (or heat)
that may be passed through the sea surface to and from the atmosphere. Oxygen is
another non-conservative tracer that, in addition to exchange with the atmosphere, is
subject to biological processes. Natural tracers may be almost neutral, having negligible
effect on the density or other properties of water that affect its dynamics (e.g., oxygen
concentration), or non-neutral: temperature and salinity change the water density. The
study of water masses identified by their particular temperature (T) and salinity (S)
has long provided clues to circulation and, aided by the use of T–S diagrams, to where
mixing occurs.

Float tracks and satellite observations of sea-surface temperature show that some
mesoscale eddies remain coherent for periods of a year or more. These eddies are often
associated with water derived from variations or instabilities in major currents, the first
to be extensively studied having been the warm and cold core eddies derived from the
meandering Gulf Stream and detectable at the surface as illustrated in Fig. 5.15. The
best known subsurface eddies are the ‘Meddies’ (Fig. 5.16), which are composed of
water of Mediterranean origin and found in the region of its spread in the eastern North
Atlantic (Fig. 5.1). These eddies are isolated from one another and carry water from
their source, sometimes over many hundreds of kilometres. They are a discrete, rather
than continuous, mechanism of dispersion, rather like that of the bursts of water with
high, but localized, Reynolds stress referred to in Section 3.4.4 that are ejected – or
detrain – from the benthic boundary layer, although, unlike the bursts or ejections,
Meddies may contribute only marginally to a long-term overall dispersion.

Radioactive chemicals, accidentally or deliberately released into the ocean, have
also provided tracers of dispersion and are usually neutral in their effect on dynamical
processes. During the atmospheric nuclear bomb testing in the 1950s and early 1960s
the radionuclide tritium (3H) was introduced by fallout into the ocean, mainly at
latitudes of 40◦ to 60◦ in the northern hemisphere.13 Its radioactive half-life is 12.43 yr,
and its concentration decreases as a consequence of radioactive decay as well as
diffusion as it is advected from its source. The changes in distribution and concentration

13 By the early 1970s, the total worldwide fallout of tritium was about 110 EBq, with 24 Ebq in the
North Atlantic Ocean (1 EBq = 1018 Bq).
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Figure 5.15. Gulf Stream eddies. An image of sea-surface temperature showing the
meanders and eddies formed in the Stream after it has separated from the eastern
seaboard of the USA. The image covers a north–south scale of about 3000 km, and the
eddies are some 200 km across. The darker shades of grey correspond to the warmest
water. (Image produced and kindly provided by O. Brown, R. Evans and M. Carle at
the Rosenstiel School of Marine and Atmospheric Science, Miami, Florida.)

of 3H since the termination of bomb tests provide information about oceanic transport
from the northern to the southern hemispheres, and of its downward dispersion into
the ocean by deep convection, as illustrated in Fig. 5.17.

The spread of caesium 137 discharged from the Windscale (renamed Sellafield)
Nuclear Plant into the Irish Sea is illustrated in Fig. 5.18. The figure shows the distri-
bution in 1983 after 10 years of continual release, at variable, but documented, rates.
(About 2 PBq = 2 × 1015 Bq was released in 1982.) The concentration of caesium
in seawater is reduced by mixing and radioactive decay: caesium has a radioactive
half-life of 30.17 yr. Factors such as its absorption by organisms and adsorption onto
the surface of particles in suspension and on the seabed cause further reduction in
concentration.
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Figure 5.16. The structure of
a Meddy. A vertical salinity
section through a Meddy at a
depth of about 1000 m. The
vertical scale is stretched
relative to the horizontal; the
relatively warm and salty eddy
composed of water that has
originated from the
Mediterranean is flattened,
about 500 m thick and 40 km
across. This particular eddy
was tracked by floats for about
2 years and resampled four
times as it decayed,
accompanied by the
development of horizontal
intrusions and layers formed
beneath it as a result of double
diffusive convection. The black
triangles below the figure show
CTD sampling locations.
(From Armi et al., 1989.)

• As is the case for other dispersants, the dispersion of radioactive material depends
on its properties (e.g., half-life) as well as on advection and the turbulent motion of
the ocean.

Suggested further reading

Observations of dispersion

Richardson and Stommel’s (1948) brief account of their very short, preliminary but
illuminating experiment on particle dispersion is worth reading, if only to see how
many points of doubt can be found in their conclusions! Stommel (1949a) describes
his subsequent experiments.

Okubo’s (1971) analysis of dispersion of dye released in the upper ocean is still
very useful and thought-provoking.

If not already read after Chapter 4, perhaps it should be now: Ledwell et al.’s
(1998) account of the spread of SF6 observed in NATRE is amongst the best available
of dispersion and isopycnal mixing.
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Figure 5.17. Tritium (3H) concentration in the North Atlantic in 1981. Contours give
the ratio of tritium-to-hydrogen in so-called tritium units. One tritium unit represents a
tritium to hydrogen ratio of 10−18. Releases from the atmospheric nuclear bomb testing
ended in the 1970s, and the concentrations at depth in the North Atlantic reflect the
vertical transfers by convection, diapycnal diffusion and flows from the Arctic Ocean,
and the gradual, radioactive decay of 3H (half-life 12.4 yr). Unlike in Antarctica, where
Antarctic Bottom Water (AABW) is formed that flows northwards into the Atlantic,
Pacific and Indian Oceans, there is no comparable formation of bottom water from the
Arctic. (Data collected and figure produced by Göte Ostlund of the University of
Miami as part of the GEOSECS programme of observations.)

Further study

Lagrangian float measurements in the ocean

Rossby and Webb (1970) describe the development of SOFAR. Rossby et al. (1983)
and Davis (1991a) provide valuable reviews of the methods used to follow motions in
the ocean by floats and of their application. Much discussion has been directed towards
how mean shears should be accounted for, particularly by Davis (1987, 1991a, 1991b).
A method to obtain a long-term dispersion coefficient, KH∞, of floats that accounts
for and removes the effects of mean shears has been devised, and this is applied by
Zhurbas and Oh (2004) in the analysis leading to Fig. 5.11 (although they refer to KH∞
as a ‘lateral diffusivity’).

Observations of dispersion

There are numerous papers describing studies using floats, for example see Lumkin
et al. (2002) and McClean et al. (2002). Ollitrault et al. (2005) provide a good account
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Figure 5.18. The distribution of caesium 137 around the British Isles observed in
1983. The source of caesium, the nuclear reactor site at Sellafield on the coast of the
Irish Sea, is marked with a star. Much of the spreading results from advection in
the mean flow from the Irish Sea, around the north of Scotland and eastwards through
the northern North Sea towards the coast of Norway. The units are Bq kg−1. (From
Hunt, 1985; British Crown copyright, 1985, reproduced by permission of CEFAS,
Lowestoft, UK.)

of earlier studies and a description of estimates of dispersion from pairs of floats
released in the North Atlantic.

Although apparently providing useful estimates of dispersion, much more investi-
gation is needed in order to verify Obuko’s empirical relationships (5.12) and (5.13),
and to examine their implications about the nature of turbulence dispersion. As Okubo
himself makes plain, more careful study is needed of the anisotropy of dispersion
and to quantify the ‘environmental’ effects of wind, waves, mixed-layer depth and
stability (or Monin–Obukov length scale, LMO), and their transience, on the dispersion
of solutes over time scales of 1 h to about a week, a time period within which, for
example, accidentally released substances may present the greatest hazard.
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Turbulence, particles and bubbles

There is a rapidly growing literature on the interactions between turbulence and par-
ticles or bubbles, relating mainly to the mean fall speeds of the particles, e.g., Maxey
(1987), or rise speeds of bubbles (Spelt and Biesheuvel, 1997), but little that can yet
be applied with confidence because of the transient and anisotropic state of turbulence
in ocean boundary layers.

Dispersion by vortical mode

Kunze (2001) provides an informative introduction to this mode of motion that can
coexist with and has similar dimensions to internal waves.

Sundermeyer et al. (2005) give an account of mixing by vortical modes in shallow
stratified water. Numerical simulations of dispersion are reported by Sundermeyer and
LeLong (2005).

Geostrophic turbulence

At scales exceeding the internal Rossby radius (and beyond the scale generally
regarded as part of the vortical mode of motion, the field of variable motion is domi-
nated by mesoscale eddies in nearly geostrophic balance. A good introduction to this
‘geostrophic turbulence’ is given by Rhines (1979).

The deposition of wastes in the ocean

Park et al. (1983), in a volume of a series entitled ‘Wastes in the Ocean’, provided
several informative articles on radioactive wastes, including inventories of discharges
of radioactive wastes into the ocean and reference to their effect and the strategies
adopted for their oceanic disposal.

Dispersion is discussed in several parts of TTO including Sections 9.6 and 10.5 and
Chapter 13.

Problems for Chapter 5

(E = easy, M = mild, D = difficult, F = fiendish)
P5.1 (M) Richardson’s four-thirds power law. Show that, if the scale-dependent

diffusivity coefficient in Richardson’s dispersion equation (5.7) is F(l) = cllq, where
q is a non-dimensional constant, then the dimensions of cl must be L (2−q)T−1. If
the variations of time and length depend only on viscosity, ν, and on ε (the dissipa-
tion rate, a measure of the flux of energy through the spectrum of the dispersing
motions) so that time can be non-dimensionalized by (ν/ε)1/2 and length by the
Kolmogorov scale, lK = (ν3/ε)1/4, show that the only power q that will make cl
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Figure 5.19. An idealized
eddy rotating like a solid
body about a horizontal
axis at constant angular
velocity, �. The motion is
two-dimensional. The axes
are x (horizontal, normal
to the axis of rotation) and
z (vertical). (See P5.2.)

independent of viscosity (and so leave dispersion to be effectively determined by
ε alone) is q = 4/3. • This interesting argument, justifying the four-thirds power
law, is reported by Pacquill (1962), and comes from Taylor (1959). It differs from
the more conventional dimensional argument, which might be to argue that, since the
dimensions of the dispersion coefficient are L2T−1, if the dispersion coefficient is one
in which molecular processes are insignificant and the dispersive process is one in
which the turbulence and its dispersive effects are characterized completely by ε, the
coefficient must have a form, F(l) = εplr, related to the dissipation rate but not to ν.
From this it follows, by comparing dimensions, that the powers, p and r, must be 1/3
and 4/3, respectively. The agreement with Richardson’s power law is doubtful because
neither argument appears to relate a measure of the range of eddy sizes to the size of
the patch.

P5.2 (D) The suspension of falling or rising particles in eddies. For simplicity, we
take an idealized eddy motion that is represented by an infinite fluid that rotates as a
solid body about a horizontal axis at constant angular velocity, �, as in Fig. 5.19. The
motion is two-dimensional. The axes, x (horizontal, normal to the axis of rotation) and
z (vertical), are taken at a point O on the axis of rotation, and lie in a plane normal to
the axis of rotation. Fluid at a point P, at a distance R from the axis, moves in the plane
at speed �R in a direction normal to OP. A particle at the point P is sinking vertically
through the fluid at speed w.

(a) What are the equations that describe its horizontal and vertical components of
velocity in terms of x and z? You may suppose that the inertia of the particle is
negligible and that its diameter is very small relative to R.

(b) Solve these equations for x and z in terms of t, supposing that the particle is at
position (d, 0) at time t = 0.

(c) Show that the particle will follow a circular path of radius |d − w/�| about a
centre at position (w/�, 0) with a period equal to that of the rotating fluid, and
therefore remains suspended in the fluid.
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Estimate the fall speed of dust particles in static water, supposing that they are approx-
imately spherical, of density 1500 kg m−3 and of radius 20 µm (1 µm = 10−6 m) and
hence find the smallest upward vertical speed of flow required to maintain them in
suspension. (For the fall speeds, see footnote 16 in Chapter 1.)

The centre of the circular path of the particle is the only point in the flow at which the
particle can remain at rest, where there is no horizontal component of flow speed and
where the particle’s speed of exactly sinking matches the upward vertical component
of the flow. (This is the limit of the circular paths as their radius tends to zero.) The
horizontal distance, d, of the centre of the particle’s circular path from O, the centre of
flow rotation, increases with the particle’s fall speed, w. Larger particles of the same
density that sink more rapidly (e.g., w ∝ (particle radius)2 for spherical particles) will
follow circular paths with centres at a greater distance from O.

The problem assumes that the fluid in solid-body rotation is of infinite extent.
Upward motion of the particle can occur only at a radius R > w/�, and, if the extent
of the region of solid-body rotation is of smaller radius (as it may be in a real eddy),
particles will sink everywhere and cannot therefore be supported in suspension by the
fluid motion in the eddy. A field of small eddying motions may cause very slowly
sinking (or rising) particles to remain in suspension.
•In practice, turbulent motions, although at any instant possibly resembling closed
eddies with speed characterized by (the dimensionally correct) ε1/4ν1/4 – but not
necessarily in solid-body rotation – and able to ‘suspend’ particles if ε1/4ν1/4 > w (i.e.,
cause them to reverse their sinking or rising motion relative to the seabed), generally
do not persist as discrete eddies for times long enough for water particles to rotate more
than once around a complete closed curve, and are not very effective in maintaining
suspensions. Moreover, particles have inertia, and hence do not faithfully follow the
accelerating motions to which they are exposed as they move through the water.

P5.3 (M) Okubo’s formula. Show that, if σr(t) is given by (5.12) and KH by (5.11),
then KH ≈ 2 × 10−4l1.45, and not by (5.13) as found by Okubo. It should be noted that
Okubo fitted the curves (5.12) and (5.13) by eye rather than deducing KH (i.e., (5.13))
from σ r (5.12) as he might have done. The revised relation between KH and l is still
a reasonably good fit – as it should be – to the data in Fig. 5.12, and the difference
between the two formulae for KH gives a measure of the uncertainty in using (5.13).

P5.4 (M) Dispersion and dissipation at different length scales. Use Fig. 5.12 to
compare the mean rates of dissipation of energy, ε, in the linear ranges surrounding
scales of 100 m and 10 km, supposing that dispersion is consistent with Richardson’s
four-thirds power law and depends only on the length scale, l, and on ε.

P5.5 (M) Dispersion in Langmuir circulation. A square patch of floating particles
with sides of dimension d, aligned across wind and downwind, is released into a
field of motion on the water surface dominated by Langmuir circulation. The distance
between windrows aligned in the wind direction is h � d. Supposing, for simplicity,
that the windrows are steady, that the cross-wind flow of the circulation carrying the
particles into windrows from locations halfway between windrows is u and that, once
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Figure 5.20. Dispersion caused by Langmuir circulation and a mean flow. A
numerical model showing the location of floating particles, marked by dots,
released from a source on the left (the origin of the x and y axes) into a steady flow,
including the idealized effects of Langmuir circulation. The flow, V, is in the x
direction to the right. Wind causes the formation of a pattern of Langmuir cells that are
advected by the flow and drive surface currents, v0, along windrows (the circulation
converges at the surface along the positions marked by tilted lines) and towards the
windrows. The figure shows locations of particles, released at equal intervals of time,
at two times separated by half that required to advect a Langmuir cell (with width half
the distance between windrows) past the source. The particle pattern resembles that of
the oil film in Fig. 5.4(b). Near the source the particles meander, but with a meander
length that corresponds to the scale of the windrows rather than (as in Fig. 5.4(b)) to
larger eddies or variations in the (possibly tidal) flow. (From Thorpe, 1995.)

in a windrow, the downwind speed is an amount v greater than the flow, supposed to
be uniform, between windrows, find

(a) how long it is before all particles reach the windrows,
(b) how much further particles initially in the windrows will have been carried down-

wind than will the particles that are last to reach the windrows, and
(c) the maximum across-wind and downwind extents of the patch?

What if h = d?
A model has been devised to describe the dispersion of floating markers caused

by the presence of a uniform current and by a uniform Langmuir circulation that is
driven by a wind aligned in a direction different from the direction of the current. The
markers, continuously released from a fixed location, are drawn into a set of lines as
shown in Fig. 5.20.

Later stages of dispersion depend on the unstable nature of Langmuir circulation.
• Csanady (1973) pointed out that, in conditions under which Langmuir circulation is
active, cross-wind dispersion of floating material captured in windrows is determined
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largely by the duration, TLc, before the windrows are disrupted by amalgamating with
neighbouring windrows or otherwise dispersing their captured material. This time is
typically about 5 min to 1 h for windrow spacing of 2–20 m, but may depend on the
depth of the mixed layer or, in well-mixed shallow lakes, on water depth. The crosswind
dispersion coefficient, Ky, is then of order L2

LcT −1
Lc , where LLc is the distance between

windrows. Values of Ky obtained using Csanady’s estimate in winds of 5–10 m s−1

are about 0.01–00.5 m2 s−1. A more sophisticated numerical model has been devised
by Faller and Auer (1988).

P5.6 (E) Dispersion in NATRE and Okubo’s relation. Compare the estimates of
dispersion in the pycnocline obtained during NATRE with those determined from the
near-surface estimates (5.13).



Chapter 6

The energetics of ocean mixing

6.1 Introduction

The study of ocean turbulence may be viewed as a key component in the investigation
of the ocean’s processes and their energetics: how the energy supplied from external
sources is distributed and eventually dissipated by the external and internal processes
of mixing referred to in Section 3.1. The ocean is driven mainly by forcing from the
atmosphere at the sea surface and by the tidal body forces imposed by the gravitational
attraction of the Moon and the Sun. Relatively insignificant are the localized, but
spectacular, inputs of energy from hydrothermal vents in the deep ocean ridges, the
fortunately infrequent seismic movements of the seabed that may generate devastating
tsunamis, the flux of geothermal heat through the floor of the abyssal plains and
the energy inputs from rivers and the break-up or melting of ice sheets. The tidal
forces and atmospheric inputs are the dominant sources of energy responsible for the
overall circulation of the ocean (the kinetic energy of the mean flow) and its density
structure (containing potential energy), and are the principal cause of the waves and
the turbulence within the ocean.

The discussion in this chapter focuses on how turbulent mixing in the deep ocean is
maintained. Much of the energy provided by the atmosphere is used in driving surface
waves and the processes that sustain the structure of the upper ocean boundary layer.
The mean depth of the ocean is 3795 m and most of the water mass is remote from
the atmosphere or the near-surface mixed layer, being separated by thermoclines from
direct contact with the atmosphere and therefore from the energy it provides to the
ocean. How much of the energy supplied by the atmosphere can be transported from
the surface to depth and then made available for mixing?

197
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Figure 6.1. The fluxes of energy leading to ocean mixing. The fluxes entering the
ocean and dissipation in shallow water or at the seabed are shown, together with, in
rectangular boxes, the estimates of the rates available to mix the abyssal ocean. The
latter are generally very approximate estimates. (a) Tidal energy. The rate at which the
energy of the tides is dissipated in the ocean is the only rate yet known with any degree
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As we have seen in earlier chapters, turbulence leading to mixing takes a variety
of forms and is derived from numerous sources, such as breaking waves and shear
stress on the seabed. The routes of energy transfer are also varied and complex. The
mesoscale eddies described in Chapter 5 are themselves a form of turbulent motion
derived largely from the baroclinic instability of ocean currents such as the Gulf Stream,
but their interactions with each other or with the lateral boundaries of the ocean can
generate internal waves and, through their subsequent breaking, relatively small-scale
turbulence that leads to mixing. The routes of energy transfer and the contributions
that the various sources of energy make to ocean mixing are explained in this chapter.

The magnitudes of the energy fluxes that are described in the following sections
are summarized in Fig. 6.1. Not all, indeed relatively few, of the fluxes can be quan-
tified with a high or even moderate degree of accuracy, and discovering the relative
importance of the sources of energy that drive diapycnal mixing is a subject of active
investigation within the broad field of the science of oceanography.

6.2 How much energy is required to mix
the abyssal ocean?

The relation Kρ = �ε/N 2 (4.9), with � = 0.2 and the estimates of the mean values
of Kρ and N 2, can be used to derive an approximate estimate of the mean rate of
turbulent dissipation per unit mass, ε. Integration over the approximately 85% of the
ocean volume that lies below 1500 m then leads to an estimate of the total rate of
energy input required to maintain the mixing of the abyssal ocean.

←

Figure 6.1. (cont.)
of accuracy, but where and how dissipation occurs is still uncertain. Pathways for
energy transport leading to mixing via the generation of internal tides are as described
in Section 6.3.2. (b) The energy flux from the atmosphere. This is known only
approximately (Section 6.4). Most is derived from wind action. The net buoyancy flux
is probably negligible, although, being distributed unevenly across the ocean surface, it
may result in cooling and convective flux into the abyssal ocean. The range, 20–30 TW,
represents a rough estimate of the energy lost from surface waves in breaking as they
approach the shallow water – the beaches or rocky shores – surrounding the ocean. It
will be noticed that the energy flux into and from the mesoscale eddies and general
circulation is not balanced; the work done against the stress on the seabed accounts
only for a small fraction of the flux from the atmosphere (Sections 6.5 and 6.7). It
seems likely that the interaction between eddies and the adjustments in the flow field as
eddies are generated leads to a flux into the internal wave field, but this has not yet
been quantified. Included in this figure are the approximate values of 0.2 and 0.5 TW
in mid-water and near sloping boundaries, respectively, the energy fluxes resulting
from breaking internal waves generated largely by atmospheric processes as explained
in Section 6.6. (c) The geothermal heat flux. Although the energy transport into the
ocean in the form of heat, about 32 TW, is relatively large, the contribution to mixing
of the geothermal heat flux is small in relation to others (Section 6.9), except locally,
e.g., in rising plumes over hydrothermal vents. The net contribution to mixing is about
0.05 TW.
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The available estimates of Kρ (or KT) are Munk’s canonical value of 10−4 m2 s−1

for the abyssal ocean below about 1500 m and the value of about 10−5 m2 s−1 typical
of the values of ε derived from microstructure measurements (see Section 4.7). Inte-
gration leads to values of the required total energy flux of about 2 TW and 0.2 TW,1

respectively, the difference being accounted for by the relatively intense mixing in
regions of rough topography included by Munk’s method of estimation but largely
undersampled or unaccounted for by the microstructure estimates. [P6.1, P6.2]

The greater value appears to provide a closer approximation to the total flux of
energy required to mix the abyssal ocean. The flux values are subject to considerable
uncertainty and provide, at best, approximate estimates of the energy required to
support diapycnal mixing in the deep ocean. For example, the value of � is in question
(see Section 4.4.2) and there is uncertainty about the assessment and integration over
the body of the deep ocean of the product Kρ N 2 in the equation ε = Kρ N 2/� derived
from (4.9).
•A recent review of available information2 finds that the flux of energy required to
maintain mixing in the abyssal ocean is 1.7 TW but with a possible uncertainty of about
±50%. (This energy flux is of the same order of magnitude as the global electricity-
generating capacity.3)

Where does the energy required to mix the ocean come from?

6.3 The tides

6.3.1 The surface or barotropic tides

Of all the rates of energy flux relating to ocean mixing, the best known is that of the
tides.

Present estimates of the total dissipation of tidal energy derived from the times of
ancient eclipses, modern measurements of the change in the length of day and lunar
ranging give a rate of dissipation equal to 2.5 ± 0.1 TW for the M2 tide and 3.7 TW for
all tides, including M2 and solar. About 0.2 TW of tidal energy is dissipated within the
solid Earth and a relatively small amount, 0.02 TW, is used in driving the atmospheric
tides, leaving about 3.5 TW to be dissipated in the ocean, the majority, 2.4 ± 0.1 TW,
in the M2 tides.

The rate of dissipation of energy by the flow of tidal currents, U, over the seabed
is proportional to U 2|U |, implying that dissipation is very much higher in regions of
strong tidal flows; the mean value is dominated by contributions from relatively small
areas of the ocean in which tidal currents are largest, the continental shelves. The tides
lose relatively little energy at the floor of the abyssal ocean.

1 1 PW = 103 TW = 106 GW = 1015 W.
2 By Wunsch and Ferrari (2004).
3 For further comparison, the generating capacity of the Three Gorges power station on the Yangtze

River in China is 18.2 GW.
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As mentioned in Section 2.5.3, the earliest calculation of turbulent energy dissipa-
tion in the ocean was that made by Taylor in 1919 in seeking to estimate the rate of
energy loss by the tides. He found that about 50 GW of tidal energy is lost in the Irish
Sea. In 1920, Jeffreys extrapolated Taylor’s value to derive a value, 2.2 TW, for the
dissipation of the lunar M2 tide in the shelf seas of the whole ocean. This value comes
close to the total M2 tidal energy dissipated within the ocean, apparently leaving rel-
atively little that might be transferred to turbulence in mid-water in the abyssal ocean
and dissipated by turbulent mixing in the water column.

6.3.2 The internal or baroclinic tides

Information about tidal flows obtained since 1920 leaves the accuracy of Jeffreys’
estimate in some doubt, and it is probable that a significant fraction of the total flux
of 3.5 TW of tidal energy dissipated within the ocean remains available to support
mixing after the fluxes lost by working against the bottom stress in shallow seas have
been subtracted. (A value of about 2.6 TW is ascribed to mixing in shallow seas in
Fig. 6.1(a).)

Although the internal tides receive negligible energy from the direct action of the
tidal forces of the Moon and the Sun, by the 1960s it was known that large internal
fluctuations in temperature occur with tidal frequency over and around the continental
slopes, particularly those where the surface (or barotropic) tides are large. The motion
caused by the surface tides generates internal (or baroclinic) tides by carrying the
stratified water against and over the continental slope and shelf break surrounding the
relatively shallow (depth <200 m) shelf seas. (Turbulent dissipation in an internal tidal
ray caused by this process and propagating from the continental slope towards deeper
water is illustrated in Fig. 4.10.) A substantial fraction of the energy in the surface
tides may be transferred to internal tides, and then lost as they dissipate, sometimes
after propagating through the depth of the ocean and horizontally over many hundreds
of kilometres.

From calculations carried out in the early 1980s it was found that the rate of total
transfer of energy from the surface tides to internal tides around the continental slopes
of the ocean is about 14.5 GW (i.e., 0.0145 TW) for the M2 tide and 2.73 GW for the
solar S2 tide, values that are very much smaller than the known rates of energy loss
from the tides and than the rate required to mix the abyssal ocean. It was concluded that,
whilst the energy transferred to internal tides and then lost through their dissipation or
breaking might be significant in mixing regions close to the continental slopes, it was
too small to make a substantial contribution to the mixing of the whole abyssal ocean.

The calculations had not taken into account, however, the tidal motion over oceanic
ridges. Much of the tidal motion near the continental slope is along the slopes and is
relatively inefficient in moving the water over the sloping topography and in generating
internal tides, but the barotropic tidal flows of the deep ocean frequently cross mid-
ocean ridges and are there relatively effective at generating baroclinic tides. Persuasive
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Figure 6.2. The surface manifestation of the radiation of internal tides from the
Hawaiian Ridge. Anomalies in mean sea-surface height are detected along ten tracks of
the TOPEX-POSEIDON satellite altimeter, with changes of about 5 cm in surface
height over distances of about 160 km. The variations in sea-surface height are caused
by internal waves generated by the flow of the barotropic tides between the islands lying
along the Ridge. The shaded area marks shallow topography. The internal tides radiate
to distances of at least 1000 km from the Ridge. (From Ray and Mitchem, 1997.)

evidence for this is found in observations of tidally coherent patterns of small (typi-
cally 0.05 m) changes in surface elevation measured by satellite altimetry around the
Hawaiian Ridge, the internal tides that cause the changes in surface elevation radiating
out to at least 1000 km from the Ridge (Fig. 6.2).

Evidence that tides are involved in mixing in the abyssal ocean has been found in
the Brazil Basin. Figure 4.16 shows the high dissipation over the rough topography
of the mid-Atlantic Ridge at the eastern edge of the Brazil Basin. The spring–neap
cycle in dissipation (Fig. 6.3) observed in this area appears to be an effect of mixing
induced by the presence of internal tides caused by the surface (or barotropic) tidal
flow over the irregular topography of the Ridge. (The dissipation in the water column
in this area is greater by a factor of about 100 than the energy lost from the barotropic
tide through stress on the seabed.)
• About 0.6–1 TW is now estimated as the possible size of the flux of energy from
the surface tides to the internal tides in regions of ridges and relatively rough bottom
topography, and this is the range of values shown in Fig. 6.1(a). The estimated rate of
energy transfer in the North Pacific alone is 0.27 TW.
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Figure 6.3. Spring–neap variation in mixing in the Brazil Basin. The tidal speeds,
varying over the approximately 14-day spring–neap cycle, are shown as full lines and
are estimated from a numerical model of the barotropic tides. The points are the
observed values of dissipation from observations in 1996 (left) and 1997 (right)
averaged over 24-h periods and integrated over the lower 2000 m of the water column.
(From St. Laurent et al., 2001)

An observational study called the Hawaiian Ocean Mixing Experiment (HOME)
was conducted between 2000 and 2005 to examine the transfer of energy from the
surface to internal tides and the consequent mixing at the Hawaiian Ridge. It is esti-
mated that 20 ± 6 GW of energy is lost from the surface M2 tide at the Ridge and that
10 ± 5 GW radiates away in the form of internal tides, leaving about 10 GW to be
dissipated within 50 km (mostly at smaller distances) from the Ridge. The 20 GW
extracted from the surface M2 tide at the Ridge is about 1/30–1/50 of the total loss
from the surface tides in deep water around the globe, and the transfer to internal tides
from similar ridges appears to be a substantial fraction of the total 0.6−1-TW flux
of energy from the surface to the internal tides. But how much of the energy in the
internal tides goes into diapycnal mixing?
• The value of KT in the most energetic region around the Ridge is less than 3 ×
10−4 m2 s−1 and, given the relatively small volume of ocean that lies above such
topography in the ocean, it seems unlikely at present that the oceanic ridges – or
seamounts – can provide an explanation of the canonical abyssal ocean value, KT ≈
1 × 10−4 m2 s−1.

Perhaps it is not near their generation sites that internal tides contribute most to
ocean mixing, but where they break or are dissipated after propagating some distance
away? It is now known from sets of satellite altimetry data like that shown in Fig. 6.2
that internal tides can propagate over great distances, radiating energy from mid-ocean
ridges across ocean basins, sometimes to reach as far as the surrounding continental
slopes.
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A thorough investigation of where radiating internal tides lose their energy has
yet to be performed, but it is estimated that about 12 GW of the energy from the
internal tides is dissipated in the submarine canyons that incise the continental slopes
surrounding the ocean. The internal tidal energy that is dissipated in these canyons may
be supplied by local sources – recall that about 17.2 GW is available in the internal
tides generated by surface tides on the continental slopes – as well as by the tides
radiating and reaching the canyons from the mid-ocean ridges, but in any case the rate
of loss in canyons appears to be very small in comparison with the 1.7 TW required
to support ocean mixing. The relatively small volume of canyons suggests that, even
though enhanced values of KT are found within them, their overall contribution to
ocean mixing is also insubstantial.

We need to examine other sources of energy in the ocean.

6.4 The atmospheric input of energy through
the sea surface

6.4.1 The wind stress

The rate of transport of kinetic energy from the wind into the ocean is not known with
great certainty. Estimates are generally derived from a flux per unit area given by τus,
where τ is the wind stress on the sea surface and us is a measure of the drift speed
of the water surface. Several factors contribute to the uncertainty. There is uncertainty
in estimates of the drift speed, us, which is composed of two components, the wave
Stokes drift, US, and a drift generated by the wind stress, the wind drift. The value of
US is commonly taken as 2% of the wind speed, but in any case is imprecise, and the
further contribution of wind drift is even more uncertain. The net surface drift, uS, is
generally estimated to be 2%–7% of the wind speed, W10, at a height of 10 m. The
wind stress, τ = ρaCDaW 2

10, is dependent on the magnitude of the drag coefficient,
CDa, and uncertainty regarding its size contributes further to the possible errors in
estimates of kinetic energy flux. The flux varies as W 3

10 and is therefore very sensitive
to wind speed: its mean value depends on correctly finding the average cube of the
wind speed, W10, and consequently on correctly accounting for the contributions of
rare, but high, winds.

The present rate of energy flux from the atmosphere is thought to be about 60 TW,
the value shown in Fig. 6.1(b). The flux appears to have increased from about 50
TW in 1950 to 58 TW in 2000, as a consequence of increasing wind speeds and wave
heights. The flux has also considerable spatial and seasonal variation. About two-thirds
of the mean energy flux takes place in the southern hemisphere, partly because about
63% of the global ocean area is south of the Equator. The energy flux within the
southern hemisphere is dominated by the contribution arising from the high winds in
the Southern Ocean surrounding the Antarctic Continent. [P6.3]
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Where does this flux of energy from the atmosphere go? Much of it goes into driving
surface gravity waves as described in the following section. These act as a catalyst
in the passage of energy from the wind into the mean currents; wind-waves that are
generated in deep water, and subsequently break, transfer some of their momentum to
the mean circulation of the ocean: about 1 TW of the flux from the atmosphere goes
into driving the mean circulation and fluctuations of frequency less than the inertial
frequency, f. The mean circulation also passes on its energy: the instability of the mean
currents contributes to driving the mesoscale eddies as described in Section 6.5.

A significant part of the energy passing from the atmosphere into the ocean drives
the turbulent motions within the mixed layer that maintain its uniformity or are dissi-
pated in deepening the mixed layer during storms. Some energy transferred from the
atmosphere to the interior of the mixed layer is used in driving motions in the underly-
ing thermocline: for example, vertically overturning eddies in the mixed layer collide
with and buffet the underlying stratified water, generating internal waves that radiate
into the seasonal thermocline and the abyssal ocean, where their energy may be avail-
able for its mixing. Moving atmospheric fronts generate internal inertial waves that
also transport energy downwards. These energy fluxes to the deep ocean are described
further in Section 6.6.

6.4.2 Surface waves

Energy can be carried by surface waves over great distances; the propagation of wave
energy has been tracked across the Pacific Ocean from storms in the Southern Ocean to
the beaches of Alaska.4 Most of the wave energy that reaches the shoreline surrounding
the ocean is dissipated by wave breaking in the surf zones over sandy beaches or on
its rocky shores. Little is reflected. The estimated dissipation of 25 ± 5 TW of wave
energy near the shoreline shown in Fig. 6.1(b) is, at best, a rough estimate. [P6.4]

Surface waves convey energy and momentum from the wind to the ocean; wind
generates waves, some of which break, transferring momentum to the underlying water.
However, neither the breaking of waves at the seashore nor the breaking that occurs
in deep water contributes directly to the turbulent mixing of the abyssal ocean.

Although some of the quantified information that is required in order to assess the
fraction of wind energy that is dissipated in wave breaking in deep water is available,
the details are not yet known with sufficient precision for accurate estimation. Results

4 Individual (dispersive) waves of wavelength much less than the water depth do not carry their
energy over great distances. Waves travel in groups and interact with one another. Because
individual waves propagate at greater speeds than the groups or packets containing them – see P1.3
for the relevant speeds – any particular wave approaches the leading edge of its more slowly
moving group, and eventually disappears. (New waves are continually formed at the back of wave
groups.) But whilst individual waves cannot therefore be tracked far across the ocean, groups or
packets of swell containing waves with periods of 12–20 s are found to carry energy across ocean
basins at speeds corresponding to the group velocity of their component waves; wave energy is
carried at the speed of the groups, the group velocity, cg.

In contrast, very long (non-dispersive) waves such as tides and tsunamis can, and do, propagate
for thousands of kilometres across ocean basins.
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Figure 6.4. Breaking waves and foam patches. This photograph of waves breaking on
the sea surface is taken from an aircraft flying at a height of about 1500 m. The image
width is about 950 m and the wind speed is 20–25 m s−1 directed at about 25◦

clockwise from the vertical edge of the photograph. The breakers are patchy and
variable in size. Wave breaking rarely extends far along a wave crest, and the distance
is generally less than the wavelength. The time between occurrences of wave breaking
at a single position is very irregular but typically of the order of 1 min. (Photograph
kindly provided by Professor W. K. Melville, Scripps Institution of Oceanography,
USA.)

of laboratory experiments are consistent with a rate of dissipation of energy per unit
length of the crest of a breaking surface gravity wave given by

Et = bρ0c5
b

/
g, (6.1)

where b is a constant in the range 10−3–10−2, cb is the speed of advance of the wave crest
and g is the acceleration due to gravity. [P6.5] Waves break intermittently, and rarely
is breaking found along a wave crest over a length much exceeding the wavelength
of the wave. Whitecaps are consequently patchy, as shown in Fig. 6.4. Multiple video
photographs of the sea surface taken from an aircraft allow estimation of the speed of
breaking wave crests and the length over which breaking occurs along wave crests per
unit area of the sea surface at various wind speeds, W10, and an assessment of energy
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dissipation can be made by applying (6.1). The breaker length per unit sea-surface area
is found to vary as W 3

10. The mean speed of the waves that are breaking is generally
significantly less than the speed of waves with frequency equal to that at the peak of
the wave spectrum. Available data are at present insufficient to extrapolate to obtain
an estimate of the global flux of energy from the breakers into the mixed layer.

Some of the energy lost from breakers provides the potential energy of subsurface
bubble clouds, and so contributes energy to a route for the transfer of gases from the
air to the sea as the bubbles lose their constituent gases into solution in the surrounding
seawater. Much of the breakers’ energy is dissipated in turbulence and some passes
into the mean circulation as explained in Section 6.4.1.

6.4.3 Buoyancy flux

There appear to be no reliable estimates of the flux of energy to the ocean from
the atmosphere from the buoyancy fluxes associated either with heat transfer or with
precipitation and evaporation. Estimates of the latter integrated over the ocean surface
give values that are small and uncertain, but of order 0.01 TW. It appears that the
buoyancy contribution to abyssal mixing is less than 0.05 TW, which is negligibly
small in comparison with that of the wind.

The effect of the buoyancy fluxes is, however, subtle. On average the oceans gain
heat in the tropics and transport heat towards the arctic regions, where heat is lost. The
poleward heat flux carried by the ocean varies with latitude, but is typically 1–3 PW,
and amounts to about a third to a half of the heat carried polewards by the atmosphere.5

The heating in the tropics and subtropics serves partly to balance the upward advection
of cold water in the abyssal ocean, the steady-state balance assumed by Munk and used
in the estimation of KT (see Section 4.7 and P6.10).6

Cooling at high latitudes in the northern hemisphere leads to deep convection,
particularly in the Labrador and East Greenland Sea, although convection does not
penetrate to the 5-km depths of abyssal plains and so supply water that is dense
enough to reach and replenish that in the deepest parts of the ocean. In the southern
hemisphere, however, there is an advective pathway of energy transport from the
surface to the abyss. Cooling beneath coastal polynyas,7 particularly in the Weddell
and Ross Seas, and the melting of ice shelves leads to dense water of temperature
less than −1 ◦C that sinks down the Antarctic Continental Slope, forming Antarctic
Bottom Water (AABW). This spreads northwards along the ocean floor of the Pacific,

5 For example, the heat flux from the Equator towards the Arctic at 30 ◦ N is about 5.5 PW, about
2 PW of which is transported within the Pacific and Atlantic Oceans, the remainder being carried
by the atmosphere.

6 Munk assumed a steady state below a depth of 1500 m, which is a good approximation. In reality,
however, changes in the mean ocean temperature and in its total heat content are observed. Levitus
et al. (2005) report an increase in the heat content of the upper 3000 m of the ocean of 1.45 × 1023

J between the years 1955 and 1998, mostly in the upper 700 m. This is equivalent to a rise in the
mean temperature of 37 mK, and corresponds to a rate of increase of heat of 107 TW, or of
200 mW m−2, exceeding the heat fluxes from geothermal sources described in Section 6.9.

7 A polynya is an area of open water in arctic regions that is free of ice, where air–sea interaction
can result in ocean cooling much more rapidly than it does in ice-covered areas.
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Atlantic and Indian Oceans. The northward flux of AABW with potential temperature
less than 0 ◦C is estimated to be about 10–15 Sv. The mixing that the flow of this water
may produce in the abyssal ocean is discussed in Section 6.8.

6.5 The mean circulation and mesoscale eddies

The general circulation of the ocean is comprised of its mean currents, and these
include the largely horizontal flows of the major ocean gyres (of which the Gulf
Stream and the Kuroshio are the best-known components) and the east-going flow of
the Antarctic Circumpolar Current in the Southern Ocean surrounding the Antarctic
continent, as well as the vertical circulation, a component of which is the flow of
the AABW. The general circulation contains energy amounting to some 150 EJ
(1 EJ = 1018 J), much of it associated with potential energy. This huge store of energy is
sustained mainly through atmospheric forcing; the tides and geothermal heat flux make
insignificant contributions. Some of it might be made available for transfer to mixing if
the forcing of the circulation were reduced and if the tilted isopycnal surfaces became
horizontal.

A relatively small amount of energy is lost from the general circulation in the abyssal
ocean through processes involved in sustaining flow and stress at the seabed (Section
6.7) and by the generation of internal lee waves or eddies, particularly where flows
pass over or around rough topography or through passages connecting major ocean
basins where stationary hydraulic jumps may occur (Section 6.8). A much greater flux
of energy from the general circulation occurs through the generation of mesoscale
eddies. These have horizontal dimensions of 30–200 km and corresponding periods
of about 100 days, and dominate the kinetic energy of the ocean, exceeding that of
the mean circulation. The transfer of energy to the mesoscale eddies from the general
circulation is largely a consequence of barotropic and baroclinic instabilities with a
flux estimated at about 1 TW. The mesoscale eddies are further supported by an energy
flux from the wind of about 0.2 TW and these sustain a total energy in the mesoscale
field of about 13 EJ.
• Just how energy is dissipated from the mesoscale eddies is at present unknown
and unquantified. Like the general circulation, some must be dissipated, perhaps by
shear-flow instabilities or in convection following the generation of static instability, as
eddies are modified or adjust in approaching or moving over topography or as eddies
collide and interact with islands, seamounts and continental slopes. Some energy is
almost certainly transferred from the mesoscale eddies to internal waves as eddies
interact with one another or as they adjust to a balanced state after their formation or
interaction with topography.

Except for the loss of energy near the seabed and in hydraulic jumps, there appears
to be little direct flux of energy from these large-scale flows into diapycnal mixing in
the deep ocean; the flux from internal waves appears to be more important.
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6.6 Internal waves

In addition to the internal waves of tidal periods generated over topography described
in Section 6.3.2, internal waves are generated at the sea surface by atmospheric forcing
and through turbulent motion within the near-surface mixed layer. Several mechanisms
are involved, including resonance interactions between pairs of surface waves and the
buffeting of the upper pycnocline by turbulent motions (e.g., convective plumes or
Langmuir turbulence) in the mixed layer.

The movement of atmospheric pressure gradients or fronts across the sea surface
is known to lead to the generation of waves with near-inertial periods. The associ-
ated energy flux is estimated as 0.6 TW, but of this only about 0.1 TW appears to be
radiated into the abyssal ocean by internal inertial waves, and there is at present
no reliable assessment of how much of the energy provided by the atmosphere
reaches the abyssal ocean through internal waves of higher frequencies. Although
the total energy contained within the field of internal waves in the ocean, exclud-
ing the internal tides, is known to be about 1.4 × 1018 J (i.e., 1.4 EJ, much less
than that of the mesoscale eddy field), there is some uncertainty about how rapidly
this energy is supplied and dissipated, and, therefore, about the flux of energy that
may be available to drive ocean mixing through the breaking of internal waves.
[P6.6]
• There is, however, general agreement that the energy loss from internal waves sus-
tains mixing at a level leading to KT ≈ 1 × 10−5 m2 s−1, a value consistent with
microstructure measurements and providing an energy flux for mixing of about 0.2 TW,
the value shown in Fig. 6.1(b).

Internal waves are modified by reflection from topography, particularly so for inci-
dent waves of frequency close to a ‘critical frequency’, σ c, equal to N sin α, where α is
the mean angle of inclination of the topography to the horizontal and N is the buoyancy
frequency in its vicinity. Rays of waves with critical frequency have an inclination to
the horizontal (β in Fig. 1.14(b)) that is equal to the topographic slope angle, α.8

Peaks in wave energy at frequencies close to σc have been observed in wave spectra at
locations within a few hundred metres of sloping topography, implying that reflected
waves with frequency near σc are amplified in their reflection, and there is evidence
of a loss in energy flux from the internal wave field at these frequencies, probably
through breaking as a result of the enhanced shear and consequent Kelvin–Helmholtz
instability. The estimated energy flux used in mixing near sloping boundaries, 0.5 TW
in Fig. 6.1(b), is, at best, very approximate.

8 The direction of propagation of waves of critical frequency that are reflected from a sloping
boundary, and the particle motions in the reflected waves, are parallel to the line of greatest slope
of the boundary. This is independent of the orientation of the approaching beam, i.e., whether or
not it lies in a plane normal to the sloping boundary.
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6.7 Dissipation produced by bottom stress

The rate of energy loss by flows per unit area of the seabed is ρ0CDU 2|U | and this,
integrated over the area of the deep seabed, provides an estimate of the rate of dis-
sipation by turbulence in the benthic boundary layer. The mean value, 〈U 2|U |〉, is
poorly known but, since the currents are typically less than 0.1 m s−1 near the bed, it
is unlikely to exceed about 5 × 10−4 m3 s−3.9 Taking CD to be 2.5 × 10−3 and ρ0 as
1.03 × 103 kg m−3, the mean dissipation of kinetic energy per unit area of the seabed
must be less than about 1.3 mW m−2.

The area of the seabed at depths below 3000 m, which includes the abyssal plains and
mid-ocean ridges, is about 2.8 × 1014 m2, so (multiplying by 1.3 mW m−2) 0.36 TW
is an upper bound for the energy dissipated at the abyssal seabed. Much of the energy
lost at the seabed from the flow produced by the mean circulation and by flows induced
by mesoscale eddies and internal waves may be dissipated in turbulent motion close
to the bed and used in maintaining the 5–60-m-thick uniform benthic boundary layer.
Only a small fraction of the (less than 0.36 TW) energy flux may be radiated as internal
waves or made available for mixing well above the boundary layer. Where the bottom
topography intersects isopycnal surfaces, such as the continental slopes, turbulence in
the boundary layer10 will result, however, in diapycnal mixing across density surfaces,
thus contributing to a diapycnal density flux that may affect the water well above the
level of the abyssal plains. [P6.7]

6.8 Flow through and around abyssal topography

Evidence that mixing occurs near rough topography through the breaking of internal
waves is mentioned in Section 6.6. Results from recent studies, however, suggest that
some of the mixing in the abyssal ocean occurs not through the breaking of internal
tidal waves or internal waves originating in and radiating downwards from the upper
ocean, but in association with relatively steady flows near topography. Mixing may
occur in flows through or within the median valleys in the centre of mid-ocean ridges
and in the canyons on the sides of the ridges – as suggested in Fig. 4.16.

One possible way in which mixing may occur in such regions is through stationary
internal hydraulic jumps. These form in flows over sills, for example in channels
cutting through a ridge separating neighbouring deep ocean basins, where dense water
overflows from one basin into another. Stationary internal hydraulic jumps are similar
in nature to the jumps, the sudden rises in water level with turbulence and bubble
entrainment, seen downstream of weirs in rivers. Examples of such ‘free-surface’
hydraulic jumps are shown in Fig. 6.5, together with a photograph of a similar stationary
internal hydraulic jump in the atmosphere.

9 This estimate follows on assuming that current, U, is of amplitude 0.1 m s−1 and varies
approximately sinusoidally. The mean value of |sin3z| is 4/(3π ) ≈ 0.42.

10 Turbulence possibly caused or supplemented by the amplification of internal waves undergoing
reflection as described in Section 6.6.
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(a)

(b)

Figure 6.5. Hydraulic jumps. (a) A free-surface undular jump over a shallow ridge in
a river flowing from right to left. The undulations – the waves – are stationary and
those on the far side of the river are breaking along part of their crests, losing energy to
turbulence. (b) Hydraulic jumps in the lee of a weir. The flow is from right to left, and
the water in the sloping channel on the lower right of the photograph is shallow, about
0.2 m deep upstream of the breaking jump that creates foam and throws up spray. (c)
An apparently stationary internal hydraulic jump in the stratified flow of air (from right
to left) over the Sierra Nevada mountain range, visible at the left, in the USA. The
jump is made visible by dust raised by the wind flow over the ground and by the
formation of clouds. (Photograph by Robert Symons. Reproduced with kind
permission of Professor R. S. Scorer.)



212 The energetics of ocean mixing

(c)

Figure 6.5. (cont.)

Overflows between basins are caused, for example, as Antarctic Bottom Water
(AABW) flows northwards into the major oceans. The paths of the bottom water are
best known in the Atlantic Ocean (Fig. 6.6). The flow is constrained by its density
to flow between deep ocean basins as a submarine river through relatively narrow
(typically 30 km wide) connecting channels. Speeds reach 0.5 m s−1 in some of these
channels, and, whilst there have so far been no definitive observations demonstrating
that hydraulic jumps occur, there is evidence from the observed reduction in density
of the AABW that substantial mixing occurs as it passes through the channels. Direct
observations of mixing have been made in the Romanche Fracture Zone (RFZ, marked
A in Fig. 6.6), a channel through the Mid-Atlantic Ridge near the Equator that allows
AABW to pass from the Brazil Basin on the western side of the Ridge into the Guinea
and Sierra Leone Basins on the eastern side. Figure 6.7 shows sections of potential
temperature, velocity and turbulent dissipation, ε, through the channel. Estimates of
the Ozmidov scales are used for comparison with the displacement or Thorpe scale
in Fig. 4.8. Both have values that often exceed 10 m, implying the presence of large
eddies. Detailed measurements of dissipation in other channels through which AABW
passes have yet to be reported, and, even in the survey of the RFZ shown in Fig. 6.7,
the horizontal resolution is insufficient to establish definitely whether or not hydraulic
jumps occur, or whether the observed conditions (particularly that of low Richardson
number) will definitely allow hydraulic jumps. [P6.8]
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Figure 6.6. The path of the Antarctic Bottom Water spreading on the floor of the
Atlantic Ocean. The circled numbers represent estimates of the fluxes in Sv (units of
106 m3 s−1). The shaded areas are where the water depth is less than 4000 m. A flux of
5 Sv is estimated in the Brazil Basin (lying between points A and B). Two channels
lead into the Basin from the south. The Vema Channel, marked ‘B’, carries a greater
flux of AABW than does the Hunter Channel, further east. AABW passes from the
Basin eastwards through the Mid-Atlantic Ridge in two passages, the Romanche
Fracture Zone (marked ‘A’), carrying most of the flux, and the more southerly Chain
Fracture Zone. (From Stephens and Marshall, 2000.)

The estimated rate of loss of energy flux in an internal hydraulic jump is of order
2ρh(g′h)3/2 per unit channel width, where ρ is the density, h is the thickness of the
flowing layer and g′ is the reduced gravity based on the density difference between
the flowing water and that above. Its size suggests that, even though there is evidence
of intense mixing, the total contribution from the mixing produced by AABW in
flowing through a hydraulic jump at a single sill in the RFZ is less than 60 MW. The
total contribution to mixing from flows over sills in the deep ocean channels appears
sufficient to contribute no more than 0.1 TW to the total abyssal energy dissipation rate.
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[P6.9] Comparison may be made with flows through relatively shallow straits, such
as the Bosphorus and the Strait of Gibraltar, that have been studied more thoroughly.
Mixing is most intense near the sills and where, because of the changes caused by
tidal flows, internal bores are formed. These propagating internal hydraulic jumps are
similar to the tidal bores known in some river estuaries, such as the UK River Severn
and the Canadian Bay of Fundy, and to the walls of foaming water advancing in the
surf zone (Section 1.4).11 The rate of energy dissipation over the Camarinal Sill in the
Straits of Gibraltar is about 0.34 GW.

The mixing in the channels in the deep ocean may, however, lead to relatively
substantial diapycnal heat transfer. Estimated values of KT in the RFZ are high, reaching
0.1 m2 s−1. The total heat flux within the Zone, although of relatively small area, about
103 km2, is comparable to that within the whole of the much larger adjacent basins, of
area about 106 km2, into which the AABW flows.

The source of the flux of energy driving the AABW differs fundamentally from that
driving baroclinic tides or the inertial waves of the upper ocean. The barotropic tides
are generated by lunar and solar gravitational forces and, interacting with topography,
cause baroclinic tides. Inertial waves are also produced as a result of the energy flux
to the ocean from the atmosphere. In contrast, the source of energy of the AABW is
the increase in potential energy in the Antarctic resulting from a flux of energy in the
form of heat from the ocean, strictly a loss of energy from the ocean. A positive flux of
energy in the form of heat from the ocean leads to a gain in potential energy and results
in convective motions; the potential energy is released as kinetic energy in the water
cascading from the Antarctic shelves to form the AABW. The dynamical effect of a
flux of heat energy depends on whether it increases or decreases the potential energy,
and so on whether or not it results in buoyancy forces that drive motion (i.e., whether

←

Figure 6.7. The potential temperature, velocity and turbulent dissipation, ε, at seven
stations in the Romanche Fracture Zone (marked ‘A’ in Fig. 6.6). The section runs
from west (12; left) to east (18; right) across three sills in the channel. The lower curve
indicates the bottom of the channel. (a) Contours of equal potential temperature at a
contour interval of 0.1 ◦C. The full lines are temperatures ≤1.9 ◦C within the Antarctic
Bottom Water. Temperatures increase as the AABW passes through the channel,
indicating that there is mixing with the overlying water. (b) Eastward current speeds,
reaching 0.5 m s−1 at station 22. The spacing of stations and probable variations of
flow across the channel (about 30 km wide) are, however, insufficient to determine the
maximum speeds or to establish the continuity of the volume, density or momentum
fluxes. (c) Rates of dissipation, ε, measured using the free-fall HRP (Fig. 2.13(b)).
These are relatively high in the AABW, particularly downstream of the sills within the
channel. The dissipation is shown on a logarithmic scale, the vertical lines representing
1 × 10−10 W kg−1. Values at stations 15 and 22 reach 1×10−6 W kg−1. The units of
pressure, decibars, correspond approximately to depth in metres. (From Polzin et al.,
1996.)

11 Propagating and stationary jumps are equivalent in principle, one transforming into the other in a
moving frame of reference. There may, however, be differences in the levels of turbulence within
the flow approaching or ahead of such hydraulic transitions.



216 The energetics of ocean mixing

or not, in the terminology of Section 3.4.1, it is destabilizing) and therefore on where
in the ocean – at its surface or bed – the heat flux occurs. This should be compared
with the situation described in the following section.

How much of the energy lost by mesoscale eddies as they encounter and cross the
mid-ocean ridges is made available to drive diapycnal mixing has yet to be quantified
(see also Section 6.5).

6.9 Geothermal heat flux

As mentioned earlier, the geothermal flux of heat entering the ocean through the
seabed, despite its having the potential to drive convective motion, is a relatively small
contributor to ocean mixing. The heat entering the ocean from the Earth’s core is
transported into the ocean above the sea floor in two ways, by molecular processes
through the porous or solid seabed and by a hydrothermal flux of heat carried by fluid
circulating through and exiting from the seabed. The latter accounts for about a third
of the total geothermal heat flux into the ocean.

The mean heat flux through the floor of the abyssal plains is about 46 mW m−2, but
fluxes of heat reaching 1 Wm−2 are found in geophysically and often hydrophysically
active regions such as the median valleys in the centres of the mid-ocean ridges. The
global mean flux through the seabed is estimated to be about 87.8 mW m−2, giving
a total flux of heat through the seabed into the ocean of about 32 TW, a flux that is
substantial in comparison with the energy flux of about 1.7 TW required for mixing.
However, little geothermal heat flux is used in this way.

Although the mean heat flux exceeds the mean dissipation of kinetic energy at the
seabed, estimated in Section 6.7 to be less than 1.3 mW m−2, its effect is relatively
slight. Using (2.8), the mean buoyancy flux, B0, resulting from the mean heat flux of
87.8 mW m−2 is about 3.6 × 10−11 m2 s−3.12 The resulting rate of change of potential
energy per unit mass (Section 2.4.2) is therefore about −3.6 × 10−11 W kg−1. The
friction velocity, u∗, is approximately 0.05U if CD ≈ 2.5 × 10−3 (Section 3.4.1), and,
taking a typical value of U = 0.05 m s−1, a representative value of the Monin–Obukov
length scale, LMO = −u3

∗/(k B0), at the seabed is about −1060 m. (The negative sign
is consistent with the convention for an upward flux of heat and the contribution of the
flux towards unstable convective conditions.) Free convection driven by the mean heat
flux may occur only at heights that exceed the magnitude of the Monin–Obukov length,
|LMO|. This is much more than the greatest observed thickness, about 100 m, of deep-
ocean benthic boundary layers. Consequently, in these average conditions, turbulence
is dominated by stress on the bottom, and the buoyancy flux is too small to produce
any substantial convective motion; convective mixing produced by the geothermal heat
flux is not important compared with the mixing caused by turbulence in the benthic
boundary layer produced by work done against the bottom stress. [P6.10]

12 This is estimated by taking g = 9.81 m s−2, the expansion coefficient, α = 1.71 × 10−4 K−1 (see
Section 1.7.1), the density ρ0 = 1030 kg m−3 and cp = 3.99 × 103 J kg−1 K−1.
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• Geothermally produced convection does not contribute significantly to mixing in
the stratified water overlying the benthic boundary layer. Mixing within the layer is
dominated by turbulence produced by the work done against the bottom stress. (See
also P3.10.)

Plumes are observed, however, above hydrothermal vents, and in such locations the
geothermal heat flux will contribute substantially to the local mixing. The heat flux
from the hydrothermal vents in the Juan de Fuca Ridge in the northeast Pacific Ocean,
for example, is about 7 GW. Summed over the whole ocean, about 10 TW of the total
geothermal heat flux is carried by such hydrothermal fluid flows, and the total volume
flux entering the ocean through the sea floor is estimated to be about 12 Sv. [P6.11]
The overall contribution to mixing is small, however; the mean rate of increase of
potential energy from the geothermal heat flux into the ocean is only about 0.05 TW.
• Although the total geothermal energy flux through the seabed into the ocean, about
32 TW, greatly exceeds the total rate of tidal energy dissipation, it is not in a form
that can be used efficiently in mixing. The tides and atmospheric forcing generate
kinetic energy and, in particular, internal waves that can radiate through the ocean and
may break, contributing to mixing. The geothermal energy is in the form of heat and,
overall, its transfer through buoyancy into potential energy and thence into motion and
mixing is relatively small.

6.10 Discussion

We now return to Fig. 6.1, with which we began in Section 6.1. It summarizes the
uncertain conclusions of this chapter about the sources of the energy flux that drives
mixing in the abyssal ocean. There is (just) enough energy flux to account for the 1.7 ±
0.8 TW required for mixing, 0.6–1.0 TW possibly coming from the internal tides, about
0.2 TW from the breaking of near-inertial internal waves and those of higher frequency
in mid-water, and perhaps 0.5 TW from the waves undergoing reflection from sloping
topography. The possible additional contributions resulting from interactions between
mesoscale eddies and internal waves are at present unquantified.

It is customary in dynamical physical problems to solve a set of equations in some
specific volume within which body forces may act. The equations may involve both
motion and state variables, e.g., velocities, accelerations, pressures and fluid density.
The equations must satisfy given conditions on the boundary of the specified volume
where external forcing may be applied. Problems often involve finding the mean flow
and its variability, an objective being to determine the circulation of fluid within the
volume and to identify critical features, in this case, for example, where and at what
rates dissipation occurs and how the rates depend on the forcing.

The ocean tides and the circulation of the ocean can now be reasonably well repli-
cated using numerical models driven by external forcing. Dissipation is commonly
represented parametrically in these models, the formulation implicitly representing the
processes that occur at scales that are too small to be resolved or included explicitly in
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the models. These ‘small-scale’ processes may include internal waves, thought to be
a major process in the transport of energy from the sea surface to the ocean deeps, and
their breaking. As we have seen, however, it is not yet known exactly how, where or
when internal waves are generated by the atmospheric forcing or how and where their
energy is lost through breaking. The rate of exchange of energy between mesoscale
eddies and internal waves is at present unquantified. It is therefore not surprising that
parametric representations available at the moment are uncertain, if not known to
be poor. Further development and critical testing of suitable parametric formulations
remain to be done. The effects on the circulation of the highly non-uniform or patchy
distribution of mixing that occurs within the ocean have yet to be resolved.

The problem posed by the deep-ocean mixing described in the sections above
and summarized in Fig. 6.1 is unconventional. It is presented as one of the class of
‘inverse problems’ in which statistical inferences are made by using observations in
combination with dynamical or kinematic models. In this case the total dissipation
has been estimated (although only to within a factor of about 50%) from observations
within a body of water – the abyssal ocean – and the fluxes across the boundaries, the
sea surface and the sea bed, are known, but again sometimes only with great uncertainty
and often much less precisely than is the total dissipation. The objective is to explain
the inferred rate of dissipation and to obtain an understanding of the dominant physics,
an understanding that is constrained by the existing fragmentary and often inadequate
observations.

The problem, as stated, seems well posed, but the constraints, such as the flux of
energy from the atmosphere into the deep ocean and the processes leading to mixing in
particular regions, are not known to levels of accuracy sufficient to constrain severely
or to quantify the internal processes leading to dissipation.
• The value of the present analysis of the energy fluxes is consequently not to explain
the imprecise rates or to identify the dominant processes – these cannot yet be regarded
as known – but rather to reveal where information is lacking and where more or better
observations are needed in order to obtain more accurate measures.

It is an embarrassment to physical oceanographers that, whilst the energy fluxes to
the ocean by solar and lunar forces and the geothermal heat flux from the solid Earth
are known to within 10% and sometimes better, other fluxes of importance are known
far less precisely. The processes leading to mixing, and the geographical distribution
and seasonal variation of the mean rates of dissipation of turbulence kinetic energy
within the body of the ocean, are still largely unknown.

Suggested further reading

The balance of energy flux

Wunsch and Ferrari’s (2004) review of the fluxes of energy that may support mixing in
the deep ocean provides a valuable guide to which reference should be made, if only
to appreciate better the uncertainty of most of the estimates and to follow the routes
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of energy transfer in their figure 5. (The energy within the internal wave field should
be 1.4 EJ, rather than 14 EJ as shown.)

Tidal energy

If Taylor’s (1919) paper on tidal friction in the Irish Sea has not been read following
Chapter 2, and Munk and Wunsch’s (1998) discussion of deep ocean mixing after
Chapter 4, perhaps they should be now.

Munk (1997) gives an elegant review of knowledge of the dissipation of tidal energy
in the ocean.

Rudnick et al. (2003) describe the main findings of the Hawaiian Ocean Mixing
Experiment (HOME) devised to study the conversion of barotropic tidal energy into
baroclinic tides around the Hawaiian Ridge.

Further study

The uncertainty in the estimates of energy and energy fluxes given above is highly
unsatisfactory. Better estimates of almost all rates, except those of the tides and geother-
mal heating, and better understanding of the processes that lead to these rates, are
required if the dynamical machinery of the ocean is to be regarded as known and its
response to climatic changes or variations in solar heating predicted with confidence.

Energetics and thermohaline circulation

Huang (1999) makes quantitative estimates of the fluxes involved and expresses
some interesting, if debatable, ideas about the energetics of thermohaline circulation,
including ‘tidal mixing may be the most important energy source driving the ther-
mohaline circulation’ and that ‘a large basin without midocean ridges’ (to generate
internal tides) ‘would have a dramatically different thermohaline circulation’. Wun-
sch and Ferrari (2004) correct Huang’s estimate of the energy input to mixing from
geothermal heating by a factor of 10. Wang and Huang (2004) estimate the energy
transferred from the wind into surface waves.

Breaking surface waves

Melville (1996) has reviewed the knowledge of breaking waves. Recent observations
using aerial photographs like that shown in Fig. 6.4 are described by Melville and
Matusov (2002).

Internal tidal energy

Egbert and Ray (2001) and Nycander (2005) estimate the total rate of transfer of energy
from the barotropic tides to the baroclinic tides. Although the methods of calculation
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differ, the conclusions are in fair agreement. The baroclinic tidal energy radiating from
the Hawaiian Ridge is quantified in observations described by Lee et al. (2006) and
agrees with model predictions to within a factor of 2. The distance to which the internal
tide may radiate – a dissipative length scale – exceeds 1000 km (see P.6.6).

Mixing over deep ocean sills and in canyons

Ferron et al. (1998) discuss observations and estimates of mixing in the Romanche
Fracture Zone. Bryden and Nurser (2003) present a simple argument for the apparent
importance of the density flux and mixing within passages between deep ocean basins
(see P.6.8). Although Wunsch and Ferrari (2004) ascribe a total flux of energy to ocean
mixing of only 0.1 TW to mixing in the flow through deep-ocean passages, the subject
is one of continued interest and debate. Mixing occurs also over the many (possibly
104) sills in canyons on the flanks of the mid-ocean ridges, as pointed out by Thurnherr
et al. (2005).

Gregg et al. (2005) estimate that 12 GW of energy is dissipated by the internal tides
in canyons on the continental slopes.13

Inverse problems

A very helpful introduction to inverse models, formal procedures in which observations
are combined with equations, usually those describing the dynamics or kinematics of
fluids in general and the ocean in particular, so as to derive information about the
ocean’s properties, is given by Wunsch (2001).

Problems for Chapter 6

(E = easy, M = mild, D = difficult, F = fiendish)
P6.1 (M) Dissipation in the abyssal ocean. The total mass of the ocean is about

1.4 × 1021 kg. If 85% of the ocean is deeper than 1500 m and the mean buoyancy
frequency in this deep water is 1.7 × 10−3 s−1, estimate the flux of energy required
in order to sustain the rate of dissipation of turbulent kinetic energy at depths below
1500 m, assuming that the mixing it produces results in a diapycnal eddy diffusion
coefficient of temperature equal to Munk’s canonical value of 1 × 10−4 m2 s−1.

P6.2 (D) The heat produced by turbulent dissipation and the advection–diffusion
balance equation. Construct an equation relating the rate of increase in temperature,
dT/dt , resulting from dissipation of turbulent kinetic energy per unit mass at a rate ε.
Relating this dissipation rate to the eddy diffusion coefficient, and supposing that the
contribution of salinity to the vertical gradient of density is negligible, express dT/dt
in terms of the local vertical gradient in temperature, dT/dz.

13 This value is a correction of the earlier estimate of 58 GW given by Carter and Gregg (2002) that is
quoted in TTO (Thorpe, 2005).
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From this, show that the rate of increase in temperature caused by dissipation is
much less than that caused by the upward advection of the ambient temperature gradient
at a speed, w ≈ 4 m yr−1, typical of the deep ocean, and can therefore be neglected in
the advection–diffusion balance equation used by Munk to estimate KT. You should
make appropriate choices of any required parameters.

P6.3 (D) The energy flux from the wind. Supposing that the mean wind over the
ocean is 7.5 m s−1 (the value may be slightly higher since the gales of the Southern
Ocean are not well represented in the data used in determining this value), make an
estimate of the mean flux of energy from the wind into the ocean. The area of the
ocean surface is 3.61 × 1014 m2, and you may assume that the drag coefficient, CDa,
is 1.1 × 10−3 and that the density of the air at the sea surface is 1.25 kg m−3.

To estimate a mean value of W 3
10, you could suppose that the probability distribu-

tion function (or pdf), y(x), of wind speed, x = W10, is given by the positive skew
function, y = (x/a2) exp[−x2/(2a2)], where a = 〈W10〉 (2/π )1/2 and 〈W10〉 repre-
sents the mean wind speed (which you might prove is true!), or that it is equal
to the exponential function y = [exp(−x/a)]/a, where a = 〈W10〉. (The integral∫ ∞

0 z4 exp(−z2)dz equals 3
√

π/8, as can be found by integration by parts and not-
ing that (2/

√
π )

∫ z
0 exp(−t2)dt = erf(z), which tends to 1 as z tends to infinity.)

P6.4 (M) Dissipation around the ocean coastline. The total length of the coastlines
of the ocean is approximately 3.1 × 106 km. Use the information in problem P1.3 to
estimate the mean rate of loss of energy from waves breaking at the coasts if the root
mean square (rms) height of waves approaching shore is 1.0 m and their period is 7 s,
supposing that no energy is reflected. Compare the dissipation rate with the estimates
of the total flux of kinetic energy from the atmosphere to the sea.

(The mean wave heights and periods are very rough estimates. The total dissipation
of wave energy around the ocean coastlines is not known with any certainty, but in
some locations the energy flux of waves, when suitably harnessed, provides a very
useful form of renewable power.)

P6.5 (E) Dissipation by a breaking wave. Show that the expression (6.1) is dimen-
sionally correct.
• If it is assumed that the rate of loss of energy from a wave through breaking depends
on density, the acceleration due to gravity, g, and some measure of the speed of
the wave that relates to breaking (the speed of the breaking crest appears a suitable
choice), but does not depend on surface tension, viscosity and wave amplitude, the
form of (6.1) may be predicted on dimensional grounds. Surface tension and viscosity
may affect only the breaking of very short waves, e.g., capillary waves (which have
a dispersion relation that includes the effect of surface tension), and can be disre-
garded for the longer surface gravity waves described here. But what about the wave
amplitude?

The amplitude of these longer waves may be involved in a relation or condition
for wave breaking – e.g., a condition that the wave slope is sufficiently great or that
the acceleration of the water produced by the wave motion as breaking is approached
is some significant fraction of g. Both of these conditions indirectly, if not explicitly,
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Figure 6.8. The benthic
boundary layer. Profiles of
potential temperature, θ , and
salinity, S, in the Hatteras
Abyssal Plain. The units of
pressure, decibars,
correspond approximately to
depth in metres. The dashed
line is an interpolation to the
seabed of the uniform
gradient in potential
temperature above the mixed
benthic boundary layer.
(From Armi and Millard,
1976.)

involve the wave amplitude. The condition that a wave is breaking (together with the
wave dispersion relation) may therefore provide an implicit relation involving ampli-
tude, g and a measure of wave speed. The amplitude of a breaking wave is therefore
a dimensional variable that is not independent of g and the speed characterizing the
wave. The inclusion of g and the speed characterizing the wave in (6.1), but not wave
amplitude, does not therefore imply a complete absence of dependence on wave ampli-
tude. Indeed, if the empirical relation (6.1) based on laboratory studies is generally
valid, it appears likely that there is also a relation between the amplitude of a breaking
wave and the other dimensional variables.

P6.6 (M) Propagation of internal tides across ocean basins. About 20 GW of
barotropic M2 tidal energy is lost at the 3000-km-long Hawaiian Ridge and some
6 GW of baroclinic tidal energy is radiated away in a beam towards the northeast
(the remainder of the energy being radiated to the southwest or dissipated locally).
Estimate how far the baroclinic tide can propagate, supposing that the beam does not
diverge, that all the energy lost by the internal tide is lost through interactions that
sustain the ambient internal wave field and that this is dissipated through internal wave
breaking at a vertically integrated rate (energy loss per unit area of ocean surface) of
about 1 × 10−3 W m−2 that is independent of distance from the Ridge.

P6.7 (M) Mixing near the seabed. Temperature profiles through the benthic bound-
ary layer is shown in Fig. 6.8. It appears that mixing near the bed has homogenized
the relatively uniform temperature gradient in the overlying water.

Supposing that the water overlying the seabed has a uniform density gradient with
corresponding buoyancy frequency, N, equal to 3 × 10−3 s−1, estimate the change in
potential energy per unit horizontal area required in order to homogenize this uniform
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Figure 6.9. Mixing in flows over sills. The sketch represents mixing in the northward
flow of AABW over the sill in the Vema Channel (‘CHANNEL’, on the left, and
marked ‘B’ in Fig. 6.6) into the Brazil Basin (‘BASIN’). The volume flux, Q, of water
of density ρ(<ρ1), is entrained by turbulent mixing into the flow, Q1, of density ρ1

passing through the Vema Channel. The entrained water is mixed across the dashed ρ2

isopycnal, to produce water of supposedly uniform density ρ2 in the Brazil Basin. This
water (i.e., that of density ρ2, with ρ < ρ2 < ρ1, in the Basin) upwells at speed w
across the area, A, of the upper surface of the ρ2 water, and overflows from the Basin
through the Romanche Fracture Zone (and other channels) with net flux Q2. (This
illustration has been modified from that of Bryden and Nurser (2003) by specifically
including the entrained flux, Q.)

density gradient and to form a bottom layer of thickness 2H = 20 m. Assuming that
20% of the energy available from the working of the shear stress on the seabed when
〈U 2|U |〉 = 1.25 × 10−4 m3 s−3 (chosen to correspond to 〈U 2|U |〉1/3 = 0.05 m s−1, a
speed typical of the deep-ocean benthic boundary layer) is used in mixing, estimate
how long it will take to complete the mixing of the near-bed uniform density gradient
to the thickness of 20 m.

P6.8 (D) Mixing in flows through channels. (This problem should be compared with
P4.9.) Figure 6.9 represents the northward flow of Antarctic Bottom Water (AABW;
see Section 6.4.3) through the Vema Channel (marked ‘B’ in Fig. 6.6) into the deep
Brazil Basin. The flux of AABW of density ρ1 entering the Channel is Q1 and there is
a hydraulic jump (or perhaps several jumps) within the channel that entrains overlying
water of density ρ < ρ1 at a rate Q. The mixing at the jump results in water of density
ρ2 < ρ1 (but ρ2 > ρ) that fills the deep Brazil Basin. (The flux, Q, is across the ρ2

isopycnal surface.) The flux of water of density ρ2 from the Basin is Q2. The area
of the Basin is A and the imbalance of the fluxes into and out of the Basin results
in upwelling at speed w. Bryden and Nurser (2003) determined the flux of density
anomaly Q1(ρ1 − ρ2) associated with the flow of AABW into the Brazil Basin.

Write down the equation for conservation of volume in the basin.
Supposing that the upward advective transport of density at speed w across the

horizontal surface of area A of the basin is exactly balanced by a diffusive density flux
(Kρ A|dρ/dz|), so there is no net vertical density flux through the area A, and neglecting
the effects of geothermal heat flux, write down an equation for the conservation of
density and the maintenance of a steady state within the Brazil Basin. Use the equation
of volume conservation to derive an equation relating the flux identified by Bryden and
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Nurser to that associated with the entrainment flux, Q(ρ2 − ρ), across the ρ2 isopycnal
surface and to the advective flux, ρ2wA.

If the vertical density gradient in the water at the top of the layer of density ρ2

is (0.6 ± 0.3) × 10−4 kg m−4 and the area of the Brazil Basin is 3 × 106 km2, use
Munk’s canonical value of eddy diffusivity and the diffusion–advection balance (P4.8
and P4.9) to estimate ρ2wA. Supposing that the flux of AABW, Q1, is 6.9 Sv and
that (ρ1 − ρ2) = 0.05 kg m−3, determine the entrainment flux and compare it with the
total diapycnal diffusive flux over the area of the Brazil Basin.
• A similar calculation led Bryden and Nurser to conclude that the diapycnal flux of
density, a measure of ‘mixing’, as water passes through channels separating neigh-
bouring basins in the deep ocean may exceed that within the basins themselves, even
though the area of the basins greatly exceeds that of the narrow channels.

P6.9 (M) Energy loss in channels. The Vema Channel (marked ‘B’ in Fig. 6.6) is
about 400 km long. Supposing that the thickness of the AABW in the Channel is less
than 1 km, show that the energy lost through the bottom stress may exceed the flux of
kinetic energy in the Channel. (You may approximate the cross section of the Channel
by a rectangle and ignore mixing at the sides of the Channel.)

Further energy may be lost in mixing and in work done against the Reynolds stress
at the upper boundary of the AABW. The flux of kinetic energy is sustained by work
done by the pressure driving the flow through the Channel.

P6.10 (E) The geothermal heat flux and the diffusive heat flux in the water column.
Show that the mean upward geothermal flux of heat through the seabed is small in
comparison with the downward diffusive flux of heat required to maintain the steady-
state advection–diffusion balance in the deep water at moderate latitudes in the Pacific
(e.g., see Section 4.7 and P4.8). You should assume a mean temperature gradient of
1.3 ◦C km−1 in the deep stratified water and Munk’s canonical value for the eddy
diffusion coefficient of heat.

Estimate the total mean downward diffusive heat flux in the deep water of the
tropical regions of the Pacific and Atlantic Oceans, supposing that their total area is
about 7.6 × 107 km2 and that the flux per unit area in the Atlantic is about the same
as in the Pacific. Show that this diapycnal flux of heat is much less than the heat flux
of about 2 PW transported northwards at 30 ◦N within these Oceans (see footnote 5).

P6.11 (M) Vent temperatures and mixing. Use the values of the fluxes given in
Section 6.9 to show that the mean temperature difference between ambient seawater
and the fluid discharged as a hydrothermal flux of water carrying geothermal heat into
the ocean is generally very small in comparison with the values of over 300 ◦C reported
for some vents (e.g., see Section 3.2.2.)
• This implies that hydrothermal vents will not, globally, contribute very substantially
to mixing within the deep ocean.
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abyssal ocean 25, 83, 208, 220
abyssal plain 25, 216
acoustic Doppler current profiler (ADCP) 71–73
acoustic methods of estimating ε 73
acoustic scattering 26, 135
Advanced Microstructure Profiler (AMP) 45, 47, 52,

64
advection–diffusion balance 140, 154, 220
Agulhas Retroflection Zone 177
air-foil probe 60–65
along-shore currents 11
Antarctic Bottom Water (AABW) 207, 212–215
Antarctic Circumpolar Current 208
Archimedes 22
ARGOS satellite tracking 177
Atlantic Ocean 24, 141, 177, 179, 212
atmospheric boundary layer
Autonomous Lagrangian Circulation Explorer

(ALACE) floats 179
autonomous underwater vehicle (AUV) 66
Autosub 66

Baltic Sea 160
Bahamas 90
Banda Sea 137
baroclinic instability 32
Bay of Fundy 215
Bénard 81
benthic boundary layer (see also bottom boundary

layer) 25, 45, 77, 100–102, 210, 216, 222

benthic nephloid layer 102
billow 37, 118, 121, 139, 153
black-smoker hydrothermal vent 84, 161
boils 13
Bosphorus 215
bottom boundary layer (see also benthic boundary

layer) 25, 77, 100–102, 105
boundary layer (see atmospheric boundary layer;

benthic boundary layer; bottom boundary
layer; mixed layer; viscous sublayer)

Brazil Basin 99, 185, 202, 213, 223
breaking internal waves (see also wave breaking)

28, 117, 136, 149, 153, 183
breaking surface waves (see also whitecaps; foam;

rate of energy dissipation in a breaking wave;
wave breaking) 1, 8, 32, 95, 108, 205, 206–207,
219

bubbles 8, 67, 108, 162, 173, 175
buoyancy 22
buoyancy flux 42, 59, 79, 207
buoyancy force 22
buoyancy frequency, N 23, 25

cabelling 145, 157
caesium 47–48, 188
CAMELION 74, 94, 102
canonical value (see Munk’s canonical value of KT)
canyons (see submarine canyons)
Camarinal Sill (in the Strait of Gibraltar) 45, 139,

140, 151, 215

235



236 Index

cascade of energy 38, 49–50
Chain Fracture Zone 213
channels 210, 223
coastlines 221
coherent structures (see also Langmuir circulation;

plumes; vortex pairs) 38, 101
collapsing mixed layer 29, 31, 125
conductivity–temperature–depth probe (CTD) 21,

130
continental slope 203
convection 81, 89, 107, 207
convective overturn 116
convergence 18
cool skin 112
Coriolis force 31
Coriolis frequency, f 30, 183
Cox number, C 131
critical frequency (of internal waves on a slope)

209
critical Richardson number, Ric 120–123
critical Reynolds number 5
cross-correlation coefficients 51
CTD (see conductivity–temperature–depth probe)
cumulus clouds 78, 82

density
of air 88
of seawater 20–22

density gradient ratio, Rρ 146–147
density overturns 57, 130, 138
density profile (see also reordering (of density

profile)) 23
detrainment 15–18
detritus 114
diapycnal mixing 28, 139–144, 200
diatoms 111
diffusion 15
dimensional arguments

characteristics of a jet (Problem 3.3) 110
characteristics of a plume (Problem 3.2) 110
Kolmogorov length scale, lK (Section 2.3.4) 48
maximum rise of a plume in stratified

environment (Problem 3.4) 111
Monin–Obukov length scale, LMO (Section 3.4.1)

88
one-dimensional wavenumber spectrum of

turbulence, �(k) (Problem 2.5) 52
Ozmidov length scale, LO (Section 4.4.1) 129
rate of energy loss from breaking wave (Problem

6.5) 221
Reynolds number, Re (Section 1.2) 4
Richardson’s 4/3 power law (Problem 5.1) 192

tidal mixing parameter in shallow seas (Section
3.4.5) 103

vertical velocity frequency spectrum, �w(σ )
(Problem 2.6) 76

Discovery Gap 155
Discovery Passage 60
dispersant 13, 158, 162, 163
dispersion 15, 158–189
dispersion relation 28, 34
diurnal change 23
diurnal cycle 83, 90
diurnal migration
Doppler shift 27
double diffusive convection 144–149, 150

diffusive regime of 146
doubly stable regime of 146
finger regime of 146, 147, 149

drag coefficient on the seabed, CD 68, 87, 210
drag coefficient of the wind on the sea surface, CDa

88
drogue 175
dust 164, 194

Earth’s rotation (effect of) 111, 175, 183
East Australia Current 177
East Greenland Sea 83, 207
East Pacific Rise 158, 161
eddy diffusion coefficient of density, Kρ 132, 133,

199
eddy diffusion coefficient of heat, KT 42, 131, 203
eddy diffusion coefficient of mass (see eddy

diffusion coefficient of density)
eddy diffusion coefficient of momentum (see eddy

viscosity)
eddy dispersion coefficient 169–170, 177, 180–182,

183, 185
eddy lifetime 167
eddy viscosity, Kν 41, 133, 183
efficiency 125
efficiency factor, � 132, 148
ejection 67
electromagnetic current meter 67
energy balance equation 54–56
energy cascade (see cascade of energy)
energy-containing eddies 49
energy density 33, 35
energy flux 200, 204, 208, 209
engulfment 11
ensemble 54
entrainment 11, 15, 83, 110, 111
entrainment assumption 83
entrainment velocity 84, 135
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equation of state 20
Equator 47, 94
Equatorial currents 177
Equatorial Undercurrent 47
European continental shelf 102, 105
external processes 79, 106

fall speed (of particles) 22, 192
Fickian diffusion 174, 179, 180
filaments 165
fine-structure 117, 122, 123
flocs 156, 160
Floating Instrument Platform, FLIP 138
floats (see also subsurface floats) 174–180
Florida Current 45
flow separation 81
fluorescent dye 142
flux of buoyancy (see buoyancy flux)
flux of energy (see energy flux)
flux Richardson number, Rf 132, 148
foam (see also whitecaps) 8, 13, 95, 206
fossil turbulence 125
four-thirds power law (see Richardson’s four-thirds

power law)
free-fall instrument (see also Advanced

Microstructure Profiler (AMP); High
Resolution Profiler (HRP); Multi-Scale Profiler
(MSP)) 45, 64, 65

measurements using 139–144
freezing point 20, 111
freshwater 20, 111
friction velocity, u∗ 85, 88
front (see also tidal mixing front) 161

gas transfer 8, 107, 109
Gaussian pdf 68
geostrophic balance 31
geostrophic turbulence 177, 192
geothermal heat flux 83, 110, 113, 216–217
gradient Richardson number, Ri 119, 125–128, 138
group velocity, cg 26
Gulf of Lions 83, 107
Gulf Stream 177, 188

hairpin vortex 17, 94, 101, 102
halocline 24
harmful algal bloom (HAB) 158
Hatteras Abyssal Plain 103, 106, 222
Hawaiian Ocean Mixing Experiment (HOME) 203,

219
Hawaiian Ridge 202
heat flux 3, 5, 39, 42, 43, 112, 207

helium 3 (3He) 158, 161
High Resolution Profiler (HRP) 64, 130
Holmboe instability 135, 150
hot-film anemometer 60
hot spots 144
‘h over u cubed’ criterion 105
Hunter Channel 213
hurricane force winds 88, 163
hydraulic jump 11, 208, 210, 213
hydrothermal heat flux 217
hydrothermal plume 83, 85, 110, 161
hydrothermal vent 83, 85, 224

ice 111
inertia 194
inertial forces 49
inertial period 31
inertial subrange 52
instability (see double diffusive instability; Holmboe

instability; Kelvin–Helmholtz instability)
instantaneous release 88, 163
integral scales 169
intermediate nephloid layer 102, 109
internal inertial waves 205, 209
internal processes 79, 106, 116
internal Rossby radius, LRo 31–32, 177
internal-wave radiation 25, 26
internal waves (see also internal inertial waves)

23, 25–28, 54, 57, 125, 135–139, 205, 208,
209

intrusion 31
inverse problems 218
Irish Sea 33, 67, 104, 105, 188, 191, 201
isopycnal mixing 28
isopycnal surface 28
isotropic (see isotropy)
isotropy 44–45, 49–50, 75, 123, 131
isotropy parameter, I 50

jet 110
Joule, J. P. 6
Joule’s experiment 6–8
Juan de Fuca Ridge 217

Kattegat 133
Kelvin–Helmholtz instability 119, 122, 126–127,

135
kinematic viscosity 3, 43
kinetic energy (see also rate of production of

turbulent kinetic energy) 39, 125
Knight Inlet, British Columbia 55
Kolomogorov, A. N. 48, 52
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Kolmogorov length scale, lK 48–49, 52, 65, 111
Kolmogorov’s minus five-thirds power law 52
Kuroshio 141, 177
kurtosis 54

Labrador Sea 83, 207
Lagrangian frequency spectrum 55
Lagrangian integral length scale, LL 169, 177,

180
Lagrangian integral time scale, TL 169, 177,

180
laminar flow 3, 56, 125
Langmuir cells (see also Langmuir circulation)

97–99, 107, 171
Langmuir circulation (see also Langmuir cells; Y

junction) 95, 107, 172, 194
Langmuir turbulence (see also turbulent Langmuir

number, Laturb) 97
large eddy simulation (LES) 99
law of the wall 86
length scale (see internal Rossby radius, LRo;

Kolmogorov length scale, lK; Lagrangian
integral length scale, LL; mixing length;
Monin–Obukov length scale, LMO; Ozmidov
length scale, LO; Rhines scale roughness
length; scale height; significant wave height,
Hs; thermal compensation depth; Thorpe
length scale, LT)

main thermocline 25
Malta 117
marine fluff 156
marine snow 156
mean circulation 205
meanders 163
Mediterranean Sea 83
Mediterranean Water 47, 139, 148, 159, 187
Meddies 159, 187
meridional diffusivity 184–187
mesoscale eddy 32, 175–179, 187, 205, 208
micro-fronts 99
microstructure 64, 65, 135
Mid-Atlantic Ridge 142, 185, 202
Miles–Howard theorem 119
minus five-thirds power law (see Kolmogorov’s

minus five-thirds power law)
mixing 15

diapycnal 28
isopycnal 28

mixed layer 23, 91, 135, 205
mixing length 170
molecular conductivity 15

molecular diffusion 14
momentum 11, 39
momentum flux 40, 79
Monin–Obukov length scale, LMO 88–89, 113,

216
Monterey Bay, California 136
Multi-Scale Profiler (MSP) 45
Munk’s canonical value of KT 140, 150

natural tracers 187
Nasmyth universal spectrum 52, 65
near-inertial internal waves 136, 209
nepheloid layer (see benthic, intermediate and

surface nepheloid layer)
New England Continental Shelf 152, 183
non-dimensional numbers (see Cox number, C;

critical Richardson number, Ric; critical
Reynolds number; flux Richardson number, Rf;
gradient Richardson number, Ri; Rayleigh
number; Reynolds number, Re; turbulence
Langmuir number; von Kármán’s constant)

normal pdf (see Gaussian pdf)
North Atlantic Tracer Release Experiment (NATRE)

142, 150, 182–185
North Sea 102, 104, 164, 191
nuclear bomb testing 187

ocean gyres 208
oil film 160
oil plume 164
Okubo’s relationship 180, 191, 194
Oregon continental shelf 26, 86, 114
overshoot 85
overstability 146
overturns (see density overturns)
Ozmidov length scale, LO 129–131

Pacific Ocean 47, 58, 141, 177, 202
pair of vortices (see vortex pairs)
pairing 123, 167
parametric representation of ε 128, 152
parsnips 174
particle image velocimetry (PIV) 44
particle paths 172, 193
particles 35, 50, 173, 168–174
patches 163, 165
perpetual salt fountain 145
phase velocity, c 27, 31, 34
piezoelectric air-foil shear probe (see air-foil probe)
planktonic organisms 50
plumes (see also hydrothermal plume; oil plume)

15, 82, 83–85, 89, 159, 163, 164, 172
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plunging breaker 11
polynya 207
potential density 22, 45
potential energy 56–59, 83, 125, 208
potential temperature 22
probability distribution function (pdf) (see also

Gaussian pdf) 54, 67
processes 8, 77–79, 95, 197
potential temperature 22
pycnocline 24

rain 111, 113
rate of energy dissipation in a breaking wave 206,

221
rate of loss of salinity variance, χS 48
rate of loss of temperature variance, χT 47–48,

117
rate of loss of turbulent kinetic energy per unit

mass, ε 43–47, 56, 59, 73, 117, 127, 129–130,
133

rate of transfer of heat (see heat flux)
rate of transfer of momentum (see stress, Reynolds

stress)
Rayleigh number 81
reduced acceleration 22
regions of freshwater influence (ROFI) 105
reordering (of density profile) 57
Reynolds, Osborne 3, 6, 39
Reynolds’ experiment 3, 5, 32
Reynolds number, Re 3, 5, 19, 52, 60
Reynolds stress 39–41, 56, 67–73, 85, 88
Rhines scale 179
Richardson, L. F. 49, 170
Richardson number (see gradient Richardson

number; flux Richardson number)
Richardson’s four-thirds power law 171, 174, 179,

181, 192
rip-currents 11
River Severn 215
Romanche Fracture Zone (RFZ) 212, 213
Rossby radius (see internal Rossby radius)
Ross Sea 207
roughness elements 101
roughness length 86

salinity 20–21, 158
salt fingers 146
scale height 22
Schlieren 27
seasonal cycle 92
seasonal thermocline 24
shadowgraph 37, 122

shear 18
shelf break 136
shelf seas
Sierra Nevada 211
sigma-T 21, 157
significant wave height, Hs 86
sill (see also Camarinal Sill) 210
skewness 54, 99
slippery sea 89
smoke plume 15
SOFAR, sound fixing and ranging 179
Southern Ocean
spaghetti diagram 175
specific heat at constant pressure, cp 6
spectrum of turbulent energy 52–54
sphere, fall speed (see fall speed (of particles))
spread of mixed patch (see collapsing mixed

region)
spring bloom 114
spring–neap tidal cycle 202
stable stratification 22
stability diagram 120
static instability 22, 146
stirring 13
Stokes drift 9, 204
Stommel, Henry 174
strain 18, 139
Strait of Gibraltar 45, 139, 158, 159, 215
Straits of Florida 45, 134
stratification 20, 25
streaks 100, 114, 183–185
stress 39, 87
subduction 81, 107, 161
submarine canyons 144, 204, 210, 220
subsurface floats 179–180
sulphur hexafluoride, SF6 142, 182, 185
surface mixed layer (see also mixed layer) 150
surface nephloid layer 102
surf zone 8–13, 34, 43, 162
Swallow floats
swath zone 34

Taylor, G. I. 33, 51, 70, 73, 169
Taylor hypothesis 51–52
temperature 6, 20–22
temperature ramps 99–100
thermal compensation depth 112
thermal expansion coefficient
thermals 82
thermocline 24
thin layer 18
Thorpe length scale, LT 129
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tidal force 197
tidal energy 200, 219
tidal mixing front 105, 109
tidal straining 105–106
tides

internal (baroclinic) 201–204, 220
M2 200
surface (barotropic) 200–201

TOPEX-POSEIDON satellite altimeter 202
tracers 142, 158
transition 5, 123
tritium (3H) 187
T–S diagram 157
T–S staircase 147
turbulent decay 123, 125
turbulent Langmuir number, Laturb (see also

Langmuir turbulence) 98
turbulent dissipation (see rate of loss of turbulent

kinetic energy per unit mass, ε)
Turner, J. S. 15, 149, 150

unstable stratification 22
upper ocean boundary layer 95

Vancouver Island 117
velocity autocorrelation function 168
Vema Channel 155, 213, 223
viscosity (see kinematic viscosity)
viscous sublayer 86, 100, 114, 115
von Kármán’s constant 85, 88, 107
Vøring Plateau, Norwegian coast 114
vortex pairs 16, 174
vortical mode 109, 183, 192

wave breaking (see also breaking internal waves,
breaking surface waves) 28

wave energy flux 33
wavenumber spectrum 52, 141
Weddell Sea 207
whitecaps (see also breaking surface waves) 206
windrow 95
wind stress 204

Y junction 97

zonal diffusivity 184–187
zooplankton 52, 141



Answers

These are possible answers to the problems set at the end of each chapter in An
Introduction to Ocean Turbulence. Alternative or simpler answers may be possible in
some cases. Please advise the author if any errors are found.

Chapter 1

P1.1. Integrating over the area of the tube, the net flow is ∫a
0 u · 2πr . dr = 4πU∫(r −

r3/a2)dr = 4πU [r2/2 − r4/(4a2)]a
0 = πUa2. By definition, this must be equal to the

mean flow times the cross-sectional area, πa2, so U is equal to the mean flow. By
conservation of the volume flux, the mean flow downstream of the transition from
laminar to turbulent flow must also be equal to U.

The flux of kinetic energy upstream of the transition from laminar to turbulent flow
is u(ρu2/2) integrated over the cross-section of the tube, i.e., ∫a

0(ρu3/2) · 2πr dr =
8πρU 3 ∫a

0 r (1 − r2/a2)3dr = − πρU 3a2[(1 − r2/a2)4]a
0 = πρU 3a2.

In the same way, the flux of the kinetic energy of the mean flow is (ρU 3/2)πa2

within the turbulent flow downstream of the transition, so the reduction in the flux
is the difference between the flux upstream of the transition and that downstream, or
(ρU 3/2)πa2. This represents a flux of kinetic energy to the turbulent motion, ignoring
any work done by pressure forces. The change in the flux of turbulent kinetic energy
(zero upstream of the transition) expressed as a fraction of the initial kinetic energy
flux, or an ‘efficiency’, is 0.5.

P1.2. The Reynolds number is Re = dU/ν, where d is the depth, U is the current
and ν is the kinematic viscosity, about 10−6 m2 s−1. Inserting the values given, Re =
60 × (0.1 − 1)/10−6 = (6−60) × 106.
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This far exceeds the critical value of 104 and so the flow is expected to be turbulent.
This conclusion, however, ignores effects of density stratification, but these are effec-
tive only in stratified regions (e.g., see Fig. 3.17) where turbulence is still generated,
for example by breaking internal waves, although usually with relatively small vertical
scale (see Chapter 4).

P1.3. (i) Waves advance one wavelength, λ, in a time equal to the wave period, T, so the
phase speed c = λ/T , or λ = cT = 1.56T 2. If T = 5 s, λ = 39 m. Also c = (λ/T ) =
7.8 m s−1 and the group velocity is cg = c/2 = 3.9 m s−1.

(ii) The volume of water within which the energy flux, Ecg, is dissipated is V =
40 m × 1 m = 40 m3 per metre along the shore line (or parallel to the wave
crests). Using E = a2ρg/2, the mean dissipation rate per unit mass is Ecg/(Vρ) =
a2gcg/(2V ) = (0.5)2 × 9.81 × 3.9/(2 × 40) = 0.12 W kg−1. (Check dimensions,
[a2gcg/V ] = L2 × (L/T2) × (L/T)/L2 = L2T−3, the same as W kg−1– correct.)

(iii) Using (1.2), the time rate of change of heat (or the rate of supply of energy) per
unit mass is given by 	H/	t = cp	T/	t , where 	T is the change in temperature
over a time 	t . But the rate of supply of energy to the surf zone per unit mass is equal
to the dissipation rate or, using (ii), 0.12 W kg−1, so cp 	T/	t = 0.12 W kg−1 (check
dimensions: [cp 	T/	t] = [(ML2T−2/(M ×◦C)] × (◦C/T) = (ML2T−3)/(M) or the
same as W kg−1 – correct). Hence the rate of increase of temperature is 	T/	t =
0.12/cp ≈ 3 × 10−5 ◦C s−1, if cp = 3.99 × 103 J kg−1K−1. Even the high dissipation
rates found in the surf zone result in rates of increase in water temperature that are
generally less than those of other processes. (A net surface flux of heat of about 120
W m−2 from the atmosphere – i.e., 0.12 W kg−1 × density × depth – would lead to
an equal heating rate, and is a relatively small solar flux of heat.)

P1.4. For the flow to be turbulent, Re = UL/ν ≥ 104, or U ≥ 104ν/L , and, inserting
values of the kinematic viscosity, ν = 10−6 m2 s−1, and the water depth, L = 0.02 m,
the speed, U, must exceed 104 × 10−6/0.02 = 0.5 m s−1 if the flow is likely to be
turbulent. Such speeds are sometimes, but not always, exceeded in the swath zone, in
which turbulence may therefore be transitional.

P1.5 If the width of the rectangular region is 2x and its height is 2y, then dx/dt =
u = qx and dy/dt = −qy. Integrating, x = x0 exp(qt), as is to be shown, and y =
y0 exp(−qt), where the width and height are 2x0 and 2y0 at time t = 0. The area of
the deforming rectangle, 4xy, remains constant in time and is equal to 4x0 y0.

In the problem of radial spread, the speed at which the upper surface of the cylinder,
at height z, moves is given by dz/dt = −qz, and, integrating, z = z0 exp(−qt) (where
z = z0 at time t = 0), as in the two-dimensional problem. The volume of fluid, V, in
the collapsing cylinder is, however, constant (assuming that the fluid is not compress-
ible), and, if its radius at time t is r, and initially it is r0, then V = πr2

0 × 2z0 =
πr2 × 2z, so r2 = r2

0 z0/z = r2
0 exp(qt), giving r = r0 exp(qt/2). Alternatively,

since the volume must be conserved, dV/dt = 2π d(r2z)/dt = 0, so r2 dz/dt +
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2r z dr/dt = 0, or, since dz/dt = −qz, dr/dt = rq/2 , and, integrating, this leads to
r = r0 exp(qt/2).

(It has been assumed that, in the field of motion induced with a velocity, w = −qz,
the edge of the cylinder remains vertical, or that the radial velocity, u, is independent
of z. The continuity equation, ∇ · u = 0 (or the divergence of the velocity is zero)
in cylindrical coordinates, (r, φ, z), with velocity u = (u, vφ , w), where φ is the
azimuthal angle, can be written (1/r )(∂(ru)/∂r ) + (1/r )∂vφ/∂φ + ∂w/∂z = 0; e.g.,
see Acheson’s Elementary Fluid Dynamics (Oxford, Clarendon Press, 1990, p. 352).
If the spread is symmetrical, independently of φ, then vφ = 0 and (1/r )(∂(ru)/∂r ) +
∂w/∂z = 0 , and, if w = −qz , then ∂(ru)/∂r = qr , so there is a solution in which u is
a function of r (and not of z) given, by integration, as u = q(r2 − r2

0 )/(2r ), where u = 0
when r = r0. If, however, u = dr/dt , so dr/dt = q(r2 − r2

0 )/(2r ), further integration
leads to singularities at t = 0 if r0 
=0. The difference here is in the assumption that
there is a time, t = 0, when u = 0, which is not valid in the volume-conserving solu-
tion, unless w = 0 at the same time, t = 0. The previous solution, with u independent
of z – so the cylinder has vertical sides – is recovered if r0 = 0.)

P1.6. Relative to a level z = 0 located at the interface, the potential energy, PE, of a
hemisphere of radius r and of density ρ1 in z > 0 is ρ1g ∫r

0 zπ(r2 − z2)dz = ρ1gπr4/4.
If this is replaced by a hemisphere of density ρ2 (as in Fig.1.17(b)) the energy change
is (ρ2 − ρ1)gπr4/4. The change in PE in the hemisphere in z < 0 is the same, so the
net PE change is (ρ2 − ρ1)gπr4/2. (Alternatively, the above integral divided by the
weight, 2πρ1gr3/3, of a hemisphere gives the height of the centre of mass as 3r /8.
The change from state (a) to (b) in Fig. 1.17(b) involves a lifting of the lower-hemi-
sphere fluid of weight 2πρ2gr3/3 through a distance 2 × 3r/8, so that the change in
PE is the product, ρ2gπr4/2 , but with a decrease in PE, ρ1gπr4/2 , as the upper hemi-
sphere is lowered in the change. The net change in PE is therefore (ρ2 − ρ1)gπr4/2.)

If 	T is the temperature rise when this potential energy is lost through turbulent
mixing (Fig. 1.17(c)), and cp is the specific heat at constant pressure, about 3.99 ×
103J kg−1K−1, the heat energy produced is [(ρ1 + ρ2)/2]cp 	T times the volume
of the sphere, 4πr3/3. Equating the expression for the potential energy to the heat
energy gives (ρ2 − ρ1)gπr4/2 = [(ρ1 + ρ2)/2] cp 	 T 4πr3/3, so 	T = 3gr [(ρ2 −
ρ1)/(ρ1 + ρ2)]/(4cp). (Check dimensions: [rhs] = (LT−2)L/(ML2T−2M−1K−1) = K;
temperature – correct.)

From (1.4), the density reduction resulting from this temperature increase is 	ρ =
αρ0 	T , so, taking ρ0 = (ρ1 + ρ2)/2, the ratio of the density change to the density
difference between the layers is 	ρ/(ρ2 − ρ1) = 3αgr/(8cp). On substituting α =
2 × 10−4 K−1, r = 10 m, cp = 3.99 × 103J kg−1K−1 and g = 9.81 m s−2, the ratio is
1.8 × 10−6. The effect of turbulent heating on density is relatively slight and generally
negligible.

P1.7 With the efficiency factor of 20%, the minimum kinetic energy (KE) required
is equal to five times the increase in potential energy (PE). Suppose that, with z
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measured upwards from the centre of the horizontal cylinder, the density is ρ =
ρ0(1 − N 2z/g), where ρ0 is the density at z = 0. The initial PE of water within the
cylinder is l ∫r

−r gρz · 2(r2 − z2)1/2dz = 2l ∫r
−r gρ0(1 − N 2z/g)z(r2 − z2)1/2 dz. (The

term 2l(r2 − z2)1/2 dz is the volume of a fluid element of thickness dz at height z.) The
final PE is the same, but with N = 0. Subtraction shows that the increase in PE resulting
from the mixing is 2l ∫r

−r ρ0 N 2z2(r2 − z2)1/2 dz = 2lρ0 N 2r4 ∫1
−1 x2(1 − x2)1/2 dx ,

after writing x = z/r . But ∫1
−1 x2(1 − x2)1/2 dx = π/8 (which can be found, for

example, by putting x = sin θ and using integrals of sines and cosines), so the
change in PE is πlρ0 N 2r4/4. The initial kinetic energy required to mix the cylin-
der of fluid is therefore 5πlρ0 N 2r4/4. (Check dimensions: those of the last term are
L(M/L3)(T−2)L4 = ML2T−2 – energy, correct.)

The mass of fluid in the cylinder is the same before mixing as it is afterwards when
the density is ρ0, i.e., ρ0lπr2. The work done in raising this mass by a distance h
is ghρ0lπr2, and, on equating this to the kinetic energy, 5πlρ0 N 2r4/4, we find that
h = 5N 2r2/(4g).

The energy required to mix the cylinder of fluid is 5πlρ0 N 2r4/4. Putting r = qa,
and equating this energy to that in a volume lπ (qa)2 in the wave, i.e., lπ (qa)2 multiplied
by the energy density, a2 N 2ρ0/2, we have 5πlρ0 N 2(qa)4/4 = lπ (qa)2(a2 N 2ρ0/2),
so q = √

(2/5). On average, therefore, an internal wave would have to break over a
cylindrical region of radius slightly exceeding half its amplitude, a, to lose energy
sufficient to give complete mixing of a cylinder of fluid, in the unlikely circumstance
of its leaving no kinetic energy (or of such symmetrical mixing occurring in an internal
wave and with the given efficiency).

P1.8. Take y to indicate the initial location of particles that are neutrally buoyant in a
layer extending from z = −h to z = h. A neutrally buoyant particle initially at a level
y above the mid-depth of the layer of height 2h has density ρ0(1 − N 2 y/g), where
ρ0 is the density at z = 0 and (being the mean density in –h ≤ z ≤ h of the layer
before mixing) is equal to the uniform density of the layer after mixing. After mixing,
the neutrally buoyant particles are distributed uniformly in –h ≤ z ≤ h. Particles that
are initially at a level y < 0 will sink, being more dense than ρ0, whilst those with
y > 0, less dense than ρ0, will rise with speed w, such that |w(y > 0)| = |w(y < 0)|.
By symmetry, it is therefore necessary only to consider the rising particles, those
with y > 0. The difference in density of particles initially at level y from their new
surrounding fluid of densityρ0 isρ0 − ρ0(1 − N 2 y/g) = ρ0 N 2 y/g, and, from footnote
16 in Chapter 1, their rise speed is w(y) = [2a2/(9ν)]N 2 y, when a is the particle radius
and ν is the kinematic viscosity, provided that the Reynolds number 2wa/ν � 1. The
rise speed of the particles increases linearly in proportion to y, being greatest when
y = h. After a time equal to the distance 2h (the distance through which particles rise
from level –h to level h before arriving at the upper boundary of the mixed layer),
divided by their rise speed, w(y), all the particles initially at level y will have reached
the upper boundary. (‘Overshoot’ of particles through the boundary – see Section
3.2.2 – is ignored. Rise speeds, w, are in any case small: for the Reynolds number to
be � 1, w � ν/(2a).) Particles initially at level y = h have the greatest upward speed



Answers

and all of these particles (even those starting from the bottom of the layer, needing to
rise a distance 2h) rising at speed w(h) = [2a2/(9ν)]N 2h will have reached the upper
boundary after a time following mixing of t0 = 2h/{[2a2/(9ν)]N 2h} = 9ν/(a2 N 2).
At this time, the lower level at which particles initially at level y (and therefore rising
at speed w(y)) will be found is z = −h + w(y)t0 = 2y − h, and the length of the
column of fluid in which particles initially at y are to be found is h − (2y − h) =
2(h − y).

The particles initially at level y all rise with the same speed and have the same
local concentration, n, independently of y and of time. (Except at the layer boundaries,
where vertical motion ceases, there is no process to converge particles originating from
level y.) The total mass of buoyant particles immediately after mixing is the sum of
the extent of y (0 to h) of the concentration, n, summed over the vertical extent (2h)
of the particles, i.e., ∫y=h

y=0 2hn dy = 2nh2. The total mass of rising particles remaining
between –h and h at time t0 is, similarly, ∫y=h

y=0 2(h − y)n dy = nh2, or half the initial
particle mass. Hence t0 is the time at which half of the particles have sunk or risen to
the lower or upper boundaries of the mixed layer. (The result can be foreseen because
w(y) is linear in y, and the lower edge of the region of rising particles varies linearly
with y, the initial position.)

(Alternatively, think of the particles as occupying a region in (y−z) space, where y
is the initial level of a floating particle and z is its location after mixing. Immediately
after mixing, the particles initially in 0 ≤ y ≤ h are distributed in –h ≤ z ≤ h, so the
(y−z) region is rectangular. After a time t1, particles initially at location y have risen
a distance w(y)t1 and so the region becomes a parallelogram with sides y = 0, y =
h, z = w(y)t1 − h and z = w(y)t1 + h (allowing particles notionally to continue to rise
after passing the level z = h). Half the area of the continually distorting parallelogram
(and therefore half the uniformly distributed particles in it) is above z = h, i.e., half the
particles have reached the upper boundary of the mixed region at z = h when the base
line z = w(y)t1 − h with y = h passes through z = h. The required time is therefore
2h/w(h) = 9ν/(a2 N 2), as found above before.)

The required time is therefore 9ν/(a2 N 2) and, on substituting a = 10−3 m, N =
10−2 s−1 and ν = 10−6 m2 s

−1
, the time is 9 × 104 s = 25 h. This estimate

depends on the Reynolds number of the fastest-rising particles, 2aw(h)/ν =
2a{[2a2/(9ν)]N 2h}/ν = 4a3 N 2h/(9ν2) being �1, and (by substituting for values
of a, N and ν) this is so, provided that the thickness of the mixed layer 2h � 45 m.
The time of 25 h is much greater than a typical value of f −1 of a few hours (e.g.,
3.82 h at a latitude of 30◦), so the effects of the Earth’s rotation leading to an anticy-
clonic rotation of the spreading mixed region will generally become important before
particles accumulate significantly at its upper and lower boundaries.

P1.9. The initial potential energy of fluid of depth 2h relative to the level of its centre,
z = 0, is PEI = ∫h

−h gρz dz, and, since N 2
0 = −(g/ρ)dρ/dz, the density is ρ = ρ0(1 −

N 2
0 z/g) where ρ0 is the density at the centre of the depth range, −h < z < h. Hence, on

integrating, PEI = ∫h
−h gρ0(1 − N 2

0 z/g)z dz = −2ρ0 N 2
0 h3/3. Similarly, the potential

energy of the final state is PEF = −2ρ0 N 2h3/3. The change in potential energy on
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going from the initial to the final state is therefore −2ρ0 N 2h3/3 − (−2ρ0 N 2
0 h3/3), or

2ρ0 	N 2h3/3, where 	N 2 = (N 2
0 − N 2). This is the minimum energy required. In

practice, if mixing is caused in the stratified water by an overturning eddy as in Fig.
1.15, the final state is unlikely to be at rest and may contain kinetic energy, and the
efficiency of transfer of KE to PE may be significantly less than unity (e.g., see P1.7).

Chapter 2

P2.1. The Reynolds stress at height z and time t may be estimated as the x-average
of the quantity −ρ0uw (measured at time t, at the level z) or, alternatively, the stress
is found at a point (x, z), as the time average of −ρ0uw. As explained in the text,
the latter is the most commonly observed value, for example it is that measured by
Bowden and Fairbairn using the equipment shown in Fig.2.16(a), and is applied here.

The wave field is periodic in time, and it is therefore sufficient to find the average
over one wave period:

−〈ρ0uw〉 = −(ρ0/T )
∫ T

0
uw dt,

where T = 2π/σ is the wave period. On substituting for u and w and performing the
integration, the stress is equal to [ρ0a2σ 3/(2π )]exp(−2kz)

∫ T
0 sin(kx − σ t)cos(kx −

σ t)dt = [ρ0a2σ 3/(4π )]exp(−2kz)
∫ 2π/σ sin[2(kx − σ t)dt = 0. (Since u and w are

90◦ out of phase their product must be zero, as proved above.) The Reynolds stress is
therefore zero beneath small-amplitude surface gravity waves in the idealized condi-
tions (e.g., remote from breaking) when the velocity field is irrotational.

P2.2. Since the motion is periodic in space and time, on taking a horizontal average in
the x direction we can write

−〈ρ0vw〉 = −(ρ0/λ)
∫ λ

0
vw dx,

where λ = 2π/k is the horizontal wavelength. (No integral is required over y since
the velocity components are independent of y.) On substituting for u and w,

−〈ρ0uw〉 = (ρ0/λ)
∫ λ

0
(aσ fm/k)sin(kx + mz − σ t)cos(kx + mz − σ t)dx = 0,

as in P2.1; the u and v components are 90◦ different in phase. The same result follows
if we integrate over time at a fixed point. However, the vertical component of the
Reynolds stress is

−〈ρ0uw〉 = −(ρ0/λ)
∫ λ

0
uw dx,

= (ρ0/λ)
∫ λ

0
(a2mσ 2/k)cos2(kx + mz − σ t)dx,

= ρ0a2mσ 2/(2k),
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a constant, independent of z. (The result also follows if we integrate over time at a
fixed point. Here u and w are 180◦ out of phase.) Internal waves have an associated
vertical flux of momentum, that may be transferred to the flow field if waves break.

The vertical flux of heat is (2.3)

F = 〈ρcpwT ′〉 = (ρcp/λ)
∫ λ

0
wT ′dx .

On substituting for w and T ′ we obtain

F = (ρcp/λ)
∫ λ

0
[N 2a2σ/(gα)] sin(kx + mz − σ t) cos(kx + mz − σ t)dx,

which is found to be zero, either by performing the integral or because w and T ′ are
90◦ out of phase.

By (2.5), KT dT/dz = −〈wT ′〉. But 〈wT ′〉 is zero, so the eddy diffusion coefficient
of heat KT = 0, provided that dT/dz 
= 0 (a condition that is implicit because a density,
and therefore temperature, gradient is required if internal waves are to propagate as
assumed.

P2.3. For the shear flow: using (2.10) and footnote 4, with v = w = 0 and when u
does not vary in x or y, but du/dz 
= 0, we find

s11 = ∂u/∂x + ∂u/∂x = 0, since u does not depend on x;
s12 = ∂u/∂y + ∂v/∂x = 0, since u does not depend on y, and v = 0;
s13 = ∂u/∂z + ∂w/∂x = du/dz(w = 0);
s21 = ∂v/∂x + ∂u/∂y = 0, since v = 0 and u does not depend on y;
s22 = ∂v/∂y + ∂v/∂y = 0, since v = 0;
s23 = ∂v/∂z + ∂w/∂y = 0, since v = w = 0;
s31 = ∂w/∂x + ∂u/∂z = du/dz(w = 0);
s32 = ∂w/∂y + ∂v/∂z = 0, since v = w = 0;
s33 = ∂w/∂z + ∂w/∂z = 0, since w = 0.

Hence, using (2.9), ε = (ν/2)〈si j si j 〉 = (ν/2)(s13s13 + s31s31) = ν (du/dz)2, and if
ν ≈ 1 × 10−6 m2 s−1 and du/dz = 4 s−1, ε ≈ 1.6 × 10−5 m2 s−3.

For the convergent flow: the equations for si j given above, with u = qx (inde-
pendently of y and z), v = −qy (independently of x and z) and w = 0, lead to s11 =
∂u/∂x + ∂u/∂x = 2q and s22 = ∂v/∂y + ∂v/∂y = −2q. The other si j are all zero.
Hence ε = (ν/2)〈si j si j 〉 = (ν/2)(s11s11 + s22s22) = 4νq2, and, with q = 3 s−1, ε ≈
3.6 × 10−5 m2 s−3.

P2.4. (a) By (2.11), ε = (15/2)ν〈(∂u/∂z)2〉, and ε ranges from about 10−10 W kg−1

in the abyssal ocean to 10−1 W kg−1 in the most actively turbulent regions. (Equation
(2.11) assumes that the motion is isotropic and a coefficient smaller than 15/2 may be
appropriate in anisotropic conditions.) If we adopt the value 15/2 and the kinematic
viscosity ν ≈ 10−6 m2 s−1, we find that 〈(∂u/∂z)2〉1/2 ≈ [(2/15)ε/ν]1/2, which ranges
from about 3.6 × 10−3 m s−1 to 1.2 × 102 m s−1. (A relatively minor alteration is
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involved if a coefficient smaller than 15/2 is adopted, since the range of ε is so great,
and because 〈(∂u/∂z)2〉1/2 is proportional to the reciprocal of the square root of the
coefficient.)

(b) As in P1.3(iii), the rate of change of temperature, dT/dt, resulting from
dissipation, ε, is given by dT/dt = ε/cp, where cp is the specific heat, about
3.99 × 103 J kg−1 K−1. On substituting the values at the extremes of the ε ranges
of 10−10 W kg−1 and 10−1 W kg−1, dT/dt ranges from 2.5 × 10−14 K s−1 to 2.5 ×
10−5 K s−1, or from 7.9 × 10−4 mK yr−1 to 90 mK h−1. The former are quite negli-
gible rates, but the latter may be detectable.

(c) If ε = 10−4 W kg−1, then dT/dt = ε/cp = 10−4/(3.99 × 103) ≈ 2.5 ×
10−8 K s−1 = 0.09 mK h−1 < 0.1 mK h−1.

P2.5. �(k) is the kinetic energy per unit mass per unit wavenumber bandwidth, and
therefore has dimensions of velocity squared divided by wavenumber, i.e., [�(k)] =
L2T−2/L−1 = L3T−2. Suppose that, in the inertial subrange, the form of the spectrum
is independent of the scale of the (relatively large) motions leading to turbulence and
of viscosity that acts in dissipating turbulence at small scales comparable to the Kol-
mogorov dissipation scale, but that the spectrum depends on the rate of dissipation of
turbulent kinetic energy, ε, the rate at which energy is transferred through the subrange
by the turbulent eddies in the narrow wavenumber band, and on their wavenumber,
k. Then the dimensions of the only dimensional quantities on which �(k) depends
are [ε] = L2T−3 and [k] = L−1. Hence �(k) = εakb, where a and b are constants, or
dimensionally L3T−2 = (L2T−3)a(L−1)b, and, by comparing respective powers of the
dimensions of L and T, we find that 3 = 2a − b and −2 = −3a. Hence, a = 2/3 and
b = −5/3, so �(k) = qε2/3k−5/3, where q is a dimensionless constant, as in (2.15).

P2.6. The dimensions of �w(σ ) are L2T−1 (see the caption to Fig. 2.6) and since
those of the dimensional parameters are L2T−3 for ε and T−1 for σ , to have the
correct dimensions, �w(σ ) = βεσ−2, where β is a non-dimensional constant. The
slope of the relationship shown in Fig. 2.6 is close to –2, in accord with this prediction.
From Fig. 2.6, �w(σ )/(εN−2) = β(N 2/σ 2) = 0.1 when σ/N ≈ 3.7 ± 0.2, so that
β = 0.1(3.7 ± 0.2)2 = 1.22 − 1.52. (Values are known to be within the range 1–2.)

P2.7. From (2.16), DE/Dt = rate of production by the mean flow + buoyancy flux –
rate of dissipation and [DE/Dt] = [ρu2/t] = (ML−3)(L2T−2)(T−1) = ML−1T−3.

Section 2.4.1 gives the rate of production of turbulence kinetic energy by the mean
shear flow as −ρ0〈uw〉dU/dz, and [ρ0〈uw〉dU/dz] = (ML−3)(L2T−2)(LT−1L−1) =
ML−1T−3.

Section 2.4.2 gives the rate of change of potential energy of the density field resulting
from turbulence as g〈wρ ′〉, and [g〈wρ ′〉] = (LT−2)(LT−1)(ML−3) = ML−1T−3.

Section 2.4.3 gives the rate of loss of turbulent kinetic energy per unit volume
through the effect of viscosity as ρ0ε, and [ρ0ε] = ML−3(L2T−3) = ML−1T−3.

Hence the dimensions are all the same.
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In an unstratified and steady flow, (2.16) gives 0 = −ρ0〈uw〉dU/dz − ρ0ε, so ρ0ε =
−ρ0〈uw〉dU/dz. Now the Reynolds stress, −ρ0〈uw〉 = 12 N m−2, dU/dz = 0.2 s−1,
and ρ0 = 1028 kg m−3 (a density typical of the upper 100 m of the ocean), so the
rate of dissipation of turbulent kinetic energy per unit mass is ε = 12 × 0.2/1028 =
2.33 × 10−3 m2 s−3 or 2.33 × 10−3 W kg−1.

P2.8. The term ρ0CDU 2|U |, averaged over time and integrated over the area of the
seabed, is equal to the rate at which tidal energy is dissipated by turbulent motion
per unit area of the seabed. Now U 2|U | = U 3

0 | sin3(σ t)| is periodic with period π/σ

(half that of the tide), so the average value is 〈U 2|U |〉 = ∫π/σ

0 U 3
0 sin3(σ t)dt/(π/σ ) =

(U 3
0 /π ) ∫π

0 sin3x dx = 4U 3
0 /(3π ) since ∫π

0 sin3x dx = 4/3, as can be found, for exam-
ple, by integration by parts.

The dissipation at the seabed supports the mean turbulent dissipation,
ρ0〈ε〉h, per unit surface area within the water column of thickness h, so
the mean rate of dissipation of turbulent kinetic energy per unit mass is
〈ε〉 = CD〈U 2|U |〉/h = CD[4/(3π)]U 3

0 /h and, on substituting given values and taking
CD = 2.5 × 10−3, 〈ε〉 = [4/(3π )](2.5 × 10−3)(0.8)3/75 = 7.24 × 10−6 W kg−1.
(Check dimensions: [CD〈U 2|U |〉/h] = L3T−3/L] = L2T−3 – correct.)

Chapter 3

P3.1. The ocean receives a geothermal flux of heat through the seabed from the Earth’s
core at an average rate of about 87.8 mW m−2. But, from (2.8), the buoyancy flux, B, is
related to the heat flux, F, by B = gαF/(ρ0cp). Taking g = 9.81 m s−2, the expansion
coefficient α = 1.71 × 10−4 K−1 (see Section 1.7.1), the density ρ = 1030 kg m−3 and
cp = 3.99 × 103 J kg−1 K−1, we find B = 3.58 × 10−11 m2 s−3. This is smaller than
the values of ε ≈ 1 × 10−10 m2 s−3 (Section 2.3.2) observed in the abyssal ocean.

P3.2. The entrainment into the plume, resulting in its spread, is determined by the
capture of surrounding fluid by (relatively large-scale) eddies in the plume rather
than by molecular processes such as viscosity and thermal diffusion that operate most
effectively at relatively small scales. The properties of the plume, including the statis-
tical distribution of eddy size and characteristic velocities, are then determined only
by the conditions at its source. If we ignore the momentum of fluid at the plume
source (a realistic assumption for a plume descending from the sea surface in con-
vective conditions, but not necessarily at a hydrothermal vent – see P3.3), then the
characteristics of a plume, in particular its width and mean rise speed, depend only
on the buoyancy flux, B0, the source dimensions (here supposed vanishingly small
and not imposing a dimension on the plume at a sufficient distance from the source),
the water density, of dimensions ML−3, and the height, z, at which the character-
istics (mean radius, R, mean rise speed, W, and mean buoyancy) are observed. (If
the vent is of finite radius, R0, then all quantities (R, W, etc.) may be multiplied



Answers

by unknown functions of the dimensionless z/R0.) The dimensions of B0 are [B0] =
[g(	ρ/ρ) × w × area] = LT−2LT−1L2 = L4T−3, and that of z is [z] = L. On dimen-
sional grounds, R = c1z, where c1 is a non-dimensional constant, and the plume there-
fore spreads as a cone, its edge making a constant angle tan−1(R/z) = tan−1 c1 to the
vertical.

Similarly, the mean rise speed is W = c2 B1/3
0 z−1/3, where c2 is another non-

dimensional constant. The dimensions of the mean buoyancy (g times the difference
in mean density between the plume and its surroundings, divided by ρ0) are LT−2 and
the buoyancy must therefore be c3 B2/3

0 z−5/3, where c3 is a further non-dimensional
constant.

The mean rate of dissipation of turbulent kinetic energy per unit mass, 〈ε〉, has
dimensions L2T −3 and, on dimensional grounds, is proportional to B0z−2, and so 〈ε〉
must decrease in height in proportion to z−2. (The water density, depending on mass,
dimension M, cannot appear in the dimensional scaling of quantities with dimensions
of L and T only.)

Using the above relation, the vertical flux of fluid in the plume at height z is given
by its horizontal area times the vertical velocity at height, z:

π R2W = πc2
1z2c2 B1/3

0 z−1/3 = πc2
1c2 B1/3

0 z5/3. (1)

The change in this flux over a vertical distance, 	z (i.e., (d/dz)(π R2W )	z), is equal to
the velocity at which fluid is entrained from outside the plume over the cylindrical area
surrounding the plume of height 	z, i.e., an area of 2π R 	z. Hence the entrainment
speed is (d/dz)(π R2W )/(2π R). But, from (1), (d/dz)(π R2W ) = (5/3)πc2

1c2 B1/3
0 z2/3

and so the entrainment velocity, we, is (5/6)c1c2 B1/3
0 z−1/3 (since R = c1z), or

we = (5/6)c1W. (2)

Hence the entrainment velocity is proportional to the rise speed of the plume, W.
This is necessary on dimensional grounds but shows how the proportionality of the
entrainment velocity to the rise speed varies as the spread angle of the plume, tan−1 c1.

If the entrainment velocity is we = 0.1W , then, from (2), (5/6)c1W = 0.1W and
so c1 = 0.12. The angle of the edge of the plume to the vertical is tan−1 c1 = 6.8o.
Note that this provides a way to estimate the relation between the entrainment velocity
and the plume rise speed from observations of the spreading angle.

P3.3 Since the processes of entrainment into the turbulent jet are independent of molec-
ular processes of heat or momentum transfer, the remaining dimensional quantities that
determine the jet’s properties are the momentum flux at the source, the water density
and the height, z, at which the properties are determined. (As in P3.2, the vent size is
supposed to be vanishingly small and does not contribute dimensionally.) The dimen-
sions of momentum flux, FM = ∫ w(ρw)da, are LT−1ML−3LT−1L2 = LT−2M, but,
since the dimensions of the quantities to be examined (radius, velocity and dissipa-
tion rate per unit mass) are independent of mass, M, we seek relations to quantities
that do not include mass; we can remove the mass variation of FM by dividing by
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ρ: [FM/ρ] = L4T−2. The dimensions of the quantities of interest are therefore deter-
mined by [FM/ρ] and by the dimensions of the height, [z] = L. The jet radius, of
dimension L, must be proportional to z, whilst the mean vertical velocity, dimensions
LT−1, must vary as F1/2

M ρ−1/2z−1; and the average rate of dissipation, 〈ε〉 , with dimen-
sions L2T−3, must vary as (FM/ρ)3/2z−4.

In contrast to the buoyant plume with no vertical momentum at the source (P3.2), the
(conical) shape is retained but the mean vertical velocity and the average dissipation
rates decrease more rapidly with height, z. This suggests that, in plumes rising from
real vents that have both a buoyancy and momentum flux, the effects of buoyancy may
eventually become dominant in determining the characteristics of rising plumes.

P3.4. Supposing, as in P3.2, that the vent size is vanishingly small and does not
impose a dimension on the plume, the characteristics of the plume depend only on the
buoyancy flux, B0, through the vent and on the buoyancy frequency, N, of the water
through which it rises. As in P3.2, entrainment of water into the plume is assumed not
to depend on molecular processes. In rising, the plume entrains the surrounding water
and eventually its density becomes equal to that of its surroundings. The dimensions
of B0 are [B0] = [g(	ρ/ρ) × w × area] = LT−2LT−1L2 = L4T−3 and [N ] = T−1,
so, on dimensional grounds, the maximum height to which the plume can rise is
zm = q(B0 N−3)1/4, where q is a dimensionless constant, about 3.8.

P3.5. The Kolmogorov length scale is lK = (ν3/ε)1/4 and the dissipation rate in the
boundary layer given by (3.5) is ε = u3

∗/(kz), so lK = (kzν3/u3
∗)1/4. The Kolmogorov

scale is therefore proportional to z1/4 and u−3/4
∗ , or (since τ = ρ0u2

∗) it is proportional
to the stress to the power −3/8. But, from Section 3.4.1, u∗ is approximately0.05U
if CD = 2.5 × 10−3. Using k = 0.41, z = 1 m and ν = 10−6 m2 s

−1
, we find lK =

8.00 × 10−4 m at U = 0.2 m s−1 and 2.39 × 10−4 m at U = 1 m s−1.

P3.6. From Section 3.4.1, the friction velocity, u∗, is approximately 0.05U if
CD = 2.5 × 10−3, or 5.65 × 10−3 m s−1 if U = 0.113 m s−1, and ε = u3

∗/(kz) giving
ε = (5.65 × 10−3)3/(0.41 × 0.55) = 8 × 10−7 W kg−1. This value is less than those
contoured in Fig. 2.3(b).

P3.7. The effect of the increase in the wind stress in the squall is to increase the
near-surface turbulence, whilst the accompanying rainfall decreases the density of the
near-surface water, producing a pycnocline seen as the peak in N at a depth of about
20 m in Fig. 3.19(b). As a consequence of this increase in stratification, the turbulence
below this level is isolated from its earlier source of energy at the sea surface and begins
to decay (roughly exponentially, although this cannot be deduced from the figure, with
a time scale that is about half the buoyancy period, τ = 2π N−1. The mean decay time
scale measured in several such observations is about 0.69τ .) The rate of dissipation
near the surface also decays between (b) and (c) because the wind stress is less than
that during the squall.
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P3.8. The radiation, passing through the ice into the underlying freshwater but decreas-
ing with depth, results in a transfer of heat to the water that increases the water tem-
perature. Because the temperature is below that of maximum density near 4 ◦C, a rise
in temperature increases the density of the water, so producing a layer just below the
ice that is statically and convectively unstable. The result of the consequent convection
is to generate turbulence. (This will not happen in the sea at salinities >24.7 psu and
at atmospheric pressure because then the density decreases as temperature increases:
see Fig. 1.11.) The pattern of convection is sometimes apparent in rather irregular
square or hexagonal patterns several metres across that are produced in thin layers of
ice covering freshwater lakes. A related process, brine rejection during the formation
of sea ice, may, in seawater, lead to the presence of denser saline water beneath the
ice and so also to convection.

P3.9. At a depth z (in m) the downward-going radiation is 250 exp(−z/1.5) (W m−2).
The radiative heat supplied to the layer of thickness z per unit surface area is the
difference between the radiation entering the layer at the surface and that leaving
(i.e., a divergence in heat flux), amounting to 250[1 − exp(−z/1.5)] (W m−2). This is
equal to the net outgoing heat flux of 100 W m−2, if 250(1 − exp(−z/1.5) = 100, or
exp(−z/1.5) = 0.6, or when z ≈ 0.77 m, the thermal compensation depth.

The rain contributes a stabilizing vertical buoyancy flux B0 = −g(	ρ/ρ)w per
unit area, where 	ρ = 25 kg m−3 and the vertical velocity is w = 0.005/3600 m s−1.
(This is not the fall speed of the raindrops, but the mean rate of the entry of rain’s
volume into the sea, the speed at which the surface of a container exposed to the rain
would rise.) The sign of B0 is negative because the flux is downwards. From (2.8), the
corresponding heat flux, F, is given by F = ρcp B0/(gα), so F = −	ρwcp/α. On
taking α = 2.97 × 10−4 K−1 at 25 ◦C (Section 1.7.1) and cp = 3.99 × 103 J kg−1 K−1

we obtain F = −466 W m−2, equivalent to a downward flux of heat. Supposing that
the heat transfers are otherwise unchanged by the rainfall (which is unlikely, since
clouds will affect at least the incoming radiation), the flux of heat from the surface
(originally 100 W m−2) is effectively changed to −366 W m−2, and there is an effective
gain in heat at the water surface, rather than a loss. Convection is therefore suppressed.

P3.10. The Monin–Obukov length scale is LMO = −u3
∗/(k B)0, (3.7), where B0 is

the buoyancy flux at the boundary, which is related to the heat flux, F0, by B0 =
gαF0/(ρ0cp), (2.8). Recall that the sign convention is that the surface heat flux, F0,

is positive for an upward flux of heat and so B0 > 0. The Monin–Obukov length
scale, LMO, is negative when F0 > 0 or when the benthic boundary layer receives a
geothermal heat flux.

To find LMO we must calculate the friction velocity, u∗, and the buoyancy flux, B0,
through the seabed. From Section 3.4.1, with CD ≈ 2.5 × 10−3, u∗ is approximately
0.05U and, with U = 0.05 m s−1, u∗ is approximately 2.5 × 10−3 m s−1.

Using (2.8) as in P3.1, and taking g = 9.81 m s−2, F0 = 46 × 10−3 W m−2,
the expansion coefficient α = 1.71 × 10−4 K−1 (see Section 1.7.1), the density,
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ρ = 1030 kg m−3 and cp = 3.99 × 103 J kg−1 K−1, we find B0 = 1.88 ×
10−11 m2 s−3. Hence LMO = −(2.5 × 10−3 m s−1)3/(0.41 × 1.88 × 10−11 m2 s−3) =
2.03 km. Free convection may occur only at a height z > |LMO| which is very much
greater than 60 m, the typical maximum thickness of the mixed benthic boundary
layer. The typical benthic boundary layer thickness is less than 0.03|LMO| ≈ 61 m,
the distance below which buoyancy flux has little effect (Section 3.4.1),· · · · and
consequently (as in Section 3.4.1) convection produced by the geothermal heat flux
is generally insignificant compared with the other processes that mix the benthic
boundary layer over the abyssal plains.

P3.11. From Fig. 3.20, summing the heat production downwards from the sur-
face (the first point in the figure giving a contribution 3 × 10−5 J s−1 cm3 × 1 cm,
the second 0.9 × 10−5 J s−1 cm3 × 1 cm, etc.) the net rate of heat production result-
ing from the decomposition of organic material is about 18 × 10−5 J s−1 cm2 =
18 W × 10−5 cm2 = 1.8 W m−2. If only half of this passes into the ocean (suppos-
ing the remainder being used to heat the sediment), the net flux greatly exceeds the
mean geothermal flux over the abyssal plains of about 4.6 × 10−2 W m−2. (It is also
greater than the average geothermal flux of 87.8 mW m−2.) Using the same method
as in P3.10, the buoyancy flux is found to be B0 = 7.36 × 10−10 m2 s−3 and, taking a
typical mean current speed of 0.05 m s−1, the Monin–Obukov length scale, LMO, is
about 52 m. This is comparable to the height of the thickest mixed layers observed
in the benthic ocean. This implies that convection caused by such decomposition of
organic matter may, in some cases, contribute significantly to the mixing processes in
benthic boundary layers. However, the arrival of a rain of organic material from the
upper ocean is short-lived, being associated with transient blooms of phytoplankton
that generally occur in springtime (with sometimes a second bloom in late summer),
and the decomposition of organic material may be quite rapid, because it is consumed
by bottom-living organisms over a period of a few weeks. The dynamical effects of such
decomposition on the benthic boundary layer are likely to be short-term and localized.

P.3.12. The thickness of the viscous sublayer is about zv = 10ν/u∗. Estimating u∗ from
u2

∗ = CDU 2 with U = 0.1 m s−1 and CD = 2.5 × 10−3 (or from u∗ = 0.05U in Section
3.4.1), we find u∗ = 5 × 10−3m s−1 and, with ν = 10−6 m2 s−1, zv = 2 × 10−3 m. The
streaks forming over a flat seabed (Section 3.4.4.) are typically a distance 10zv, or 2 cm,
apart and 100zv, or 0.2 m, in length.

P3.13. Assume the law-of-the wall relation, (3.4): U (z) = (u∗/k)[ln(z) − ln(z0)]. Tak-
ing values from Fig. 3.21(b): U1 = 0.075 m s−1 at z1 = 0.01 m and U2 = 0.1 m s−1 at
z2 = 0.1 m, and subtracting the expression for U in (3.4) at z1 from that at z2, we find
U2 − U1 = (u∗/k)[ln(z2) − ln(z1)] or u∗/k = (U2 − U1)/ln(z2/z1). On substituting
values for zi and Ui (i = 1, 2), we find u∗/k = 0.011 m s−1, and, if k = 0.41, the
friction velocity u∗ = 4.5 × 10−3 m s−1. The stress is ρu2

∗ = 0.02 N m−2 if ρ =
1028 kg m−3, which is typical of the density in the upper ocean.
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The stress in the sublayer is ρν dU/dz, which is equal to that in the log layer, ρu2
∗,

if dU/dz = u2
∗/ν = 13.2 s−1, taking u∗ = 4.5 × 10−3 m s−1 and the value given for

ν. (This relation is independent of the density, ρ). From the inset in Fig.3.21(a), the
mean shear dU/dz in the sublayer is nearly constant (and so too is the stress), with
dU/dz ≈ 0.08 m s−1/0.6 × 10−2 m = 13.3 m s−1, and so there is remarkably good
agreement between the stress in the viscous sublayer and that in the overlying turbulent
log layer. Caldwell and Chriss estimated the uncertainty in the stress values to be about
6%, and even with this uncertainty the agreement is very good.

Chapter 4

P4.1. From the equation for the density, ρ = ρ0[1 + 	 tanh(az)], we find N 2 =
−(g/ρ0)dρ/dz = g	a sech2(az). The shear, dU/dz = U1a sech2(az). The Richard-
son number is therefore Ri = N 2/(dU/dz)2 = [g	/(aU 2

1)] cosh2(az).
The minimum Ri is at z = 0:Rimin = [g	/(aU 2

1)].
This is less than the critical value, 1

4 , and the flow is unstable if U 2
1 > 4g	/a. Hence

the smallest velocity difference, 2U1, across the interface required to make the flow
unstable to small disturbances is 2(4g	/a)1/2, = 2 × (4 × 9.81 m s−2 × 3 × 10−5 ×
0.5 m)1/2 = 0.0485 m s−1.

P4.2. Compare Fig. 4.21 with Fig. 4.2: the billows at the trough rotate clockwise,
indicating the sense of the shear and that the waves are travelling to the right.

Let the thickness of the interface be δ. The shear at the wave crest or trough
is 2aσ/δ and the density gradient is 2 	ρ/δ, so the Richardson number Ri =
2[g 	ρ/ρ0δ)]/(2aσ/δ)2 = g	ρδ/(2ρ0a2σ 2) = δk/[2(ak)2], since σ 2 = gk 	ρ/ρ0.
If Ri ≤ 1

4 , then the wave slope ak ≥ (2δk)1/2, which is the smallest slope for which
Ri < 1

4 . If k = 2π/(wavelength) = 2π/(20πδ), δk = 1/10 and the smallest slope for
which Ri < 1

4 is 1/
√

5. (For a sinusoidal wave, the interface makes an angle of
tan−1(ak) = tan−1(1/

√
5) = 24o to the horizontal at the wave nodes.)

In practice, the Ri required before billows are produced corresponds to Ri = 1
8 or

a wave slope of
√

2 times the critical slope needed to produce a value of Ri = 1
4 .

P4.3. Take z = 0 at the centre of the interface. The speed of the flow, and therefore its
kinetic energy in z > D and z < −D, is unchanged in the transition. The initial flow
speed in –d < z < d is U z/d, in z < −d it is −U and in z > d it is U. The initial
density in −d < z < d is ρ0 − (z/d)	ρ, and it is ρ0 + 	ρ in z < −d and ρ0 − 	ρ

in z > d.
(a) Neglecting the small contribution from the density variations, which is justified

since 	ρ/ρ0 � 1, the initial kinetic energy (KE) per unit horizontal area (the integral
over z of ρ/2 multiplied by the velocity squared) in –D ≤ z ≤ D is made of three
parts, those from −D to −d, −d to d, and d to D. The sum is ρ0U 2(D − d)/2 +
(1/2) ∫d

−d ρ0U 2(z/d)2dz + ρ0U 2(D − d)/2 = ρ0U 2(D − 2d/3), and the final kinetic
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energy (putting d = D) is ρ0U 2 D/3. No change occurs in z < −D or in z > D. The
loss in KE (initial minus final) is therefore the difference, 	KE = 2ρ0U 2(D − d)/3.

(b) Relative to the level z = 0, the initial potential energy (PE) per unit hor-
izontal area (the integral of gρz over z) is also made of three parts, of which
the sum is g ∫−d

−D(ρ0 + 	ρ)z dz + g ∫d
−d [ρ0 − (z/d)	ρ]z dz + g ∫D

d (ρ0 − 	ρ)z dz =
g	ρ(d2/3 − D2), and (putting d = D) the final PE is −2g	ρD2/3. Since no changes
occur in z < −D or in z > D, the gain in PE (final minus initial) is therefore
	PE = g	ρ(D2 − d2)/3.

(c) The energy per unit horizontal area dissipated in the transition is therefore
	KE − 	PE = 2ρ0U 2(D − d)/3 − g	ρ(D2 − d2)/3.

The initial Richardson number in the interfacial layer is Ri = g	ρ d/(ρ0U 2),
and the final Richardson number is Ri f = g	ρD/(ρ0U 2) = 0.32. The efficiency
of the transition is 	PE/	KE = g	ρ(D2 − d2)/[2ρ0U 2(D − d)] = (g	ρ)(D +
d)/(2ρ0U 2) = (Ri f + Ri)/2 = (0.32 + Ri)/2. Since Ri < 1

4 , the efficiency is less
than (0.25 + 0.32)/2 = 0.285, its maximum possible value.

P4.4. The decay time given by (4.2) is τKH ≈ 15U/(g 	ρ/ρ0), where the velocity dif-
ference across the turbulent region is 2U and the density difference 2 	ρ. The buoyancy
frequency is N 2 = g 	ρ/(hρ0), where 2h is the thickness of the turbulent layer, the
buoyancy period is τ = 2π/N and the final Richardson number is Ri f = N 2/(U/h)2 =
N 2h2/U 2 = 0.32 (from the laboratory experiments), giving U = Nh/(

√
0.32). On

substituting into (4.2), τKH ≈ 15U/(g	ρ/ρ0) = 15Nh/[(
√

0.32)N 2h] = 26.5/N =
4.22τ . This is about 3.8 – 4.7 times the exponential decay time of ε(ε ∝ exp[−t/(qτ )],
with q = 1.0 ± 0.1) of approximately (0.9–1.1)τ , and implies that there is a decrease
of ε by a factor of exp(−3.8) to exp(−4.7), i.e., 9.1 × 10−3 to 22.4 × 10−3, during the
period of turbulent collapse.

P4.5. Let the densities and horizontal velocities at z = −h and z = h be ρ0 + 	ρ, ρ0 −
	ρ, and U − 	u, U + 	u, respectively, with 	ρ > 0. Then the Richardson number
calculated by taking differences between the values at the two points is Ri(2h) =
(g/ρ0)[2 	ρ/(2h)]/[2 	u/2h)]2 = (g/ρ0) 	ρ h/(	u)2. We have to prove that Ri(2h)
is greater than, or equal to, the smallest value of the gradient Richardson number,
Ri = −(g/ρ0) (dρ/dz)/(du/dz)2, at points between –h and h.

Suppose that this is not so, and that Ri(2h) < Ri at all points z between –h and h.
Then, since Ri(2h) < Ri , we have

−(g/ρ0)(dρ/dz)/(du/dz)2 > (g/ρ0)	ρ h/(	u)2,

and so

−dρ/dz > [	ρ h/(	u)2](du/dz)2.

Since ∫h
−h(−dρ/dz)dz = ρ(−h) − ρ(h) = 2 	ρ, integrating with respect to z from –h
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to h gives

(	u/h)2 > [1/(2h)]
∫ h

−h
(du/dz)2dz. (1)

Now suppose that between –h and h the speed, u, is given by

u = U + z(	u/h) + v,

where v at z = −h and v at z = h are both equal to zero.
Then, on differentiating with respect to z:

du/dz = 	u/h + dv/dz,

and so, squaring,

(du/dz)2 = (	u/h)2 + 2(	u/h)(dv/dz) + (dv/dz)2.

Integration with respect to z from –h to h gives
∫ h

−h

(du/dz)2dz = 2h(	u/h)2 + 2(	u/h)[v(h) − v(−h)] +
∫ h

−h
(dv/dz)2dz,

= 2h(	u/h)2 +
∫ h

−h
(dv/dz)2dz,

since v(−h) = v(h) = 0. But + ∫ h
−h(dv/dz)2dz cannot be negative (and is zero only if

dv/dz = 0, i.e., if v = 0), and therefore
∫ h
−h(du/dz)2dz ≥ 2h(	u/h)2, or

(	u/h)2 ≤ [1/(2h)]
∫ h

−h
(du/dz)2dz,

in contradiction to (1) above.
So (1) cannot be true, and the assumption from which it is derived, namely that

the Richardson number calculated by taking differences between the values at the two
points −h and h is less than the gradient Richardson number, at all points between −h
and h, is false. It therefore follows that the Richardson number calculated by taking
differences of densities and velocities at the two points −h and h is greater than or equal
to the smallest gradient Richardson number between the same two points. Equality
may occur only if both the gradient of density and the velocity are constant.

P4.6. Equation (4.7) gives the Cox number, C = 〈(∂T ′/∂x)2 + (∂T ′/∂y)2 +
(∂T ′/∂z)2〉/(d〈T 〉/dz)2, whilst (2.12) gives the rate of loss of temperature
variance, χT = 2κT 〈(∂T ′/∂x)2 + (∂T ′/∂y)2 + (∂T ′/∂z)2〉. Hence substituting for
〈(∂T ′/∂x)2 + (∂T ′/∂y)2 + (∂T ′/∂z)2〉, it follows that C = χT /[2κT (d〈T 〉/dz)2].

P4.7. Equation (4.6) is KT = κT C , and (4.9) is Kρ = �ε/N 2. If KT = Kρ , then, on
equating the terms on the rhs of (4.6) and (4.9), ε = N 2κT C/�, so ε can be determined
from the Cox number, C.
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It should, however, be remembered that KT need not always be equal to Kρ , for
example when double diffusive effects are important.

P4.8. In a time δt , the water is carried upwards a distance w δt . The temperature at a
fixed point will therefore change by an amount δT = −w δt dT/dz as the temperature
gradient is advected past the point. The increase in temperature within the layer δz in
time δt is therefore δT = −w δt dT/dz.

The increase in heat per unit horizontal area is δH1 = ρcp δT δz =
−ρcpw δz δt dT/dz and (in the limit as δt tends to zero) the rate of change of heat per
unit horizontal area in the layer is δH1/δt = −ρcpw(dT/dz)δz.

At z = z + δz the vertical downwards flux of heat per unit area in the water result-
ing from turbulent mixing and entering the layer δz, is ρ0cp KT dT/dz|(z+δz), where
dT/dz|(z+δz) is the temperature gradient at z + δz. Similarly, the heat leaving the layer
is ρ0cp KT dT/dz|(z), per unit horizontal area per unit time. The rate of increase in
heat in the layer is therefore δH2/δt = ρ0cp KT (dT/dz|(z+δz) − dT/dz|(z)), or (if δz is
small) δH2/δt = ρ0cp KT (d2T/dz2)δz.

If there is no change in the heat content of the layer, δH1/δt + δH2/δt = 0, so

ρcpw(dT/dz)δz = ρ0cp KT (d2T/dz2)δz,

or

w(dT/dz) = KT (d2T/dz2). (1)

(This is the advection–diffusion balance equation, and may be familiar as the equa-
tion of heat conservation in a steady state with no horizontal gradients or veloci-
ties and a uniform diffusion coefficient. If KT is a function of z, then the equation
becomes w(dT/dz) = d2(KT T )/dz2. Since, in the absence of horizontal convergence,
dw/dz = 0, and w is constant, the advection–diffusion balance equation can be inte-
grated with respect to z.)

If T = T0 exp(z/d), where d = 1 km and T0 is a constant temperature, and the
vertical upwelling speed, w, is 4 m yr−1, on substituting into (1) we find wT 0/d =
KT T0/d2, so KT = wd = [4/(365 × 24 × 3600)]1000 m2 s−1 ≈ 1.3 × 10−4 m2s−1.

P4.9. Since volume is conserved, the volume of water entering the basin, Q, below the
T1 isothermal surface is equal to the upward flux, wA, across it, so w = Q/A.

The upward flux of heat carried by advection is ρcpwT 1 A.
Using (2.5), and integrating over the area, A, the net upward diffusive flux of heat

across the area A is −ρcp AK T dT/dz. The downward flux is its negative.
If geothermal heating can be neglected, then, by equating the heat entering the basin

with that escaping, the heat balance equation is

ρcp

∫
uT da = ρcpwT 1 A − ρcp AK T dT/dz,
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or, since wA = Q and Q = ∫
u da, on substituting for wA = ∫

u da we find

KT = [
∫

u(T1 − T )da]/(A dT/dz).

Since the heat flux entering the Iberian Basin is ρcp ∫ u(T1 − T )da = 17.3 GW =
17.3 × 109 W, the integral ∫ u(T1 − T )da = 17.3 × 109 W/(1030 kg m−3 × 3.99 ×
103 J kg−1 ◦C−1) = 4.21 × 103 ◦C m3s−1. The above equation for KT , with
A = 1.2 × 105 km2 = 1.2 × 1011 m2, then gives KT = 4.21 × 103 ◦C m3 s−1/(1.0 ×
10−4 ◦C m−1 × 1.2 × 1011 m2) = 3.5 × 10−4 m2 s−1.

P4.10. This is one possible solution (which could be improved or refined). We need
to estimate the downward transport of heat by ‘fluff’ falling through an ocean with
temperature that decreases as depth increases and to equate it to an effective flux given
in terms of an eddy diffusion coefficient.

Consider one floc particle of volume V falling at speed w in a local temperature
gradient dT/dz, where z is upwards. The volume of trapped water is EV and, on
average, this is carried downwards a distance L. The difference between the temperature
of the trapped water and that of the surroundings is, on average, about

	T = (L dT/dz)/2, (1)

the (assumed) factor of 2 being present because the temperature difference is the
average difference over the length, L. Following the equation for the heat flux, (2.3),
the heat flux carried by the floc is then ρcpw 	T EV (supposing that the water that
escapes the floc mixes locally with its surroundings, that no heat is subsequently carried
upwards by convection, that ρ is the water density and that heat carried by the material
of which the floc is composed is negligible.). If there are n particles per unit volume,
the net downward flux of heat per unit horizontal area is

F = ρcpw 	T EV n. (2)

The rate of accumulation of particles on the seabed per unit area (i.e., at a speed equal to
the volume of particles arriving per unit area per unit time – units LT−1) is R = wnV ,
so, using (1) and (2),

F = ρcp(L dT/dz)ER/2. (3)

The effective vertical diffusion coefficient is given by

Kρρcp dT/dz = F (4)

(the sign being positive, unlike in (2.5), because F is the downward flux), so

Kρ = LER/2. (5)

(Dimensions: [Kρ] = L2T−1 and [L] = L; [E] = 1; [R] = LT−1: checks.)
(Equation (1) assumes an average temperature difference. In reality floc particles

may be both trapping cold water and losing warm water as they fall, and just what the
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mean is may depend on these capture and loss mechanisms. It is also assumed that
the density gradient is uniform, that the density is not layered and that the particle
fall speed is uniform. These assumptions may be reformulated and partly avoided by
working in terms of net particle flux, and – as in deriving (4) – estimating a local
value of the eddy diffusion coefficient where the temperature gradient is dT/dz and
uniform.)

If E = 1, L = 10 m and R = 0.05 m/(14 × 24 × 60 × 60 s) = 4.13 × 10−8 m s−1,
and (5) gives Kρ ≈ 2.1 × 10−7 m2 s−1, which is at molecular levels of heat transport
and negligibly small in comparison with the values of 10−5–10−4 m2 s−1 typical of the
microstructure measurements and of Munk’s estimate of the eddy diffusion coefficients
in the deep ocean. The heat flux appears unlikely to be very significant, even during
the short period of the spring blooms and even if the scale L or the efficiency, E, is
substantially underestimated in the above calculation.

P4.11. By substituting S = 34.2 psu (A), 33.8 psu (B) and 34.0 psu (C) into

1000 + 27.0 = 103(1 − 8.052 × 10−5T + 8.046 × 10−4S − 3.017 × 10−6T 2)

and solving the resulting quadratic equation for T, we find positive solutions T =
5.3516 ◦C (A), 2.2398 ◦C (B) and 3.8661 ◦C, respectively. The salinity at C is (33.8 +
34.2)/2 = 34.0 psu and the temperature is (5.3516 + 2.2398)/2 = 3.7957 ◦C. This is
0.0704 ◦C less than that (3.8661 ◦C) at the same salinity, 34.0 psu, on the constant-σT

curve.
If there is a heat flux (per unit mass) resulting from turbulent dissipation at a rate

ε = 2 × 10−8 W kg−1 for the period of a year (3.1536 × 107 s) during which isopycnal
mixing occurs, the net heat per unit volume is 0.63 J kg−1 and, from (1.2), the tem-
perature increase is given by 	T = 	H/cp = 0.63 J kg−1/3.99 × 103 J kg−1 K−1 =
1.58 × 10−4 oC. This is much less than the rise in temperature of 0.0704 oC required
to prevent cabelling. The heat generated by the turbulence is therefore not sufficient
to prevent cabelling.

Chapter 5

P5.1. Equation (5.7) is (∂q/∂t = (∂/∂l)[F(l)∂q/∂l], so the dimensions of F(l)
are L2T−1. If F(l) = cllq , then [F(l)] = [cl][lq ] = [cl]Lq , so [cl] = L(2−q)T−1. The
dimensional constant, cl , is therefore the product of two scales, one a length
to the power (2 − q) and the other a time to the power –1. If the length
scale established by the physics of the dispersive processes is taken to be pro-
portional to (ν3/ε)1/4 (noting that [(ν3/ε)1/4] = L), and the time scale propor-
tional to (ν/ε)1/2 (noting that [(ν/ε)1/2] = T), then, to be dimensionally cor-
rect, cl ∝ [(ν3/ε)1/4](2−q)[(ν/ε)1/2]−1 = ν(1−3q/4)ε(1/2+q/4). This is independent of the
molecular viscosity, ν, if the power of ν is zero, i.e., if 3q/4 = 1 or q = 4/3.
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P5.2. (a) The equations of the particle’s motion are

dx/dt = �R × (cosine of the angle between OP and the x axis),

= �R(z/R) = �z, (1)

and similarly, but recalling that the particle is sinking at speed w:

dz/dt = −�R(x/R) − w = −�x − w. (2)

(b) By differentiating (2) with respect to time, t, we get

d2z/dt2 = −� dx/dt (3)

and, using (1),

d2z/dt2 = −�2z. (4)

Integrating this, applying the boundary condition z = 0 at t = 0, gives

z = a sin(�t), (5)

where a is a constant. Substituting into (1) and integrating, with the boundary condition
x = d at t = 0, gives

x = −a cos(�t) + d + a. (6)

(c) You may immediately recognize that this means that the particle path is circular;
the particle motion is a combination of oscillations out of phase by 90◦ and of period
2π/�, the same as that of the solid-body rotation. Substituting into (2) from (5) and
(6) gives

a� cos(�t) = −�[−a cos(�t) + d + a] − w,

and so a = −(w/� + d).
The path of the particle is given by eliminating �t from (5) and (6) using sin2(�t) +

cos2(�t) = 1 and substituting for a:

(x + w/�)2 + z2 = (w/� + d)2,

which is the equation of a circle (as claimed above), centre −w/�, of radius |w/� +
d|.

A sphere that is small (small enough that a Reynolds number based on its
speed and diameter and on kinematic viscosity is much less than unity) and of
density, ρ1, greater than that of the surrounding water, ρ0, will fall at a uniform
speed, wρ = [2a2/(9ν)]g(ρ1 − ρ0)/ρ0, when the viscous drag forces and the upward
buoyancy force balance its weight (footnote 16, Chapter 1). On substituting a =
2 × 10−5 m, ν = 10−6 m2 s−1, (ρ1 − ρ0)/ρ0 = (1500 − 1028)/1028 (taking the den-
sity in the upper 100 m of the ocean to be 1.028 × 103 kg m−3) and g = 9.81 m s−2, the
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speed of falling particles through static water is found to be wρ = 4.0 × 10−4 m s−1,
equal to the rise speed necessary to prevent their sinking. The Reynolds number of the
particles is 2awρ/ν = 0.016 � 1, as required.

If, as postulated, (εν)1/4 must be greater than w for suspension in small turbulent
eddies, ε must exceed (4.0 × 10−4)4/(1 × 10−6) = 2.56 × 10−8 W kg−1, a value not
impossible in a bottom boundary layer. The Kolmogorov scale, (ν3/ε)1/4, must be
less than (1 × 10−18/2.56 × 10−8)1/4 = 2.5 × 10−3 m, but may exceed the particle
diameter of 4 × 10−5 m.

P5.3. By inverting (5.12) σ 2
r = 1.08 × 10−6t2.34, we find t = σ

2/2.34
r (1.08 ×

10−6)−1/2.34. On substituting into (5.11), KH = σ 2
r /(4t) = 7.05 × 10−4σ 1.145

r . But
σr = l/3. Hence KH = [(7.05 × 10−4)/31.145]l1.145 ≈ 2 × 10−4l1.145, the required
result.

P5.4. The dimensionally correct form is KH = c1ε
1/3l4/3, with a constant c1, or

εc3
1 = K 3

Hl−4. (1)

Selecting values in Fig. 5.12 of l = 1 × 102 m, where KH = 4.0 × 10−2 m2 s−1, and
l = 1 × 104 m, where KH = 7.7 m2 s−1, and using (1), we find values for εc3

1 in the
two ranges which, on division, give a ratio of the two values of ε equal to (4.0 ×
10−2/7.7)3(1 × 102/1 × 104)−4, or about 14. The larger value is in the lower range
of length scales, which is consistent with the idea that there is more energy being
dissipated here following an injection of energy through new processes acting at the
smaller range of scales as suggested by Ozmidov.

P5.5. (a) Particles move at speed u towards the nearest windrow. The longest time
required to transport particles into windrows is that needed to carry them over the
greatest distance, i.e., from a starting point halfway between rows at distance h/2 from
a row. The time required, h/(2u), to transport all particles into a windrow (supposing
that some initially lie halfway between two windrows) is therefore h/(2u).

(b) In the time h/(2u), particles floating in the windrows will be carried a distance
downwind of hv/(2u).

(c) The initial x (downwind) and y (across wind) dimensions are d. The maximum
distance that particles can be carried across wind is h/2, so the maximum possible y
dimension of the patch is d + h (accounting for both sides). The maximum x dimension
of the patch is d + hv/(2u), the length of bands of particles floating in the windrows
after their convergence into the bands.

If h = d, part of the patch must initially cover a location halfway between
two windrows, and therefore, as in (a) above, the time to convergence is h/(2u).
For the same reason, the same result follows as before in (b), and the maximum
possible downwind length of the patch is d + hv/(2u). Since, however, the patch
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cannot extend so that floating particles are initially in more than two windrows (and
only two if initially it exactly spans the region between two adjacent windrows) or
lie initially closer than h/2 from more than two windrows, convergence must be
into at most two windrows and the maximum y or across-wind extent of the patch
is d = h.

Alternatively, in more formal mathematical terms, suppose that a windrow (and
there is at least one) within the initial patch of x dimension d = h lies at x = 0.
Then the patch initially lies between, say, x = −(d − a) = −(h − a) and x = a(> 0).
Since either a > h/2 (so the patch extends initially beyond x = h/2) or a ≤ h/2 (so
particles lie initially at x = −h/2), there are particles in the initial patch at a distance
h/2 from the windrow at x = 0 and the time taken for them to be carried into the
windrow is h/(2u), as in part (a). Part (b) follows as before. If a = d = h, the patch
extends between windrows at x = 0 and x = h, and convergence is into these two
windrows. The final and maximum x dimension of the particle domain is therefore
h(= d). (Particles cannot pass beyond a windrow.) If h/2 < a < h, the initial patch
spans the windrow at x = 0. The part of the patch in h/2 < x < h will be carried at
speed u into the windrow at x = h, whilst that in 0 < x < h/2 is carried at speed –u
into the x = 0 windrow and the part of the patch in h/2 < −(h − a) < x < 0 will be
carried at the same speed u into the x = 0 windrow. The particles in the part of the
patch at greatest and smallest x (i.e., at x = a and x = −(h − a)) move at the same
speed, u. The overall extent of the patch is therefore constant, d = h, and the final
and maximum extent is h. Finally, if 0 < a < h/2, then the particles initially again
span the x = 0 windrow, but particles in –h < −(h − a) < x < −h/2 move at speed
–u into the windrow at x = −h whilst those in –h/2 < x < 0 move at speed u into
the windrow at x = 0 and those in 0 < x < h/2 − a move at speed –u into the x = 0
windrow. Again the particles at the greatest and smallest values of x move at the same
speed (−u) and the overall patch x dimension is constant and equal to d = h.

This trivial example simply reinforces the remark in Section 5.2.2 that dispersion
depends on the relative size of patches and the scales of motions.

P5.6. Estimates from the NATRE study of the dispersion coefficient, KH, based on the
evolving size of the SF6 patch are about 0.07 m2 s−1 at scales of 0.1–1 km, and 2 m2 s−1

at scales of 1–30 km. At scales of 300–1000 km, the horizontal diffusivities estimated
assuming Fickian dispersion are 2300 m2 s−1 in the zonal direction and 650 m2 s−1 in
the meridional direction.

The values of the dispersion coefficient found by substitution into (5.13) are 0.021–
0.29 m2 s−1 at length scale l = 0.1 − 1 km, 0.29–14.5 m2 s−1 for l = 1−30 km and
205–818 m2 s−1 (but interpolating (5.13) beyond the range of data on which it is based)
at scales of l = 300−1000 km.

Perhaps surprisingly, given that the processes driving dispersion (at least at the
smaller scales) in the pycnocline and the surface mixed layer are very different, the
values found in NATRE (in the pycnocline) are not dissimilar to those found from
Okubo’s formula (5.13), which was derived from near-surface observations.
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Chapter 6

P6.1. Using (4.9) Kρ = �ε/N 2 with � = 0.2, we have ε = 5N 2 Kρ . If Kρ = KT =
1 × 10−4 m2 s−1 (Munk’s canonical value of the diapycnal eddy diffusion coefficient),
and N = 1.7 × 10−3 s−1, the mean rate of dissipation of turbulent kinetic energy per
unit mass is ε = 5 × (1.7 × 10−3)2 × (1 × 10−4) m2 s−3 or 1.44 × 10−9 W kg−1, since
1 m2 s−3 = 1 W kg−1. The mass of the ocean water lying below a depth of 1500 m
is 0.85 × 1.4 × 1021 kg = 1.19 × 1021 kg, so the required flux of energy to sustain
the estimated mean turbulent dissipation causing diapycnal mixing is 1.45 × 10−9 ×
1.19 × 1021 W or about 1.72 × 1012 W = 1.72 TW.

P6.2. Heating caused by turbulent dissipation: equation (1.2) is 	H = cp 	T , where
	H is the change of heat per unit mass corresponding to a change 	T in temperature.
The rate of change in temperature is therefore dT/dt = (dH/dt)/cp, or, since the rate
of increase in energy per unit mass is ε,

dT/dt = ε/cp, (1)

where cp is the specific heat at constant pressure ≈3.99 × 103 J kg−1 K−1, as in P2.4(b).
Since, from (4.9), Kρ = �ε/N 2, where N 2 = αg dT/dz (from (1.4) and (1.5) if N

depends only on temperature gradient and not on salinity), (1) gives

dT/dt = ε/cp = Kρ N 2/�cp = αK ρg(dT/dz)/(�cp). (2)

The rate of change of temperature (represented here by dθ/dt to distinguish it from
the rate of temperature rise, dT/dt , caused by the dissipation of turbulent kinetic
energy) at a fixed point caused by vertical advection of a gradient, dθ/dz, at speed w,
is dθ/dt = −w dT/dz (see P4.8).

Hence, using (2),

dT/dt = αK ρg(dT/dz)/�cp = −αK T g(dθ/dt)/(w�cp) (3)

(assuming that KT = Kρ since salinity has no effect), so

|(dT/dt)/(dθ/dt)| = αK T g/(w�cp). (4)

(Check units on the rhs: K−1L2T−1LT−2/(LT−1 × ML2T−2M−1K−1) = 1 – correct.)
Hence (4) gives |(dT/dt)/(dθ/dt)| ≈ 1.71 × 10−4 K−1 × 10−4 m2 s−1 ×

9.81 m s2/{[4/(365 × 24 × 60 × 60) m s−1] × 0.2 × 3.99 × 103 J kg−1 K−1}, and
therefore |(dT/dt)/(dθ/dt)| ≈ 1.65 × 10−3. We have taken α = 1.71 × 10−4 K−1

(see Section 1.7.1), Munk’s value, KT ≈ 10−4 m2 s−1, and � = 0.2.
The rate of increase in temperature caused by turbulent dissipation of energy is

therefore much less than the reduction caused by the vertical advection of colder water
(itself equal to the downward diffusion of heat by turbulence in the advection–diffusion
balance – see P4.8). Heating by turbulent diffusion is generally negligible in the deep
ocean, and is justifiably neglected in Munk’s advection–diffusion balance.
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P6.3. The energy flux is τ xus × (area of the ocean surface) where τ = ρaCDaW 2
10 and

us = (0.02 − 0.07)W10, giving a mean flux of (0.02 – 0.07)ρaCDa〈W 3
10〉 multiplied

by the ocean’s area. Here we take the density of air, ρa, to be about 1.25 kg m−3,
and the drag coefficient to be CDa = 1.1 × 10−3. For the positive skew pdf, 〈W 3

10〉
(found by finding ∫ x3 y dx , which can be determined using the formula given or by
integration by parts, and use of erf(z) = (2/

√
π ) ∫z

0 exp(−t2) dt , which tends to 1 as
z tends to infinity) is a factor 6/π greater than 〈W10〉3, i.e., 〈W 3

10〉 = (6/π )〈W10〉3, so
that 〈W 3

10〉1/3 ≈ 9.31 m s−1. For the exponential pdf, 〈W 3
10〉 is a factor of 6 greater than

〈W10〉3, i.e., 〈W 3
10〉 = 6〈W10〉3, and it follows that 〈W 3

10〉1/3 ≈ 13.6 m s−1. These values
lead to a range of energy flux estimates, 8–88 TW, that includes the value of about
60 TW quoted in the text. Recall, however, the uncertainty in the form of the pdf and
in estimating the surface drift.

P6.4. From P1.3, the total energy flux is (ρga2/2)cg times the length of the ocean
coastline (3.1 × 109 m). Here a is the wave amplitude. The group velocity is cg = c/2,
where c is the wave phase speed (the speed at which wave crests advance), given
in deep water by c (m s−1) ≈ 1.56T (s), where T is the wave period. Taking a to
be half the rms wave height, 0.5 m, and cg = c/2 = 1.56 × 7/2 m s−1 = 5.46 m s−1

and ρ = 1028 kg m−3, typical of the density of the upper ocean, the energy dissipa-
tion rate is about (1028 kg m−3) × (9.81 m s−2) × (0.5 m)2 × (5.46 m s−1/2) × (3.1 ×
109 m) = 21.3 × 1012 kg m2 s−3 = 21.3 TW, which is less than the total estimated flux
of energy from the atmosphere to the waves of about 60 TW.

This is a very rough estimate at best. A more precise estimation would require
information about the total flux of energy of waves approaching shore, integrated across
the incident wave spectrum and averaged over at least a year, as well as information
about the reflection of wave energy.

P6.5. From (6.1), the energy dissipated per unit length of the crest of a
breaking wave per unit time is Et = bρ0c5

b/g, where b is a non-dimensional
constant. Now [Et ] = [energy/(crest length × time)] = ML2T−2/LT = MLT−3, and
[ρ0c5

b/g] = ML−3L5T−5/(LT−2) = MLT−3, so the dimensions are correct.

P6.6. The internal tidal energy flux from the Ridge per unit length is 6 GW/3000 km =
6 × 109 W/3 × 106 m = 2 × 103 W m−1. This may be completely dissipated through
transfer into the ambient internal wave field and thence by breaking at a rate of
1 × 10−3 W m−2, over a distance of 2 × 103 W m−1/1 × 10−3 W m−2 = 2 × 106 m
or 2000 km, supposing that there is no radial spread, i.e., that the wave crests remain
aligned with the Ridge axis (although this is not immediately apparent in Fig. 6.2).

Although this estimate disregards dissipation or scattering of baroclinic energy by
other processes, such as those at the rigid and sometimes irregular topography of the
seabed, it indicates that such beams of internal tidal energy may propagate far across
an ocean basin.
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P6.7. Taking a level z = 0 at a height H above the seabed, the density in the overlying
water can be written ρ = ρ0(1 − N 2z/g), where ρ0 = 1030 kg m−3 is a density typical
of the deep ocean. Relative to the level z = 0, the potential energy of a layer extending
from the seabed at z = −H to a height z = H per unit area of seabed is ∫−H

H gρz dz,
or gρ0 ∫−H

H (1 − N 2z/g)z dz = −(2/3)ρ0 N 2 H 3 (as in P1.9). On putting N = 0, the
corresponding potential energy of a homogeneous layer is zero, and so, taking the
difference, the increase in potential energy per unit area of seabed in mixing the initial
layer with buoyancy frequency N to a height 2H is (2/3)ρ0 N 2 H 3. Substituting N =
3 × 10−3 s−1 and H = 10 m gives an increase in energy of (2/3) × (1030 kg m−3) ×
(3 × 10−3 s−1)2 × (10 m)3 = 6.18 kg m2 s−2 per m2 or 6.18 J m−2.

The energy flux available for mixing is 20% of that provided by working against
the bottom stress, or 0.2ρ0CD〈U 2|U |〉 per unit area, where CD is the drag coeffi-
cient, about 2.5 × 10−3. The flux is therefore 0.2 × (1030 kg m−3) × (2.5 × 10−3) ×
(1.25 × 10−4 m3 s−3) per m2 = 6.44 × 10−5 kg s−3 per m2, or 6.44 × 10−5 W m−2.
The time required to supply sufficient energy to mix the 20-m-thick layer is therefore
6.18 J m−2/6.44 × 10−5 W m−2 = 96 000 s = 26.7 h.

P6.8. Conservation of volume in the basin gives

Q + Q1 = Q2 + wA, (1)

whilst the condition of steady density gives

ρQ + ρ1 Q1 = ρ2 Q2 (2)

(since there is no net density flux through A).
Substitution for Q2 from (1) into (2) gives

(ρ1 − ρ2)Q1 = (ρ2 − ρ)Q − ρ2wA. (3)

The density flux identified by Bryden and Nurser, Q1 	ρ, where 	ρ = ρ1 − ρ2,
appears on the lhs of (3) and can therefore be seen to consist of two parts, one the
entrainment flux (ρ2 − ρ)Q through the ρ2 isopycnal surface and the second associated
with the turbulent diffusive flux through the area A.

The advection–diffusion balance for density (e.g., as in P4.9, with density replacing
temperature) gives

Kρ dρ/dz = wρ2. (4)

The lhs is 10−4 (m2 s−1) × (0.6 ± 0.3) × 10−4 (kg m−4) = (0.6 ± 0.3) ×
10−8 (kg m−2 s−1) or, expressed as a diapycnal flux over the area (3 × 106 km2)
of the Brazil Basin, (0.6 ± 0.3) × 10−8 (kg m−2 s−1) × 3 × 106 × 106 m2 =
(1.8 ± 0.9) × 104 kg s−1. Using (4), this is equal to ρ2wA.

The term (ρ1 − ρ2)Q1 in (3) is equal to 0.05 (kg m−3) × 6.9 × 106 (m3 s−1) =
34.5 × 104 kg s−1, and is therefore much greater than the diapycnal flux (AK ρ dρ/dz)
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in the Basin. Equation (3) now implies that the entrainment flux of density, (ρ2 − ρ)Q,
in the Vema Channel also greatly exceeds the diapycnal flux in the Brazil Basin.

P6.9. Assuming that the cross section of the Channel is rectangular, the rate of dis-
sipation of energy in the Channel, Et , by work done against the bed stress is about
Uτ× (area of the Channel bed), where τ is the stress on the bed, or Et = Uρ0CDU 2bl,
where l is the Channel length, b is its breadth and CD is the drag coefficient. (This
ignores the work done against the stress on the sides of the Channel.) The flux of
kinetic energy, FKE, through the Channel is about (ρ0U 2/2) × U× (cross-sectional
area), or ρ0U 3bd/2, where d is the depth of the AABW in the Channel. Hence
Et/FKE = 2CDl/d.

Assuming that CD ≈ 2.5 × 10−3, l = 400 km and d < 1 km, we find Et/FKE >

2CDl/d = 2 × (2.5 × 10−3) × 400 × 103 m/(103 m) = 2 (>1). So Et > FKE and,
subject to the approximations made, the energy lost through the bottom stress exceeds
the flux of kinetic energy in the Channel.

P6.10. If the eddy diffusivity has Munk’s canonical value, KT = 1 × 10−4 m2 s−1, and
the mean temperature gradient is dT/dz = 1.3 × 10−3 ◦C m−1 = 1.3 × 10−3 K m−1,
then the downward diffusive flux of heat per unit area in the deep strati-
fied water is KT ρ0cp dT/dz = (1 × 10−4 m2 s−1) × (1.03 × 103 kg m−3) × (3.99 ×
103 J kg−1 K−1) × (1.3 × 10−3 K m−1) = 5.34 × 10−1 J s−1 m−2, or 534 mW m−2.
This is large relative to the mean upward geothermal flux of heat through unit area of
the seabed of 87.8 mW m−2 (Section 6.9).

Assuming that the Atlantic and Pacific Oceans have similar values of the heat flux
per unit area, the mean downward diffusive heat flux of 5.34 × 10−1 W m−2 over an
area of 7.6 × 107 km2 = 7.6 × 1013 m2 gives a mean flux of about 4.06 × 1013 W or
40.6 TW. This is much less than the heat flux of about 2 × 1015 W, or 2 PW, transported
northwards within the two Oceans at 30 oN.

P6.11. The mean hydrothermal heat flux, F, is about 10 × 1012 W. Using (2.3), this is
given by

F = ρcp 	T wA, (1)

where ρ ≈ 1030 kg m−3 is the density, cp = 3.99 × 103 J kg−1 K−1 is the specific heat,
	T is the mean difference in temperature of the hydrothermal fluid from that of the
ambient seawater, w is the mean vertical velocity of the discharge and A is the area of
the total discharge. Equation (1) gives

	T = F/(wAρcp). (2)

Now the total volume flux is wA ≈ 12 Sv = 12 × 106 m3 s−1, giving 	T ≈ (10 ×
1012 W)/[(12 × 106 m3 s−1) × (1030 kg m−3) × (3.99 × 103 J kg−1 K−1) = 0.2 K.
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This is a small difference in comparison with the very large temperature differences
between vent fluid and the ambient of 300 ◦C that have been reported in some cases,
and suggests that the mixing associated with hydrothermal vents will not generally
be very large. In particular cases, however, plumes are known to rise 100 m or more
above the seabed (e.g., see Fig. 5.2).
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