Об асимптотических решениях нелинейной системы уравнений мелкой воды в бассейне с пологими берегами

С.Ю. Доброхотов, Д.С.Миненков, В.Е.Назайкинский

Институт проблем механики им. А.Ю. Ишлинского РАН, г. Москва

Региональный научно-образовательный математический центр при Ярославском государственном университете им. П.Г. Демидова, г. Ярославль

III Всероссийская научная конференция

«ВОЛНЫ ЦУНАМИ: МОДЕЛИРОВАНИЕ, МОНИТОРИНГ, ПРОГНОЗ»

16 – 17 ноября 2021 г.

Исследование выполнено за счет гранта Российского научного фонда (проект № 21-71-30011)

Задача Коши для нелинейных уравнений мелкой воды

$$\widetilde{\eta}_t + \nabla((D(x) + \widetilde{\eta})\widetilde{\mathbf{u}}) = 0, \quad \widetilde{\mathbf{u}}_t + \langle \widetilde{\mathbf{u}}, \nabla \rangle \widetilde{\mathbf{u}} + g \nabla \widetilde{\eta} = 0,$$

$$\widetilde{\eta}_{t=0} = \widetilde{\eta}^{(0)}(x), \quad \widetilde{\mathbf{u}}_{t=0} = \widetilde{\mathbf{u}}^{(0)}(x),$$

- $D(x) = D(x_1, x_2)$ глубина бассейна
- g ускорение свободного падения
- $\widetilde{\eta} = \widetilde{\eta}(x,t)$ возвышение свободной поверхности
- $\widetilde{\mathbf{u}} = \widetilde{\mathbf{u}}(x,t) = (\widetilde{u}_1(x,t), \widetilde{u}_2(x,t))$ горизонтальная скорость

Решение определено в области, такой, что функция $D(x) + \tilde{\eta}(x,t)$ в ней положительна, а на границе области равна нулю.

Асимптотическая задача: малое возмущение линейных уравнений

• Математическая формализация: вводим малый параметр $\varepsilon \geqslant 0$ и ищем зависящие от него решения вида

$$\widetilde{\eta} = \varepsilon \eta(x, t, \varepsilon), \ \widetilde{\mathbf{u}} = \varepsilon \mathbf{u}(x, t, \varepsilon),$$

где $\eta(x,t,\varepsilon),\ \mathbf{u}(x,t,\varepsilon)$ - гладкие функции; начальные условия ставим в виде

$$\widetilde{\eta}^{(0)} = \varepsilon \eta^{(0)}(x, \varepsilon), \qquad \widetilde{\mathbf{u}}^{(0)} = \varepsilon \mathbf{u}^{(0)}(x, \varepsilon)$$

• Получаем задачу Коши

$$\eta_t + \nabla(D(x)\mathbf{u}) = -\varepsilon\nabla(\eta\mathbf{u}), \qquad \mathbf{u}_t + g\nabla\eta = -\varepsilon\langle\mathbf{u},\nabla\rangle\mathbf{u},$$

$$\eta_{t=0} = \eta^{(0)}(x,\varepsilon), \qquad \mathbf{u}_{t=0} = \mathbf{u}^{(0)}(x,\varepsilon).$$

Метод построения асимптотического решения

• На первый взгляд, систему

$$\eta_t + \nabla(D(x)\mathbf{u}) = -\varepsilon\nabla(\eta\mathbf{u}), \qquad \mathbf{u}_t + g\nabla\eta = -\varepsilon\langle\mathbf{u},\nabla\rangle\mathbf{u},$$

$$\eta_{t=0} = \eta^{(0)}(x,\varepsilon), \qquad \mathbf{u}_{t=0} = \mathbf{u}^{(0)}(x,\varepsilon).$$

естественно решать с помощью обычной регулярной теории возмущений по параметру ε , но сложность в том, что область $\Omega(t,\varepsilon)$, в которой определено решение, зависит от самого решения:

$$D(x) + \varepsilon \eta(x, t, \varepsilon) > 0$$
 при $x \in \Omega(t, \varepsilon)$, $D(x) + \varepsilon \eta(x, t, \varepsilon) = 0$ при $x \in \partial \Omega(t, \varepsilon)$.

• Нужно сделать замену переменных, такую, чтобы в новых переменных область не зависела от решения.

- Пример: 1D, линейное дно преобразование Кэрриера-Гринспена; задача в точности линеаризуется.
- G. F. Carrier, H. P. Greenspan, "Water waves of finite amplitude on a sloping beach", J. Fluid Mech., 4:1 (1958), 97–109.
- С. Ю. Доброхотов, С. Б. Медведев, Д. С. Миненков, "О заменах, приводящих одномерные системы уравнений мелкой воды к волновому уравнению со скоростью звука с2=х", Матем. заметки, 93:5 (2013), 716–727.

(в общем случае это невозможно, да и не нужно)

- Основная задача «остановить» область.
- 1D case:

V.A. Chugunov, S.A. Fomin, W.Noland, B.R. Sagdiev, "Tsunami runup on a sloping beach", https://doi.org/10.1002/cmm4.1081

- Пример: 1D, линейное дно преобразование Кэрриера-Гринспена; задача в точности линеаризуется (в общем случае это невозможно, да и не нужно)
- Основная задача «остановить» область.
- Предположение: D(x) гладкая функция, положительная в ограниченной области $\Omega_0 \subset \mathbb{R}^2$, отрицательная вне Ω_0 и такая, что на $\partial\Omega_0$ всюду выполняется условие $\nabla D(x) \neq 0$.
- Конструкция: рассмотрим области

$$\Omega_{\lambda} = \{x : D(x) + \lambda > 0\}$$

и гладкое семейство диффеоморфизмов

$$F(\cdot,\lambda): \mathbb{R}^2 \to \mathbb{R}^2$$
, $F(\cdot,0) = \mathrm{id}$, $F(\cdot,\lambda)(\Omega_\lambda) = \Omega_0$.

Замена переменных $y=F(x,arepsilon\eta(x,t,arepsilon))$ сводит задачу в область Ω_0 .

Возможный способ построения семейства диффеоморфизмов

$$G(\cdot, \lambda) = (F(\cdot, \lambda))^{-1}$$

$$\frac{d}{d\lambda}G(y, \lambda) = -\frac{\nabla D(G(y, \lambda))}{|\nabla D(G(y, \lambda))|^2}$$

G(y,0) = y

Задача в области Ω_0

• Итак, делаем замену переменных $y = F(x, \varepsilon \eta(x, t, \varepsilon))$,

$$N(y, t, \varepsilon) = \eta(x, t, \varepsilon), \quad \mathbf{U}(y, t, \varepsilon) = \mathbf{u}(x, t, \varepsilon)$$

- Обратная замена имеет вид $x=G(y,\varepsilon N(y,t,\varepsilon))$, $G(\cdot,\lambda)=(F(\cdot,\lambda))^{-1}$
- Уравнения в области $\,\Omega_0\,$ для вектора $\,\Psi = \left(\begin{smallmatrix} N \\ \mathbf{U} \end{smallmatrix} \right)$:

$$\mathcal{L}_D \Psi = \varepsilon \widetilde{B}(\Psi, \nabla \Psi, \varepsilon), \qquad \mathcal{L}_D = \begin{pmatrix} \partial_t & \nabla_y \circ D(y) \\ g \nabla_y & \partial_t \end{pmatrix}$$

(плюс соответствующие начальные условия).

• Эти уравнения уже можно решать с помощью регулярной теории возмущений

Основной результат

- Теорема: Асимптотическое решение задачи Коши для нелинейной системы уравнений мелкой воды существует и асимптотически единственно.
- Ключевое утверждение в доказательстве:

Задача

$$\mathcal{L}_D \Psi = f(x, t), \qquad \Psi|_{t=0} = \Psi_0(x)$$

в цилиндре $\overline{\Omega_0} \times [0,T]$ с гладкими начальными данными $\Psi_0(x)$ и правыми частями $f(x,t,\varepsilon)$ имеет единственное гладкое решение в $\overline{\Omega_0} \times [0,T]$.

- Оператор в этой линейной задаче вырождается на границе. Доказательство утверждения опирается на униформизацию, приводящую к волновому уравнению на трехмерном многообразии с гипоэллиптическим оператором пространственной части.
 - С. Ю. Доброхотов, В. Е. Назайкинский, "Униформизация уравнений с граничным вырождением бесселева типа и квазиклассические асимптотики", Матем. заметки, 107:5 (2020), 780–786.