Воздействие цунами на берега и сооружения *Е.Н. Пелиновский* А.И.Зайцев, А.А. Куркин, А.С. Yalciner

Отделение геофизических исследований Институт прикладной физики РАН, Нижний Новгород

Лаб. моделирования природных катастроф Нижегородский технический университет

ВЫСШАЯ ШКОЛА ЭКОНОМИКИ национальный исследовательский университет

Кафедра информационных систем

Лаборатория вычислительной гидрофизики и океанографии, Южно-Сахалинск

Middle East Technical University, Ankara, Turkey

МИНИСТЕРСТВО МОРСКОГО ФЛОТА

руководство

ПО РАСЧЕТУ ВОЗДЕЙСТВИЙ ВОЛН ЦУНАМИ НА ПОРТОВЫЕ СООРУЖЕНИЯ, АКВАТОРИИ И ТЕРРИТОРИИ.

РЕКОМЕНЛАНИИ ДЛЯ ПРОЕКТИРОВАНИЯ.

РД 31.33.07-86

PASPAGOTAHO	Московским инженерно-строительным институтом им.В.В.Куйбышева
	Проректор по научной работе МИСИ к.т.н. Костин И.Х.
	Руководитель темы д.фм.н., профессор Крылов Ю.М. (СМНИИП)
	Руководитель разработки д.т.н., профессор Мищуев А.В. (МИСИ)
	Исполнателя:
	к.т.н., с.н.с. Сладкович М.С.,
	м.н.с. Приназчиков Н.А., к.т.н., доцент
	Шаньлов Ю.А. (МИСИ)

YTBEPAIEHO

Главным инженером института Союзморниипроект Ильницким D.A.

Mockba 1986

УТВЕРЖДЕН приказом Министерства строительства и жилищно-коммунального хозяйства Российской Федерации от « 23 » шенк5 2017 г. № 945 /лг

МИНИСТЕРСТВО СТРОИТЕЛЬСТВА И ЖИЛИЩНО-КОММУНАЛЬНОГО ХОЗЯЙСТВА РОССИЙСКОЙ ФЕДЕРАЦИИ

СП192.1325800.2017

СВОД ПРАВИЛ

ЗДАНИЯ И СООРУЖЕНИЯ В ЦУНАМИОПАСНЫХ РАЙОНАХ.

Правила проектирования

Издание официальное

РОССТАН ПАРТ ФТУЛ «СТАН ДАРТИН ФОРМ» ФЕДЕРАЛЬНЫЙ РКОЗУИХ (101КЫЙ КОКД СТАИДТУТСИ penienifaguy of Norgenn 20171. Dan

Москва

2017

Москва 2017

здания и сооружения в цунамиопасных районах.

ПРАВИЛА ПРОЕКТИРОВАНИЯ

Издание официальное

Background Information on the Objective of the ASCE TLESC

- A national standard for engineering design for tsunami effects written in mandatory language does not exist. As a result, tsunami risk to coastal zone construction is not explicitly and comprehensively addressed in design.
- The Tsunami Loads and Effects Subcommittee of the ASCE/SEI 7 Standards Committee is developing a proposed new Chapter 6 -Tsunami Loads and Effects for the ASCE 7-16 Standard.
- Anticipated completion by TLESC in November 2013
- Review by ASCE 7 Main Committee in 2014
- ASCE 7-16 to be published by March 2016
- ASCE 7 Tsunami Provisions will then be referenced in IBC 2018
- Local jurisdiction codes could decide to adopt Chapter 6 earlier.

Долгосрочный прогноз цунами

Прогностическая вероятность

PTHA – probabilistic tsunami hazard assessment:

1. Создается каталог возможных землетрясений на период в 10000-100000 лет

- 2. Проводятся расчеты распространения цунами от каждого землетрясения
- 3. Получается каталог возможных цунами (1000-10000 событий)

4. Оценивается вероятность каждого события

Probabilistic Tsunami Hazard Analysis: Multiple Sourcesand Global ApplicationsReviews of Geophysics, 55, 1158–1198 (2017)

Anita Grezio¹, Andrey Babeyko², Maria Ana Baptista³, Jörn Behrens⁴, Antonio Costa¹, Gareth Davies⁵, Eric L. Geist⁶, Sylfest Glimsdal⁷, Frank I. González⁸, Jonathan Griffin⁵, Carl B. Harbitz⁶, Randall J. LeVeque⁸, Stefano Lorito⁹, Finn Løvholt⁷, Rachid Omira³, Christof Mueller¹⁰, Raphaël Paris¹¹, Tom Parsons⁶, Jascha Polet¹², William Power¹⁰, Jacopo Selva¹, Mathilde B. Sørensen¹³, and Hong Kie Thio¹⁴

5. Принимается допустимое значение вероятности (законодательно) и получается расчетное значение высоты цунами

Районирование городов и поселков

Methodology for Development of Physics-Based Tsunami Fragilities

Navid Attary, John W. van de Lindt, Vipin U. Unnikrishnan Andre R. Barbosa, and Daniel T. Cox

Journal of Structural Engineering, 2016

http://dx.doi.org/10.1061/(ASCE)ST.1943-541X.0001715

"Tsunami forces are broadly classified as hydrostatic forces, buoyant forces, hydrodynamic forces, impulsive forces, and debris impact forces [FEMA P-646]" Гидродинамические силы на одиночную преграду

$$F_h = \frac{1}{2} \rho_w g D S$$

давление

 $F_f = \frac{1}{2} \rho_w C_D U^2 S$ лобовое сопротивление

D – полная глубина потока

U – скорость потока

S – площадь поперечного сечения преграды

Отношение сил – число Фруда

$$Fr = \frac{U^2}{g D}$$

Coastal Engineering 79 (2013) 9-21

Tsunami inundation modeling in constructed environments: A physical and numerical comparison of free-surface elevation, velocity, and momentum flux

Hyoungsu Park ^{a,*}, Daniel T. Cox ^a, Patrick J. Lynett ^b, Dane M. Wiebe ^a, Sungwon Shin ^c

$$F_f = \frac{1}{2} \rho_w C_D U^2 S$$

S=DB

Momentum Flux

$$M = D * U^2$$

Не включает параметры строительных конструкций

Porter, K., 2017. A Beginner's Guide to Fragility, Vulnerability, and Risk. University of Colorado

Boulder, 101 pp., http://spot.colorado.edu /~porterka/Porter-beginnersguide.pdf

Why the lognormal cumulative distribution function is widely used for fragility

At least four reasons justify its use:

Simplicity. It has a simple, parametric form for approximating an uncertainty quantity that must take on a positive value, using only an estimate of central value and uncertainty;
 Precedent. It has been widely used for several decades in earthquake engineering.
 Information-theory reasons. It is the distribution that assumes the least if one only knows that the variable is positively valued with specified median and logarithmic standard deviation.
 Often fits data. It often reasonably fits observed distributions of quantities of interest here, such as ground motion conditioned on magnitude and distance, the collapse capacity of structures, and the marginal distribution of loss conditioned on shaking.

Log-normal Distribution

$$f(H) = \frac{1}{H\sigma\sqrt{2\pi}\ln 10} \exp\left(-\frac{(\log H - \langle \log H \rangle)}{2\sigma^2}\right)$$

Van Dorn, W.G.: Tsunamis. Advances in Hydroscience (Ed. V.T.Chow). Acad. Press, London, 2, 1-48, 1965.

Kajiura, K.: Some statistics related to observed tsunami heights along the coast of Japan, Tsunamis - Their Science and Engineering, Terra Pub., Tokyo, 131 – 145, 1983.

Go, Ch.N.: Statistical distribution of the tsunami heights along the coast, Tsunami and accompanied phenomena, Institute of Marine Geology and Geophysics, Sakhalin, 7, 73-79, 1997.

Cumulative Distribution (Integral from pdf)

$$F(H) = \frac{1}{\sqrt{2\pi} \ln 10\sigma} \int_{H}^{\infty} \exp(-\frac{(\log h - a)^2}{2\sigma^2}) \frac{dh}{h}$$

In dimensionless form

$$P(\varsigma) = \frac{1}{\sqrt{2\pi} \ln 10} \int_{\varsigma}^{\infty} \exp\left(-\frac{1}{2} (\log \theta)^2\right) \frac{d\theta}{\theta}$$

$$\zeta = \left(\frac{H}{\overline{H}}\right)^{1/\sigma} \qquad \overline{H} = 10^a$$

Choi, B.H., E. Pelinovsky, I. Riabov, and Hong S.J.: Distribution functions of tsunami wave heights, Natural Hazards, 25, 1-21, 2002.

Distribution Functions

Smoothed Characteristics

Tsunamis 1992-2000

• Flores Island, Indonesia, December 12, 1992,

ORIGINAL PAPER

A proposed methodology for deriving tsunami fragility functions for buildings using optimum intensity measures

Joshua Macabuag¹ · Tiziana Rossetto¹ · Ioanna Ioannou¹ · Anawat Suppasri² · Daisuke Sugawara³ · Bruno Adriano² · Fumihiko Imamura² · Ian Eames¹ · Shunichi Koshimura²

Table 4 Damage state definitions used by the Japanese Ministry of Land Infrastructure Tourism and

 Transport following the 2011 Great East Japan Earthquake and Tsunami

Damage state		Description	Use
DS0	No damage	Water does not enter into the building footprint	Immediate occupancy
DS1	Minor damage	Water enters below the ground floor	Possible to use immediately after minor floor and wall cleanup
DS2	Moderate damage	Water inundates to less than 1 m above the ground floor	Possible to use after moderate repairs
DS3	Major damage	Water inundates to more than 1 m above the floor (but below the ceiling)	Possible to use after major repairs
DS4	Complete damage	The building is inundated above the ground floor level	Major work is required for reuse of the building
DS5*			
DS5	Collapsed	Structural elements are significantly damaged	Not repairable
DS6	Washed away	The building is completely washed away except for the foundation	Not repairable

Fragility «хрупкость» Function

Зависит от типа зданий, и такие функции построены для многих мест Японии, Индонезии

Ground-Truthed Commercial Buildings

Water Depth

Уязвимость

Районирование населенного пункта Seaside, Oregon Nat. Hazards Earth Syst. Sci., 11, 2835–2846, 2011 www.nat-hazards-earth-syst-sci.net/11/2835/2011/ doi:10.5194/nhess-11-2835-2011 © Author(s) 2011. CC Attribution 3.0 License.

New tsunami damage functions developed in the framework of SCHEMA project: application to European-Mediterranean coasts

N. Valencia¹, A. Gardi^{1,*}, A. Gauraz², F. Leone², and R. Guillande¹

Nat. Hazards Earth Syst. Sci., 15, 2669–2695, 2015 www.nat-hazards-earth-syst-sci.net/15/2669/2015/ doi:10.5194/nhess-15-2669-2015 © Author(s) 2015. CC Attribution 3.0 License.

Scenario-based assessment of buildings' damage and population exposure due to earthquake-induced tsunamis for the town of Alexandria, Egypt

G. Pagnoni, A. Armigliato, and S. Tinti

Table 3. Building classes according to the project SCHEMA (Valencia et al., 2011). Any reference to building exposure is removed.

Class		Building attributes	
	A1	very light isolated constructions; wooden, timber, clay materials	
I. Light constructions	A2	very light constructions without any design (like in a shanty town); a very rudimentary set of huts, built using wood, clay, timber and slabs of zinc	A BANGOO
	A3	very concentrated light constructions (like in old towns); wooden, timber and clay materials	B
II. Masonry	В	non-reinforced brick; cement, mortar walls, fieldstone, masonry	A STATE
constructions and non-	С	individual buildings, villas; brick with reinforced column and masonry filling	
reinforced concrete	D	large villas or collective buildings, residential or commercial buildings; non-reinforced concrete	ANT
III. Reinforced	E1	residential or collective structures or offices, car parks, schools; reinforced concrete, steel frames	-2
concrete constructions	E2	residential or collective structures or offices, car parks, schools, towers; reinforced concrete, steel frames	> 3 levels

Flow	Number	Area	Number	Number of buildings				Persons		
depth (m)	of cells	(km ²)	of buildings	D0	D1	D2	D3	D4	D5	
0.0-0.5	744	4.76	4809	0	4809	0	0	0	0	59 702
0.5 - 1.0	685	4.38	3881	0	3866	15	0	0	0	48 181
1.0 - 1.5	395	2.53	2018	0	1808	189	21	0	0	25 0 5 2
1.5 - 2.0	280	1.79	1118	0	972	123	23	0	0	13 879
2.0-2.5	185	1.18	396	0	209	85	74	28	0	4916
2.5 - 3.0	107	0.68	141	0	68	40	22	11	0	1750
3.0-4.0	37	0.24	35	0	0	27	3	0	5	434
Total	2433	15.57	12 398	0	11732	479	143	39	5	153916

Table 6. Damage to buildings and exposed persons under the hypothesis of mean-sea-level conditions.

Хорошо бы на таком же языке интерпретировать шкалу интенсивности цунами, типа новой шкалы Попадопулоса-Иммуры

Карта затопления, Фетхие, Турция

Минимальный шаг 3 м

Какая точность нужна?

Порт Хайдарпаша, Турция (контейнерный порт)

Вода стоит в порту более часа

Расчеты вплоть до шага 1 м

Какая точность нужна?

Волна приходит через 5 мин и становится максимальной к 20 мин

Высота 5 м,

Дистанция 340 м

Дамба в Камаиши (Япония) Цунами 2011 г.

Аомори 青森

Fragility «хрупкость» Function

Влияние дамбы на поселок – роль числа Фруда

3 мин

24 мин

48 мин

Движение донных осадков – параметр Рауза (Rouse)

$$R = \frac{W_s}{\beta \kappa u_*}$$

Скорость осаждения частиц

$$W_{s} = \frac{8\nu}{d} \left[\sqrt{1 + \frac{(s-1)gd^{3}}{72\nu^{2}}} - 1 \right]$$

Скорость трения

R < 1.2 – взвешенные наносы

R < 7 – начало движения

$$u_* = U_{\sqrt{\frac{f}{8}}}$$

- U –скорость течения
- d диаметр частиц
- s их плотность/плотность воды
- **v** кинематическая вязкость
- f коэф. Трения Дарсу

Выбор районов с большими изменениями дна – транспортные модели

Идеализированный бассейн, L = 1 км, h = 20 м

Высота

Скорость

число Рауза

Определение путей эвакуации (2011 г)

Фундаментальная и прикладная гидрофизика Вып. 3 и 4, 2017

ФУНДАМЕНТАЛЬНАЯ и ПРИКЛАДНАЯ ГИДРОФИЗИКА, 2017. 1	Семенов К. К., Нуднер И. С., Лебедев В. В., Захаров Ю. Н., Зимин А. И., Стуколов С. В.Лабораторные и численные исследования профиля волн цунами, распространяющихся по ровном дну.				
Воздействие цунами на берега и сооружения СОДЕРЖАНИЕ	Дорфман А. А., Печенин С. А., Семенов К. К., Нуднер И. С., Максимов В. В. Воздействие волны цунами на морские гидротехнические сооружения и береговые объекты.				
ПРЕДИСЛОВИЕ Клячко М.А. О нормах проектирования зданий и сооружений в цунамиопасных районах Гусяков В. К. Методы и проблемы оценка цунамиопасности морсках побережий Кайстренко В. М. Копичественная оценка пунамиопасности и карты	<i>Нуднер И. С., Семенов К. К., Хакимзянов Г. С., Шокина Н.</i> Ю. Исследование взаимодействия длинных морских волн с сооружениями, защищенными вертикальными экранами.				
Иванова А. А., Куликов Е. А., Файн И. В. О моделировании Симуширских цунами 2006 и 2007 гг. в районе Средних Курил Гюлер Х., Чинар Г., Шарскиванд Н., Создинлер Д., Доган Г., Немиоглу О., Зайцев А., Лачинер А. Воздействие воли цунами на побережье и сооружения (на англ. яз.) Зайцев А. И., Куркин А. А., Пелиновский Е. Н., Ятчинер А., Киан Р. Исследование влияния размеров L-формы залива на отложение донных осадков под воздействием воли	Беляев Н. Д., Лебедев В. В., Алексеева А. В., Нуднер И. С., Семенов К. К., Щемелинин Д. И.Исследования изменений структуры грунта при воздействии волн цунами на гидротехнические сооружения.				
Кантаржи И. Г., Акулинин А. Н. Физическое моделирование воздействия волн цунами на береговые сооружения Рутман Ю. Л., Фильков В. Ю. Определение коэффициента динамичности при воздействии бора на оградительное сооружение гравитационного типа Правила представления материалов в редакцию	 Максимов В. В., Нуднер И. С., Лебедев В. В., Семенов К. К., Кшевецкий С. П., Амосов А. А.Взаимодействие волн цунами с откосными сооружениями. 				
	Рувинская Е. А., Куркина О. Е., Куркин А. А., Зайцев А. И. Моделирование воздействия внутренних волн на морские платформы для гидрологических условий шельфовой зоны о. Сахалин (на англ. яз.).				

Coastal Engineering 144 (2019) 1–14

A deterministic approach for assessing tsunami-induced building damage through quantification of hydrodynamic forces

Yan Xiong^a, Qiuhua Liang^{a,b,*}, Hyoungsu Park^c, Daniel Cox^c, Gang Wang^a

J. Ocean Eng. Mar. Energy (2016) 2:365–380 DOI 10.1007/s40722-016-0054-6

RESEARCH ARTICLE

Numerical study on mitigating tsunami force on bridges by an SPH model

Zhangping Wei¹ · Robert A. Dalrymple¹

Three-dimensional modeling of tsunami forces on coastal communities

Xinsheng Qin, Michael R. Motley*, Nasser A. Marafi

Заключение

Существующие методы расчета цунами позволяют:

- сделать оценки силового воздействия цунами на одиночные преграды и вертикальные стенки,
- оценить эффективность дамб и стенок,
- Предсказать зоны сильного размыва дна

А затем уже переходить к более сложным 3D моделям для малых акваторий

И пусть наши дети спокойно смотрят на море!