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Abstract
When a tsunami wave comes from ocean and propagates through the shelf, it is very 
important to predict several dangerous factors: (a) maximum flooding of the coast, 
(b) tsunami wave height on the coast, (c) velocity of the tsunami front propagation 
through the coast, and (d) time of tsunami arriving at a given point in the coast and 
around it. In this study we study the separate case where the angle of inclination α 
of the seacoast is equal to zero. A linear solution of this problem is unsatisfactory 
since it gives an infinite rate of the coastal inundation that means the coast is flooded 
instantly and without a frontal boundary. In this study, we propose a principally new 
exact analytical solution of this problem based on nonlinear theory for the reliable 
recognizing these essential tsunami characteristics. The obtained formulas indicate 
that the tsunami wave can be stopped (or very strongly eliminated) in the shelf zone 
until approaching the shoreline. For this aim, it is necessary to artificially raising 
several dozens of bottom protrusions to the level of the calm water.
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1 Introduction

Tsunamis are the long gravitational waves in the ocean occurring because of 
a short-term change in its volume that is due to large-scale disturbances in the 
ocean surface its shores or the bottom [8, 31, 39]. Waves with a length λ exceed-
ing the depth of the ocean H are called as long waves (λ > Η). Therefore, tsunami 
cover the entire ocean’s thickness (in the concrete region) and can spread over 
transoceanic distances; therefore this is a planetary phenomenon like astronomi-
cal tides. Typical tsunami wave periods are from 1 min to several hours, and the 
characteristic wavelengths are from 1 to 100  km. Therefore, when approaching 
the shelf, tsunami waves can nonlinearly interact with the shallow components of 
the ocean tide, which can weaken or strengthen the tsunami wave [5].

The tsunami phenomenon is a natural disaster that has been intensively study-
ing since the second half of the twentieth century. The modern tsunami studies 
can be tentatively divided into three main groups.

First, tsunami sources in the oceans and seas are being studied (e.g., [2, 10, 
30, 47]). Here, the waves are often calculated using the linear theory of poten-
tial motions of an ideal frictionless fluid under the gravity field influence [6, 31]. 
Such models are called non-hydrostatic, since they do not use the shallow water 
equations and the hydrostatic law, which are valid for the long waves [3, 41]. 
In other models, the tsunami waves are considered as long waves already at the 
source of excitement. Therefore, they are called as the hydrostatic models [19, 
32].

The second group of investigators studies the propagation of tsunami waves in 
ocean (e.g., [2, 10, 30, 31, 45]). Here the waves are considered as long ones, the 
hydrostatic models of the theory of shallow water are used, and the process itself 
substantially depends on the ocean’s depth [37]. Both in the first and second group 
of the studies, the equations have a hyperbolic type. The friction on the ocean 
(marine) bottom is insignificant and is usually did not take into account.

In the third group of publications studies the processes of tsunami propagation 
through the continental shelf and coastal shallows, including the phenomena of 
transformation and destruction of the waves as well as the inundation of the coast [3, 
5, 13–15, 28, 33, 35, 42].

Our work belongs to the third group (the most dangerous to humanity) of the 
aforementioned studies. They are the most complex since they are usually based on 
solving nonlinear equations and contain a moving border—the water’s edge line. On 
the other hand, the landfall stage of a tsunami is the most destructive, and its study 
is the most important from both a scientific and practical point of view. The tsu-
nami approaches the shore zones in different forms depending on the structure of 
the coastal part of the shelf. If the shelf zone has a large depth up to the shore, then 
the tsunami simply floods the shore and calmly moving inland. At shallower depths 
of the shelf, the tsunami forms a solitary wave (soliton) in which the dispersion is 
balanced by the nonlinear accelerations [6, 8, 20, 34]. The soliton moves cross the 
shelf, but when it approaches the shore, the nonlinear accelerations began to domi-
nate. As a result, the higher harmonics arise and strongly distort the solitary wave. 
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The soliton becomes unstable and collapses. At the same time, generates turbulence, 
and friction on the bottom becomes significant one. The tsunami wave transforms 
into a turbulent current that floods the coastal zone. However, it is significant that 
this water flow at this moment is no longer described by the hyperbolic equations. In 
this paper, we obtained a nonlinear parabolic equation describing the corresponding 
turbulent current, and got its exact solution.

Note that the process of the shore flooding is essentially depends on its geometry. 
For example, if the shore is a sheer cliff, then the height of the rising water will 
simply be equal to the doubled amplitude of the falling wave. If the height of the 
shore increases linearly towards the land, then the solution depends on the angle α 
of the shore inclination. In the numerous publications, as a rule is considered the 
case when α ≠ 0 [e.g., 10, 13, 15, 28, 31, 33, 37]. In this paper, we will look at the 
previously unexplored problem of the tsunami wave inundation of the flat plain con-
sidering the coastal slope absent (α = 0). In the natural conditions, the flat coastal 
plains exist, for example, on the coasts of the Caspian Sea, the Sea of Azov and the 
Mediterranean Sea). The area of flooding and the range of tsunami propagation into 
the land are in this case is maximal.

In the intermediate cases, in the range π/2 ≥ α > 0, a reflected wave occurs, and the 
case α = π/2 corresponds to the vertical wall. The reflected wave greatly complicates 
the process of solving the problem [31]. The real topography of the coast and its 
horizontal inhomogeneity can be taken into account numerically using the powerful 
computers. At the same time, we can take into account all the forces in the equations 
of hydrodynamics including the nonlinear accelerations, the bottom friction, and the 
bottom roughness. However, along with the numerical methods, we must also use 
analytical solutions to test the numerical algorithms. Analytical solutions are also 
necessary for the engineering estimates of the coastal flooding magnitudes. These 
solutions allow us to understand how works the complex phenomenon of the natural 
disaster and to suggest reliable methods of dealing with its consequences.

Fig. 1  The horizontal coordinate 
axes and designations
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2  Statement of the Problem

We choose the origin of coordinates at the sea edge of the shelf x = 0. The x-axis is 
directed along the wave propagation direction perpendicular to the coast, the y-axis is 
perpendicular to the x-axis (left), the z-axis is down vertically (Figs. 1, 2). The letter M 
denotes the width of the shelf. Let us will select the level z = 0 at the surface of the calm 
water, the letter ζ denotes the wave disturbance of the sea surface, and positive value ζ 
is counted down from the unperturbed level of z = 0 (Fig. 2). The letter H and r denote 
the average depth of the shelf and the height of the proposed protrusions of the rough-
ness at the bottom, respectively. Thus, the total depth of the shelf is value H − r.

We will use the equations of shallow water theory. They are obtained from equations 
of the geophysical hydrodynamics by integration along the z-axis in the range from 
z = � to z = H − r [3, 41]. Assuming that there are no changes along the y-axis 
(

�

�y
= 0

)

 , we write the initial equations in the following form

here u is the component of the flow velocity in the wave along the x-axis, w is the 
velocity component along the z-axis, pa is the atmospheric pressure at the water 
surface, g is the gravity acceleration, Rz

x
 is the vertical component of the turbulent 

Reynolds stresses [5], and ρ is the density of water.
We introduce the characteristic scales of the time t0 and pressure p0, the scale of the 

longitudinal coordinate Lx, the scale of the vertical coordinate H, the scale of the hori-
zontal current velocity Vx, the scale of the vertical velocity of the water flow Vz, and 

(2.1)
�u

�x
+

�w

�z
= 0,

(2.2)� u

� t
+ u

� u

� x
+ w

� u

� z
= g

� �

� x
−

1

�

� pa

� x
−

� Rz
x

� z
.

Fig. 2  Vertical section of the water flow and corresponding designations
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the scale of the disturbance of the sea surface Λ. Next, we introduce the dimensionless 
variables

Substituting equalities (2.3) into Eq. (2.1), we find

Assuming that all terms of Eq. (2.4) have the same order, we obtain

The vertical velocity is as many times less than the horizontal velocity, how 
many times the depth of the flow is less than its width.

Similarly, we substitute equalities (2.3) into Eq. (2.2), divide the result by the 
factor V2

x
∕Lx (the order of the nonlinear acceleration) and take into account for-

mula (2.5). We get

here Sh =
Lx

Vxt0
 is the Strouhal number, � =

Lx

H
 is the geometrical parameter, Fr = V2

x

gH
 

is the Froude number, Re = Vx
H

A
 is the Reynolds number of vertical turbulence, 

where A is the coefficient of the vertical turbulent viscosity, and Eu =
�0

�V2
x

 is the 
Euler number.

When deriving Eq. (2.6), we took into account that

We will accept the following values for typical scales: t0 = 1  h = 3600  s; 
Lx = 1 km = 1000 m; Vx = 1 m/s; H = 10 m; p0 =  105 Pa (normal atmospheric pres-
sure), ρ =  103 kg/m3. To estimate the coefficient of eddy viscosity A in a strongly 
turbulent flow, we take the Felzenbaum’s formula [6] A = Vx H. Therefore, A = 10 
 m2/s; Sh = 0.27; Eu = 100; μ = 100 and 1/μ = 0.01; 1/Fr = 98; Re = 1; μ/Re = 100. 
As you can see, the left side of Eq. (2.6) is much smaller than its right. Therefore, 
in a strongly turbulent tsunami, Eq. (2.2) can be written as

It is necessary to add the vertical boundary conditions to Eqs. (2.1) and (2.8):

(2.3)
T = t∕t0, X = x∕Lx, Z = z∕H, U = u∕Vx, W = w∕Vz, Π = pa∕p0, Λ = �∕H.

(2.4)
Vx

Lx

(

�U

� X

)

+
Vz

H

(

�W

� Z

)

= 0.

(2.5)Vz =

(

H

Lx

)

Vx.

(2.6)Sh
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� T
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Integrating Eqs. (2.1) and (2.8) along the vertical axis from z = � to z = H − r 
(it is the real depth, taking into account the protrusions at the ocean bottom), we 
obtain

where R0
x
 is the turbulent stress on the surface of the water caused by the action of 

the wind.
When integrating, we took into account the boundary conditions (2.9) and 

(2.10). Here we introduce the total flow S on a vertical:

Turbulent stresses on the sea surface R0
x
 , as well as the atmospheric pressure 

gradient ��a∕�x should be taken into account only when studying the processes 
of occurrence of the storm surges and meteorological tsunamis [7, 39]. In our 
case, when we study the tsunami wave approach to the shore, these terms can be 
neglected. We associate the water turbulent friction on the bottom RH

x
 with the 

total flow S by a linear law [7, 21]

This type of friction in the hydrodynamics is called as Rayleigh’s friction, but 
Gill [21] notes that it was introduced even earlier by Airy [29] in the channel 
theory of the tides.

Thus, Eqs. (2.11) can be written as

Two Eqs. (2.14) can easily be reduced to one nonlinear equation of the para-
bolic type with respect to the level ζ

in which the wave diffusion coefficient

depends on an unknown quantity ζ.

(2.10)z = H − r, u = w = 0, Rz
x
= RH

x
.

(2.11)
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(
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)
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x
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x
.

(2.12)S =

H− r

∫
�

u dz .

(2.13)RH
x

= �T S , �T =
3A

(H − r)2
.

(2.14)
��

�t
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�S

�x
; g (H − r − �)

��

�x
= �T S.

(2.15)
��
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]

,

(2.16)K (�) =
g (H − r)

�T

−

(

g

�T

)

�
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The similar equations were studied in the static physics [11], in the theory of 
filtration [9, 12, 38], in the theory of atomic explosions [43, 49], in the biomedi-
cal engineering and geophysics [26, 27] and in the theory of tornadoes [4]. To 
solve them, the numerical methods [43] and the approximate analytical methods 
[9, 38, 49] have been developed. In this paper, we propose an elegant self-similar 
solution of the problem which describes the phenomenon under study with suf-
ficient for the practice accuracy.

3  Solution of the Problem

We first consider the simple case of a deep shelf when H − r >> 𝜁 . Then Eq. (2.15) 
can be written as

This is a classical parabolic equation of the type of the diffusion equation (or heat 
conduction) [16] which describes the process of tsunami wave dissipation on the shelf. 
It has the character of the turbulent spreading with a diffusion coefficient

Here n = r∕H is the relative roughness of the ocean bottom. This process can be 
understood by solving Eq.  (3.1) with the corresponding initial (3.3) and boundary 
conditions (3.4):

As a result, we will be able to determine the coastal inundation having the maximum 
range of the tsunami propagation inland. We have [25, 43]

where

is the probability integral in which the upper limit � =
x

[

2(� t)1∕2
].

(3.1)� �

� t
= �

�2 �

� x2
.

(3.2)� =
gH ( 1 − n)

�T

=
gH3( 1 − n)3

3A
.

(3.3)by t ≤ 0, � = 0 for all x,

(3.4)by t > 0 ∶ 𝜁 = 𝜁0 when x = 0; 𝜁 = 0 by x → ∞.

(3.5)� = �0

�

1 − Φ

�

x

2
√

� t

��

,

(3.6)Φ

�

x

2
√

� t

�

=
2

√

�

�

∫
0

exp
�

− �2
�
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The thickness of the coastal area flooded by the tsunami wave, i.e., the inundation 
zone δ, can be found from the condition of a sufficiently noticeable decrease in the level 
ζ when moving away from the beginning x = 0

where special function

is the additional probability integral.
The numerical value 0.01 is reached by the erfc function when the value of its 

argument x

[4 � t] 1∕2
 is equal to two. Hence,

or

It follows from Eq. (3.10) that the width of the flood zone δ does not depend 
on the amplitude of the tsunami wave ζ0 falling to the shelf zone, does not depend 
on the width of the shelf M, but very strongly depends on the depth of the shelf 
H, the relative roughness n =

r

H
 and the time t of the tsunami action. Since tsuna-

mis dissipate due to the turbulence, therefore with an increase in the shear turbu-
lent viscosity coefficient A, the width of the flood zone δ decreases.

For A = 10  m2/s, n = 0 (smooth bottom) and H = 10 m, from formula (3.10) fol-
lows that for t = 1 h, δ = 4300 m. With a shelf width of M = 2000 m, the coast will 
be flooded by 2300 m. However, with a very rough bottom (reefs, rocky ledges at 
the bottom) when n = 0.5, we have (for the same depth, time and turbulent viscos-
ity) from formula (3.10) δ = 1500 m, i.e., a wave the tsunami completely attenu-
ates on the shelf with a width of M = 2000 m. We see that the tsunami attack can 
be stopped by creating the flood barriers or berms on the shelf with a height of 
r = H. In this case, n = 1, 1 − n = 0 and from formula (3.2) follows that κ = 0.

Equation (3.6) gives

and from the solution of Eq. (3.5) we get ζ = 0. Thus, the tsunami inundation stops 
on the shelf, and the coast remains dry (intact).

(3.7)� = �0 erfc
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�
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Note that the obtained solution is approximate and has two fundamental dis-
advantages. Firstly, the width of the flood zone, strictly speaking, is infinite one 
and we cut it off artificially using condition (3.7). Secondly, the water propaga-
tion through the shelf and shore has an infinite velocity, which is unrealistic one. 
These shortcomings belong to any solution to the degenerate linear parabolic 
Eq.  (3.1). However, as we will see below, they are absent in the solution of the 
nonlinear Eq. (2.15).

Let us introduce the length scale h = H − r , time scale T = h2
/

A , dimension-
less coordinate � = x∕h and dimensionless time � = t∕T  . Then the dimensionless 
diffusion coefficient

where e = �∕h is the dimensionless level disturbance, G =
gh3

3A2
  is some parameter 

(the authors of the paper suggest to call it as ‘Galileo’s number’), and L = 1 − e is 
the relative water surface level.

Then Eq. (2.15) takes the form

Its solution

It is easy to verify that it satisfies not only Eq. (3.13), but the boundary con-
ditions at the beginning of coordinates x = 0, φ = 0, and the initial condition 
τ = t = 0:

where L0 is the initial constant value. For example, for L0 = 1, we have ζ0 = 0, i.e., 
there is no any initial perturbation of the water surface level.

Indeed, substituting the solution (3.14) into Eq. (3.13), we obtain c = (G L0)1/2 
and

The coordinates of the moving point x* of the water edge, that is the nose of the 
tsunami wave running onto the shore (where L = 1, � = 0 ), is determined from the 
equation

(3.12)Δ =
K

A
=

g h3 (1 − e)

3A2
= GL,

(3.13)
�L

��
= G

�

��

(

L
�L

��

)

.

(3.14)L (𝜑, 𝜏) = L0 𝜏
(

1 −
𝜑

c 𝜏

)

by 𝜑 < c 𝜏,

(3.15)L (�, �) = 0 by � ≥ c � .

(3.16)L (0, �) = L0 � , L (� , 0) = 0,

(3.17)c =
h

A

√

g
(

h − �0
)

3
.
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which is equivalent to the following equation

From this follows that c = d�∗

d�
=

T

h

dx∗

dt
, or in the dimensional form

The tsunami nose coordinates (water edge) x∗ = �n moves according to the law 
(3.19)

where L0 = 1 −
[

�0

H−r

]

.

4  Discussions of the Results

Solutions (3.14)–(3.21) describe simple, but actual physical-geodynamical model 
for the motion tsunami current on a coastal flatland with a finite velocity of (3.20). 
It differs from the Lagrange velocity (gH)1∕2 of the long waves, since here taken into 
account the roughness r, the initial perturbation of the water level ζ0 and the turbu-
lent friction on the bottom. It can be seen from formula (3.17) that the tsunami wave 
with ζ0 = 0 can be eliminated by creating the roughness protrusions with a height of 
r = H, h = 0 at the bottom of the shelf. However, in contrast to the linear case, the 
tsunami wave is not just scattered over the shelf, but stops because Eq. (3.20) indi-
cates that its velocity V vanishes. Here we should note that since we have neglected 
the several minor factors, the tsunami may not be stopped, but very much weakened 
(which practically means that these two events are of the equivalent importance).

Figure 3 shows the dependence of the level D = − ζ on the time t for two distance 
x: 300 m and 700 m. The level D is upward from the unperturbed sea surface in 
contrast to the level ζ which is down-directed (Fig. 2). Let us assume that we stand 
on the shore of a shelf with a width of M = 300 m near the water edge at the point 
x = 300 m from the beginning of coordinates x = 0, which is located on the sea edge 
of this shelf (Fig. 1). We can see in Fig. 3 (curve 1) that the wave approaches the 
coast x = 300 m at the time t = 52 s with a negative phase. The value of D becomes 
negative one and the water moves away from the coast, exposing the bottom of the 
shelf. This feature of the tsunami approach to the coast is well known from numer-
ous observations. For example, during the tsunami on the island of Sumatra on 
December 24, 2004, the water first moved away from the coast and exposed the 

(3.18)1 = L0�

(

1 −
�∗

�

)

,

(3.19)�∗ = c� −
c

L0
.

(3.20)V =
d x∗

d t
=

(

h

T

)

c =

√

g
(

H − r − �0
)

3
.

(3.21)x∗ =

(

t −
h2

AL0

)

√

g
(

H − r − �0
)

3
,



1 3

Journal of Nonlinear Mathematical Physics 

Fig. 3  Non-linear dependence of the sea level D = –ζ on the time t at various distances from the origin 
x = 0. Graph 1 − x = 300 m, the water edge is located at t = 52 s. Graph 2 − x = 700 m, the water edge is 
located at t = 122 s

Fig. 4  Linear dependence of the sea level D = –ζ on the time t at various distances from the origin x = 0. 
Graph 1 − x = 300 m. Graph 2 − x = 700 m. Flooding of the coast occurs smoothly, there is no a tsunami 
front
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bottom of the shelf. And only after some time (10 s in Fig. 3, curve 1) did it attack 
the coast in the form of a rapidly growing, seething front. The linear solution of this 
phenomenon (Fig. 4) does not have this important feature and the coastal flooding 
occurs smoothly and stretched out in time.

At the moment of time t = 122 s, the wave will reach the point x = 700 m from 
the origin of coordinates x = 0 (Fig. 3, curve 2). The coastal flooding begins at the 
time t = 133 s, and the wave will already be weakened due to the turbulent friction. 
If the water inflow stops at the origin of coordinates L (x = 0, t > 80 s) = 1, then the 
maximum flooding on the shore (x = 300 m, Fig. 3, curve 1) will reach a height of 
20 m. The wave will not reach the point x = 700 m (Fig. 3, curve 2), and the coast 
will remain dry here.

The calculations shown in Fig.  3 are done for the case of L0 = 1, ζ0 = 0, depth 
h = 10 m and velocity V = 5.71 m/s. Analyzing Fig. 3, we see that the region covered 
by the tsunami �n = x∗ is finite and moves with a velocity V described in Eq. (3.20). 
Let us compare the size of the flood zone δ according to the linear δ theory and 
the nonlinear theory δn, setting H = 10 m, θ0 = 1, ζ0 = 0 and r = 0 (smooth bottom). 
According to the aforementioned nonlinear (more exact) theory, V = 5.71 m/s, and 
for 1 h tsunami will flood an area of the size δn = 20,529 m. The linear theory pre-
sented in Eq. (3.10) gives for A = 10  m2/s, the size of δ = 4,300 m, that is 4.7 times 
smaller (it is an erroneous solution).

For the very rough bottom, when H = 10 m, r = 5 m, h = 5 m, n = 0.5, we have 
V = 4 m/s and the nonlinear theory gives δn = 14,500 m. The linear theory at A = 10 
 m2/s gives in this case δ = 1,530 m, that is 9.4 times less. As you can see, the linear 
approximation gives the great errors. The fact is that the diffusion coefficient K in 
Eq. (2.15) stands near the highest derivative. Therefore, the solutions of this equa-
tion substantially depend on the value of K(ζ).

The solution of Eq. (3.14) also makes it easy to reconstruct the dependence of the 
depth D on the distance x at the various fixed times t from the disturbing source. The 
corresponding nomograms and graphs can be employed for the engineering assess-
ments for construction of the artificial structures that should protect the especially 
significant objects (for example, nuclear and thermal power plants, chemical plants, 
airfields and others targets [8, 42]), located nearly the shores of the seas and oceans, 
from the dangerous tsunami phenomenon.

Comparing Figs.  3, 4, we see the significant differences between the nonlinear 
solution presented in (3.14) and (3.15) and the linear solution shown in (3.7). In 
Fig. 4, there is no water rollback at the leading edge of the wave which is observed 
in nature. The character of coastal flooding according to the linear solution (3.7) 
looks like a diffusion spreading of the sea surface level disturbance ς0 at the outer 
edge of the shelf x = 0. The speed of propagation of the disturbance ς0 is infinitely 
large (long-range action). We must note that Eq. (3.1) is a parabolic equation, while 
waves are usually described by hyperbolic equations [48].

From the point of view of the general theory, the nonlinear equations presented 
in (2.15) and (2.16) belongs to the class of nonlinear equations describing the time 
evolution of dynamical systems of various nature [22, 23]
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Here Q is the state vector of the system, X is the radius-vector of a point in a space 
(x, y, z), β are the some parameters characterizing the system. The operator   ∇  takes 
into account the spatial derivatives describing, for example, diffusion. In addition, 
the right-hand side of Eq.  (3.22) is a nonlinear function of the state vector of the 
system Q. Depending on the type of this nonlinearity, various dynamic structures, 
called autowaves, can arise. These include, for example, excitation impulses in 
nerves, moving fronts of combustion and flames, spiral vortices, cells of various 
nature, plane and circular autowaves moving at a certain speed, rotating and pulsat-
ing autowaves. They can occur in continuous media, in biological systems (mor-
phogenesis, work muscles), chemical reactors, in physics and in technical processes 
(combustion of various types, heterogeneous catalysis, plasma, information transfer, 
optoelectronic lines), in society (spread of rumors), in medicine (spread of epidem-
ics, conduction system of the heart, neural network), geophysics and other sciences 
[e.g., 1, 16, 22–24, 26, 27,  36, 44, 46, 50].

It is easy to see that Eqs. (2.15) and (2.16) can be reduced to the standard form 
describing autowaves [50]

where

where f(ζ) the nonlinear function of sea level ζ and its derivatives, R = 1/ωT is the 
relaxation time, and κ is the diffusion coefficient [see Eq.  (3.2)]. The duration of 
autowaves is of the order of R, and the speed of movement is of the order

Lagrange in 1781 derived a similar formula (gH)1/2 for the speed of long gravi-
tational waves (tides, tsunamis) in the open ocean [21, 29]. On a rough shallow-
water shelf and on the coast, these waves become turbulent, and a more accurate 
formula (3.30) takes place for their velocity calculation. Thus, solution presented 
in Eqs. (3.14) and (3.15) describes a tsunami wave moving at a speed close to the 
speed of long gravitational waves in the open ocean. However, due to the collapse of 
the wave on the shallow, rough shelf, it turns into a turbulent current that floods the 
coast. In this case, the type of equation is changed. The hyperbolic equation typical 
for waves in the open ocean is replaced by a nonlinear parabolic equation describing 
the tsunami wave run up to the coast.

(3.22)d�
(�, t)

dt
= F(�,∇, �,�, t).
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[
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.
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5  Conclusions

Let us state the main results obtained in this paper. Based on the nonlinear theory 
of the shallow water and taking into account the strong turbulent friction on a rough 
bottom, the theory of tsunami roll-up to a flat shore (α = 0) is extended. Exact ana-
lytical solutions for the linearized and nonlinear equations are found. It is shown 
that the use of solutions of the linearized equations leads to significant errors. The 
obtained formulas make it easy to calculate the advancement of the water front 
inland, the height of flooding of the shelf and shore at a given point, the tsunami 
wave propagation range, the average current velocity in the wave, and other charac-
teristics necessary for the concrete engineering calculations. It was established that 
the velocity of the tsunami wave can be turned to zero, that is the movement of the 
tsunami wave can be stopped (or very much weakened) when approaching the ocean 
coast. To realize this, it is necessary to increase the height of the roughness protru-
sions (possibly using the artificial adjustable structures) on the bottom of the shelf 
r to the level of undisturbed depth of the shelf H. Therefore, the strong turbulent 
friction will destroy the tsunami wave on the shelf and it does not reach the shore. 
We suggest that the obtained solution is essential for the development of artificial 
constructions in the potential tsunami-dangerous coastal zones.
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