Влияние динамики вспарывания разрыва в очаге землетрясения на генерацию цунами

<u>К.А.Семенцов</u>¹, Т.Баба², С.В.Колесов^{3,4}, Ю.Таниока¹, М.А.Носов^{3,4}

¹Институт Сейсмологии и Вулканологии, Университет Хоккайдо, г. Саппоро ²Университет Токусима, г. Токусима ³Физический факультет МГУ имени М.В. Ломоносова, г. Москва ⁴Институт морской геологии и геофизики ДВО РАН, г. Южно-Сахалинск

ИО РАН, 2024/11/13

1

Динамический источник цунами

Динамический источник цунами

Динамический источник цунами 29°S Вертикальная деформация дна [м] 1.6 s 2 -30°S В работе 31°S 32°S -2 -Ийапель 2015 33°S 72°W 73°W 71°W

вертикальное поднятие области деформации дна показано, что такое поднятие можно считать мгновенным

Динамический источник цунами

29°S

30°S

- 31°S

32°S

33°S

71°W

Статический

 Базовые механизмы динамической генерации цунами (на основе аналитических решений для модельных постановок задачи)

II. Влияние динамики вспарывания разрыва на генерацию цунами для <mark>набора реальных событий</mark> (на основе численного моделирования)

III. Детальное численное исследование события Ийапель 2015

3

Статический подход

(Stoker 1957)

3

Статический подход

(Stoker 1957)

(Носов 1996)

Динамический подход (2 крайних случая)

(1) подъем

3

Статический подход

(Stoker 1957)

Динамический подход (2 крайних случая)

(Носов 1996)

(1) подъем

Для случая 'распространение' смещение свободной поверхности сильно асиметрично! А_{РКОР} спадает с расстоянием из-за фазовой дисперсии

4

Амплитуда цунами меняется по мере распространения волны. Поэтому для сравнения статического и динамического подходов более удобно использовать не амплитуду, а полную энергию цунами.

4

Расчет полной энергии цунами

 $E(t) = E_{\rm P}(t) + E_{\rm K}(t)$

$$E_{\mathrm{P}}(t) = \frac{1}{2} \rho g \int_{-\infty}^{+\infty} \xi^2(x,t) \,\mathrm{d}x$$

$$E_{\rm K}(t) = \frac{1}{2} \rho \int_{-\infty}^{+\infty} \int_{-H}^{0} \left(v_x^2(x, z, t) + v_z^2(x, t) \right) dz \, dx$$

После окончания деформации дна: $E(t) = ext{Const}$

Полные энергии для крайних случаев 'распространение' и 'подъем' 6

Полные энергии для крайних случаев 'распространение' и 'подъем' 6

Полные энергии для крайних случаев 'распространение' и 'подъем' 6

План

Базовые механизмы динамической генерации цунами
 (на основе аналитических решений для модельных постановок задачи)

II. Влияние динамики вспарывания разрыва на генерацию цунами для <mark>набора реальных событий</mark> (на основе численного моделирования)

III. Детальное численное исследование события Ийапель 2015

N⁰	Дата	Mw	Название события
1	2021/07/29	8.2	Аляска
2	2017/09/08	8.2	Чиапас, Мексика
3	2015/09/16	8.3	Ийапель, Чили
4	2014/04/01	8.2	Икик, Чили
5	2012/04/11	8.6	Северная Суматра
6	2011/03/11	9.1	Тохоку, Япония
7	2010/10/25	7.8	Ментаваи, Индонез.
8	2010/02/27	8.8	Мауле, Чили
9	2007/09/12	8.4	Бенгкулу, Индонез.
10	2006/11/15	8.3	Курильские о-ва
11	2006/07/17	7.7	Ява, Индонезия
12	2005/03/28	8.6	Ниас, Индонезия
13	2004/12/26	9.1	Суматра
14	2001/06/23	8.4	Перу
15	1994/10/04	8.3	Шикотан
16	1992/09/02	7.7	Никарагуа

Каталог USGS **Все события с Мw8.2**+ и глубиной гипоцентра <50 км, для которых в каталоге USGS есть динамическая модель очага ╋ 3 цунами-землетрясения

7

N⁰	Дата	Mw	Название события
1	2021/07/29	8.2	Аляска
2	2017/09/08	8.2	Чиапас, Мексика
3	2015/09/16	8.3	Ийапель, Чили
4	2014/04/01	8.2	Икик, Чили
5	2012/04/11	8.6	Северная Суматра
6	2011/03/11	9.1	Тохоку, Япония
7	2010/10/25	7.8	Ментаваи, Индонез.
8	2010/02/27	8.8	Мауле, Чили
9	2007/09/12	8.4	Бенгкулу, Индонез.
10	2006/11/15	8.3	Курильские о-ва
11	2006/07/17	7.7	Ява, Индонезия
12	2005/03/28	8.6	Ниас, Индонезия
13	2004/12/26	9.1	Суматра
14	2001/06/23	8.4	Перу
15	1994/10/04	8.3	Шикотан
16	1992/09/02	7.7	Никарагуа

Динамический источник

Деформация дна, зависящая от времени

(Okada, 1985)

Модель конечных разломов (FFM) (Strike, Dip, Rake, Slip, Длина, Ширина

Продолжительность подъема, Время активации)

N⁰	Дата	Mw	Название события
1	2021/07/29	8.2	Аляска
2	2017/09/08	8.2	Чиапас, Мексика
3	2015/09/16	8.3	Ийапель, Чили
4	2014/04/01	8.2	Икик, Чили
5	2012/04/11	8.6	Северная Суматра
6	2011/03/11	9.1	Тохоку, Япония
7	2010/10/25	7.8	Ментаваи, Индонез
8	2010/02/27	8.8	Мауле, Чили
9	2007/09/12	8.4	Бенгкулу, Индонез.
10	2006/11/15	8.3	Курильские о-ва
11	2006/07/17	7.7	Ява, Индонезия
12	2005/03/28	8.6	Ниас, Индонезия
13	2004/12/26	9.1	Суматра
14	2001/06/23	8.4	Перу
15	1994/10/04	8.3	Шикотан
16	1992/09/02	7.7	Никарагуа

Динамический источник

Деформация дна, зависящая от времени

(Okada, 1985)

Статический источник

Остаточная деформация дна

Модель конечных разломов (FFM) (Strike, Dip, Rake, Slip, Длина, Ширина

Продолжительность подъема, Время активации)

N⁰	Дата	Mw	Название события	E _{DYN}	E _{STAT}
1	2021/07/29	8.2	Аляска	Моделирование цунами: линей	ная теория длинных волн
2	2017/09/08	8.2	Чиапас, Мексика		
3	2015/09/16	8.3	Ийапель, Чили		
4	2014/04/01	8.2	Икик, Чили		
5	2012/04/11	8.6	Северная Суматра		<i>t</i> = 0
6	2011/03/11	9.1	Тохоку, Япония		
7	2010/10/25	7.8	Ментаваи, Индонез.		
8	2010/02/27	8.8	Мауле, Чили	Динамический источник	Статический источник
9	2007/09/12	8.4	Бенгкулу, Индонез.	Деформация дна, 🛛 🗧	Остаточная
10	2006/11/15	8.3	Курильские о-ва	зависящая от времени	деформация дна
11	2006/07/17	7.7	Ява, Индонезия	(Okada 1985)	
12	2005/03/28	8.6	Ниас, Индонезия		
13	2004/12/26	9.1	Суматра	Модель конечных разло	омов (FFM)
14	2001/06/23	8.4	Перу	(Strike, Dip, Rake, Slip, Дли	на, Ширина
15	1994/10/04	8.3	Шикотан	+	
16	1992/09/02	7.7	Никарагуа	Продолжительность подъема,	Время активации)

Зависимость полной энергии от магнитуды

 Для 10 из 16 событий использование динамического источника приводит к усилению полной энергии цунами

Зависимость полной энергии от магнитуды

- Для 10 из 16 событий использование динамического источника приводит к усилению полной энергии цунами
- Это усиление наиболее заметно для цунами-землетрясений Никарагуа 1992 (9.1%) и Ява 2006 (6.7%)
- Наиболее значительное ослабление полной энергии цунами наблюдается для события Суматра 2004 (-1.9%)

Зависимость полной энергии от магнитуды

- Для 10 из 16 событий использование динамического источника приводит к усилению полной энергии цунами
- Это усиление наиболее заметно для цунами-землетрясений Никарагуа 1992 (9.1%) и Ява 2006 (6.7%)
- Наиболее значительное ослабление полной энергии цунами наблюдается для события Суматра 2004 (-1.9%)
- Для землетрясений с магнитудой
 Mw8.2+ динамическое усиление
 энергии не увеличивается с ростом
 магнитуды

Зависимость полной энергии от скорости вспарывания разрыва 10

Ключевой параметр, определяющий динамическое усиление цунами – скорость распространения деформации дна!

 $v_p \neq Const$

N – число сабфолтов

 Δr_i – расстояние от эпицентра до центра i-го сабфолта

*t*_{a,*i*} – время активации і-го сабфолта

Зависимость полной энергии от скорости вспарывания разрыва 10

N⁰	Дата	Mw	Название события	$< u_{ m r}>$, км/с	$E_{\rm DYN}/E_{\rm STAT}$
1	2021/07/29	8.2	Аляска	2.15	0.99
2	2017/09/08	8.2	Чиапас, Мексика	2.39	1.01
3	2015/09/16	8.3	Ийапель, Чили	1.46	1.04
4	2014/04/01	8.2	Икик, Чили	1.66	0.99
5	2012/04/11	8.6	Северная Суматра	1.48	1.04
6	2011/03/11	9.1	Тохоку, Япония	2.01	1.03
7	2010/10/25	7.8	Ментаваи, Индонез.	1.51	1.02
8	2010/02/27	8.8	Мауле, Чили	2.18	0.99
9	2007/09/12	8.4	Бенгкулу, Индонез.	2.16	0.99
10	2006/11/15	8.3	Курильские о-ва	1.53	1.04
11	2006/07/17	7.7	Ява, Индонезия	1.53	1.07
12	2005/03/28	8.6	Ниас, Индонезия	2.19	1.01
13	2004/12/26	9.1	Суматра	1.97	0.98
14	2001/06/23	8.4	Перу	2.05	1.01
15	1994/10/04	8.3	Шикотан	2.27	1.00
16	1992/09/02	7.7	Никарагуа	1.69	1.09

Ключевой параметр, определяющий динамическое усиление цунами – скорость распространения деформации дна!

$$v_{\rm p} \neq Const$$

Средняя скорость
вспарывания разрыва:
$$< v_{
m r}> = rac{1}{N} \sum_{i=1}^N rac{\Delta r_i}{t_{{
m a},i}}$$

N – число сабфолтов

 Δr_i – расстояние от эпицентра до центра i-го сабфолта $t_{{\rm a},i}$ – время активации i-го сабфолта

Зависимость полной энергии от скорости вспарывания разрыва

Средняя скорость вспарывания разрыва для рассмотренных реальных событий лежит в диапазоне [6√gH; 22√gH], т.е. довольно далеко от "резонансного" значения √gH

11

 Однако даже в этом диапазоне скоростей наблюдается тенденция, предсказанная теорией: усиление энергии происходит только при малых скоростях вспарывания разрыва. При больших скоростях усиления нет

 Средняя скорость вспарывания разрыва для рассмотренных реальных событий лежит в диапазоне [6\sqrt{gH}; 22\sqrt{gH}], т.е. довольно далеко от "резонансного" значения \sqrt{gH}

11

- Однако даже в этом диапазоне скоростей наблюдается тенденция, предсказанная теорией: усиление энергии происходит только при малых скоростях вспарывания разрыва. При больших скоростях усиления нет
- Из событий с магнитудой Mw8.2+ мы выбрали для дальнейшего детального исследования событие Ийапель 2015, так как для него доступно наибольшее количество данных наблюдений

План

Базовые механизмы динамической генерации цунами
 (на основе аналитических решений для модельных постановок задачи)

II. Влияние динамики вспарывания разрыва на генерацию цунами для набора реальных событий (на основе численного моделирования)

III. Детальное численное исследование события Ийапель 2015

Методология исследования события Ийапель 2015

12

Модель конечных разломов (FFM) со статическими и динамическими параметрами (Strike, Dip, Rake, Slip, Длина, Ширина + Продолжит. подъема, Время активации)

Методология исследования события Ийапель 2015

Кастика Кастика Дисперсионные уравнения Буссинеска

Точки вывода:

- 18 береговых мареографов
- 1 глубоководная станция уровня моря (DART32402)
- 9 виртуальных глубоководных станций уровня моря (р1 – р9)

пространственное распределение амплитуд цунами

Результаты для глубоководья

Результаты для глубоководья

14

Диаграмма направленности амплитуды цунами

15

Диаграмма направленности амплитуды цунами

Поворот главного луча интенсивности цунами

16

Результаты для береговой линии

-1.32 м $< A_{\rm D} - A_{\rm S} < 2.18$ м

$$-46\% < \frac{A_{\rm D} - A_{\rm S}}{A_{\rm S}} \times 100\% < 122\%$$

Локальные особенности батиметрии сильно влияют на амплитуды цунами в прибрежных точках. В связи с этим какой-либо ясной тенденции в распределении амплитуд вдоль береговой линии не наблюдается...

Сравнение с наблюдениями (временные ряды высот цунами)

наблюдений особенно для первых двух-трех волн Разница между динамическим и статическим источником меньше, чем разница между результатами моделирования и данными наблюдений Разница между источниками заметна только на тех станциях,

где сигнал содержит

высокочастотную

компоненту

моделирования хорошо

согласуются с данными

Результаты

18

Выводы

Выводы для 16 событий 1990-2021

- Из 16 рассмотренных реальных событий использование динамического источника приводит к усилению полной энергии цунами в 10 случаях (до 9.1%)
- 2. Для землетрясений с Mw8.2+ не наблюдается связи между магнитудой и усилением энергии
- Однако наблюдается связь между усилением энергии и средней скоростью вспарывания разрыва. Как и предсказывает теория, усиление энергии более заметно для землетрясений с малыми скоростями вспарывания разрыва.

Выводы для события Ийапель 2015

- Пространственное распределение амплитуды цунами существенно различается для статического и динамического источника. В связи с этим, в частности, в некоторых точках статический источник приводит к значительной недооценке амплитуды цунами (до 54% на глубоководье, и 122% на береговой линии)
- 2. Динамический источник заметно усиливает высокочастотные компоненты волн цунами
- Мы предполагаем, что влияние локальных особенностей батиметрии и влияние динамики вспарывания разрыва на амплитуды цунами в прибрежных точках взаимосвязаны...

Sementsov et al. 2024, Geophysical Journal International (принята к печати)

The governing equations of the JAGURS model are the nonlinear Boussinesq dispersive equations in the

conventional spherical coordinate system:

$$\frac{\partial M}{\partial t} + \frac{1}{R\sin\theta} \frac{\partial}{\partial \varphi} \left(\frac{M^2}{H+\xi}\right) + \frac{1}{R} \frac{\partial}{\partial \theta} \left(\frac{MN}{H+\xi}\right) = -\frac{g(H+\xi)}{R\sin\theta} \frac{\partial\xi}{\partial \varphi} - fN - \frac{gn^2}{(H+\xi)^{7/3}} M\sqrt{M^2 + N^2} + \frac{H^2}{3R\sin\theta} \frac{\partial}{\partial \varphi} \left[\frac{1}{R\sin\theta} \left(\frac{\partial^2 M}{\partial \varphi \, \partial t} + \frac{\partial^2 (N\sin\theta)}{\partial \theta \, \partial t}\right)\right],$$
(C1)

$$\frac{\partial N}{\partial t} + \frac{1}{R\sin\theta} \frac{\partial}{\partial\varphi} \left(\frac{MN}{H+\xi}\right) + \frac{1}{R} \frac{\partial}{\partial\theta} \left(\frac{N^2}{H+\xi}\right) = -\frac{g(H+\xi)}{R} \frac{\partial\xi}{\partial\theta} + fM - \frac{gn^2}{(H+\xi)^{7/3}} N\sqrt{M^2 + N^2} + \frac{H^2}{3R} \frac{\partial}{\partial\theta} \left[\frac{1}{R\sin\theta} \left(\frac{\partial^2 M}{\partial\varphi \,\partial t} + \frac{\partial^2 (N\sin\theta)}{\partial\varphi \,\partial t}\right)\right],$$
(C2)
$$\frac{\partial\xi}{\partial t} = -\frac{1}{R\sin\theta} \left(\frac{\partial M}{\partial\varphi} + \frac{\partial(N\sin\theta)}{\partial\theta}\right),$$
(C3)

where φ and θ are the longitude and co-latitude, respectively, ξ is the vertical displacement of the water surface, *H* is the water depth, $M = (H + \xi)u$ and $N = (H + \xi)v$ are the depth-integrated flow quantities (*u* and *v* are the depth-averaged water velocities along longitude and latitude lines), *R* is the radius of the Earth, *f* is the Coriolis parameter, *g* is free fall acceleration, and *n* is Manning's roughness coefficient. To solve (C1) – (C3)

Comparison of the tsunami models

Station	Static source	Kinematic source
	NRMSD, %	NRMSD, %
DART32402	9	.8 9.8
p1	10	.9 11.6
p2	10	.1 9.1
р3		8. 6.1
p4	6	.1 6.1
p5	5	.5 4.8
р6	4	.8 6
p7	6	.4 7.5
p8	6	.5 7.2
р9	7	.7 8.8

Table 5. The normalized standard deviation of tsunami heights calculated by the CPTM and JAGURS models

Schematic illustration of the CPTM model

Equations

Sigma coordinates

[Philips, 1957; Blumberg & Mellor, 1987; Li et al., 2011]

Coordinate system "Center of the Earth"

$$x(\sigma, \theta, \varphi) = (R - \sigma H(\theta, \varphi)) \cos\theta \cos\varphi$$
$$y(\sigma, \theta, \varphi) = (R - \sigma H(\theta, \varphi)) \cos\theta \sin\varphi$$
$$z(\sigma, \theta, \varphi) = (R - \sigma H(\theta, \varphi)) \sin\theta$$

Equations

Deep water module

Equations

Deep water module

Shallow water module

$$\frac{\partial^2 F}{\partial t^2} - \frac{g}{R^2 \cos\theta} \frac{\partial}{\partial \theta} \left(H \cos\theta \frac{\partial F}{\partial \theta} \right) - \frac{g}{R^2 \cos^2\theta} \frac{\partial}{\partial \varphi} \left(H \frac{\partial F}{\partial \varphi} \right) = -g \left(U_x \frac{\partial H}{\partial x} + U_y \frac{\partial H}{\partial y} + U_z \right)$$

Equations Unit vector normal Open bounds: $\frac{\partial F}{\partial t} = \pm c(\nabla F \cdot \vec{n_H})$ to the bound (in the horizontal plane) **Boundary conditions** $H_{SD}: \quad \frac{\partial F}{\partial z} = U_x \frac{\partial H}{\partial x} + U_y \frac{\partial H}{\partial y} + U_z$ $H_0: (\nabla F \cdot \overrightarrow{n_H}) = 0$

Model output

 $\xi = -\frac{1}{g} \frac{\partial F}{\partial t} \Big|_{\sigma=0} \quad \text{-vertical surface displacement}$ $p = -\rho \frac{\partial F}{\partial t} \quad \text{-pressure}$

 $\vec{v} = \nabla F$ - flow velocity [Landau, Lifshitz, 1987]

III. Observations

11

III. Observations

11

4h

III. Frequency content

- If the signal contains only low-frequency component, then static and dynamic sources give similar results
- If the signal contains both low-frequency and high-frequency components, the highfrequency component is more intensive for the dynamic source
- If the high-frequency and low-frequency components are shifted in time related to each other (for example, due to phase dispersion), there will be no amplification of the total signal

Decomposition of Huasco time series

I. Basic mechanisms of dynamic tsunami generation

Static source VS Piston source

12/16

